
Web Intelligence and Agent Systems: An International Journal 12 (2014) 211–233 211
DOI 10.3233/WIA-140293
IOS Press

Building up a class hierarchy with properties
by refining and integrating Japanese
Wikipedia Ontology and Japanese WordNet
Takeshi Morita a,*, Yuka Sekimoto b, Susumu Tamagawa b and Takahira Yamaguchi b

a School of Social Informatics, Aoyama Gakuin University, Sagamihara-shi, Japan
b Faculty of Science and Technology, Keio University, Yokohama-shi, Japan
E-mail: {s_tamagawa,yamaguti}@ae.keio.ac.jp

Abstract. Previously, we constructed the Japanese Wikipedia Ontology (JWO) via a semi-automatic process using the Japanese
Wikipedia, but it had problems due to a lack of upper classes and appropriate definitions of properties. Thus, the aim of the
current study was to complement the upper classes in JWO by refining and integrating JWO and Japanese WordNet (JWN) to
build a class hierarchy with defined properties based on the considerations of property inheritance. To achieve this, we developed
tools that help users to refine the class-instance relationships, to identify the JWO classes that need to be aligned with JWN
synsets, and to align the JWO classes with the JWN synsets via user interaction. We also integrated JWO and JWN using a
domain ontology development environment, DODDLE-OWL. We also propose a method for building a class hierarchy with
defined properties by elevating the common properties defined in sibling classes to higher classes in JWO.

Keywords: DODDLE-OWL, Japanese Wikipedia Ontology, Japanese WordNet, ontology alignment, ontology learning

1. Introduction

Recently, Wikipedia has received much attention as
a resource for building ontologies. Wikipedia has an
extensive vocabulary and the articles in Wikipedia are
updated constantly. In addition, Wikipedia includes
semi-structured resources such as category trees and
infoboxes. These resources are structured to facili-
tate reading and writing, but it may be possible to
build large-scale and high accuracy ontologies by us-
ing these semi-structured resources in an appropriate
manner.

In the Semantic Web community, a process called
Linking Open Data is used to create links between data
items from different databases on the Web, such as
government and scientific databases, by converting the
databases into the Resource Description Framework
(RDF) format. This approach has spread rapidly from

*Corresponding author. E-mail: t_morita@si.aoyama.ac.jp.

its focus in Europe and the United States since around
2008 [2]. DBpedia [1] employs RDF data for auto-
matic construction using the English Wikipedia and it
has been used by many researchers, particularly as a
hub for linking data items between RDF datasets. DB-
pedia creates multilingual data using language links
between English articles and other language articles
in Wikipedia. Although a DBpedia corresponding to
the Japanese Wikipedia1 was released recently, it does
not provide enough information needed to achieve our
goals. For our purposes the amount of semantic infor-
mation for properties, the distinction between classes
and instances, and the embedded class hierarchy, is in-
sufficient.

Thus, we have proposed learning methods for build-
ing a large-scale and high accuracy general ontology
called Japanese Wikipedia Ontology (JWO) by ex-
tracting the concepts and relationships between con-

1http://ja.dbpedia.org

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License.

1570-1263/14/$27.50 c© 2014 – IOS Press and the authors.

212 T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN

cepts (is-a relationships, class-instance relationships,
domains and ranges of properties, synonyms, and re-
lationships between instances) from various semi-
structured resources in Japanese Wikipedia (category
trees, listing pages, redirect links, infoboxes, and in-
fobox templates) [19]. However, JWO has problems
because it lacks upper classes and appropriate defini-
tions of properties. Thus, the aim of our research was
to complement the upper classes in JWO by integrating
JWO and Japanese WordNet (JWN) [8] using ontol-
ogy alignment(OA) techniques. JWN is a large scale,
freely available, semantic Japanese dictionary built by
the National Institute of Information and Communi-
cations Technology. JWN is derived from Princeton
WordNet 3.0 and it includes many abstract concepts.
To achieve our aim, we developed tools that help users
to refine class-instance relationships, to identify the
JWO classes that need to be aligned with JWN synsets,
and to align the JWO classes with the JWN synsets via
user interaction. We also integrated JWO and JWN by
using a domain ontology development environment,
DODDLE-OWL [13]. We also propose a method for
building a class hierarchy with defined properties by
elevating common properties defined in sibling classes
to higher classes in JWO.

This research is based on our previous study [14],
but we have extended the proposed methods and added
further evaluations.

The remainder of this paper is organized as follows.
In Section 2, we briefly describe JWO. In Section 3,
we introduce the problems of JWO. In Section 4, we
describe our proposed methods, which comprise two
main components: a method for integrating JWO and
JWN; and a method for defining domains of proper-
ties based on a consideration of property inheritance.
In Section 5, we present quantitative and qualitative
evaluations of our methods. In Section 6, we introduce
related research, which we compare with our method.
Finally, we give our conclusions in Section 7.

2. Japanese Wikipedia Ontology

In this section, we briefly describe JWO, which was
proposed by [19]. JWO is a large-scale and high accu-
racy general ontology, which was constructed by ex-
tracting concepts and relationships between concepts
from various semi-structured resources in Japanese
Wikipedia (category trees, listing pages, redirect links,
infoboxes, and infobox templates). JWO was built
from the following five types of relationships. How-

ever, note that the relationships enclosed in parenthe-
ses are vocabularies (classes and properties) defined by
OWL,2 RDFS,3 RDF,4 and SKOS,5 each of which cor-
responds to extracted relationships. The relationship-
building methods are introduced briefly in this sec-
tion.

1. Is-a relationships (rdfs:subClassOf)
2. Class-instance relationships (rdf:type)
3. Infobox triples (owl:Object/DatatypeProperty)
4. Domains of properties (rdfs:domain)
5. Synonyms (skos:altLabel)

2.1. Extracting is-a relationships

Wikipedia has hierarchical categories, but their role
is to categorize articles. However, the relationships
among the lower level categories and higher level cat-
egories are often not viewed in terms of is-a relation-
ships from the perspective of inheriting a quality, and
therefore, it is difficult to utilize the Wikipedia cat-
egory hierarchy based on is-a relationships without
refinement. As a result, the is-a relationship is built
mainly using the following two methods:

1. Matching the character string related to a cate-
gory hierarchy.

2. Matching a category name and an infobox tem-
plate.

2.1.1. Matching the character string related to a
category hierarchy

Matching character strings with the hierarchy cate-
gory utilizes two methods: backward string matching
and forward matched string elimination. In English,
we can easily separate meaningful terms from con-
tinuous arrays of characters with spaces. In Japanese,
however, it is difficult to separate meaningful terms
from characters because there are usually no spaces be-
tween Japanese characters. Therefore, we utilize char-
acter string matching methods to separate meaningful
terms from characters in the category tree. These are
language-specific techniques, but they are effective for
extracting is-a relationships from Japanese Wikipedia
category trees.

The backward string matching method extracts cat-
egory links where the subcategory’s string is in the

2http://www.w3.org/TR/owl-ref/
3http://www.w3.org/TR/rdf-schema/
4http://www.w3.org/TR/rdf-syntax-grammar/
5http://www.w3.org/TR/skos-reference/

T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN 213

Fig. 1. Method used to extract is-a relationships by matching the infobox template name to the category name.

form of an “arbitrary string + superior category name.”
We treat these links as is-a relationships and extract
them.

In this case, there is one arbitrary category (Cat-
egory 1) and its sub-category (Category 2). If Cate-
gory 1 has the form of “A + arbitrary string” and Cat-
egory 2 has the form of “A + other arbitrary string” (A
represents the same word), the forward matched string
elimination method extracts is-a relationship by elimi-
nating both cases of A.

2.1.2. Matching a category name and an infobox
template

Tables called infoboxes are often present in articles
in Wikipedia, which provide article information in the
form of a set of attribute-value rows. Infobox templates
are templates that provide standardized attributes for
related articles. Infoboxes are produced using the re-
lated infobox template. For example, most of the ar-
ticles about countries such as “Japan” article have in-
foboxes based on the “Country” infobox template. The
“Country” infobox template includes attributes such as
the national anthem, population, and capital. Most in-
foboxes are produced using the related infobox tem-
plate, but some infoboxes also include article-specific
attributes.

We focus on the relationships among infobox tem-
plates, the categories of articles with infoboxes (in-
fobox categories), and the category tree. We propose a
method for extracting is-a relationship by matching the

names of infobox templates to category names. Fig-
ure 1 shows an overview of the method and the four
steps of the procedure are described as follows. Using
this method, we can extract is-a relationships that can-
not be extracted by matching the character string re-
lated to the category hierarchy.

1. Extract the infobox templates, infobox cate-
gories, and category tree from Wikipedia dump
data.

2. Match the infobox template names to the cate-
gory names in the category tree.

3. Extract the sub-categories of the categories
matched in step 2 and remove all categories
other than the infobox categories from the sub-
categories.

4. Define the is-a relationships between the cate-
gories extracted in steps 2 and 3. (The categories
extracted in step 2 are referred to as superclasses
and those extracted in step 3 are referred to as
subclasses.)

2.2. Extracting class-instance relationships

Various names are included on the listing pages in
Wikipedia. For example, many world language names
are listed on the “Language listing page.” Wikipedia
editors do not need to arrange articles and confirm fac-
tual details, and many people participate in the edit-
ing of listing pages. Therefore, there are many listing

214 T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN

pages and their accuracy is very high. Thus, we consid-
ered that scraping the listing pages would allow us to
extract many class-instance relationships. We propose
a method for scraping listing pages, which comprises
seven steps, as follows.

All of the text present in articles is available from the
dump data pages for free, in the form of XML. First,
we eliminate text other than listing pages using “page”
tag, “title” tag, and other similar tags. A string of in-
stances is described in the lines beginning with “*” or
“#” (we refer to them as “* lines”), while a string of
taxonomical attributes is described in the lines begin-
ning with “=” (we refer to this as a content index).
Thus, we scrape the lines that do not begin with “*,”
“#,” or“=.” In steps 2–6, we eliminate lines that start
with “*,” which do not include correct instance strings
based on a specific pattern we developed.

1. Scrape lines that include an instance string.
2. Eliminate * lines used in the explanatory text of

the list.
3. Eliminate * lines linked to other listing pages.
4. Eliminate * lines that belong to an unrelated con-

tent index such as “recital.”
5. Eliminate * lines that are not correct as instances,

such as “* REDIRECT.”
6. Eliminate * lines that are used to describe years

such as “* 19th.”
7. Scrape the string of an instance from each “*”

line by using the link symbol “[[]]” to identify
it.

2.3. Extracting infobox triples

The three sets that comprise an infobox, i.e., “ar-
ticles, subjects, and values,” can also be viewed as
three other sets, “instance, property, and property val-
ues.” Thus, a triple can be extracted from the infobox
by scraping and using this structure. In addition, the
application of modeling rules to the 40 infobox tem-
plates can generate the category owl:ObjectProperty/
owl:DatatypeProperty as a property type.

The property types of infobox templates are defined
as owl:ObjectProperty if the values of the properties
are resources. However, the property types are defined
as owl:DatatypeProperty if the values of the properties
are literals. We used 40 infobox templates in this case,
because we modeled approximately 146,000 infoboxes
(about 72%) with a high occurrence rate from a total
of approximately 202,000 infoboxes before extracting
them from Wikipedia dump data during October 2009,
which included 40 template types in the title.

2.4. Extracting the domains of properties

First, we extract the attributes of infobox templates
as properties and the infobox template names as the
domains of properties. Second, we extract the article-
specific attributes that are not described in the infobox
templates as informal properties. The domains of the
informal properties are defined using classes extracted
with the is-a relationship extraction method by match-
ing an infobox template name to a category name, as
described in Section 2.1.2).

2.5. Extracting synonyms

Synonyms are extracted using Wikipedia’s redi-
rect link function. The synonyms extracted in this
case were correlated with each term of the corre-
sponding class or instance. We used the SKOS prop-
erty to describe synonymous relationships such as
“skos:prefLabel” and “skos:altLabel.” SKOS provides
a model for expressing the basic structure and the con-
tent of concept schemes. The “skos:prefLabel” prop-
erty allows the assignment of a preferred lexical la-
bel to resources. The “skos:altLabel” property allows
the assignment of an alternative lexical label to a con-
cept.

3. Problems of JWO

At present, the JWO has problems because it lacks
upper classes and appropriate definitions of properties.

The class hierarchy of JWO was built automatically
based on the category tree in Japanese Wikipedia. The
categories used by Wikipedia are produced to clas-
sify articles, although a few abstract categories are not
used to classify the articles. In addition, the root cate-
gories of the category tree are the following nine main
categories: fundamental category, academia, technol-
ogy, nature, society, geography, humans, culture, and
history. However, these root categories are not suit-
able upper classes for ontologies. At present, there are
about 3,000 root classes in JWO and the class hier-
archy of JWO is a set of fragmentary is-a relation-
ships. Therefore, it is necessary to complement the up-
per classes to organize the fragmentary is-a relation-
ships.

Property definition has two main problems in JWO.
First, properties can be defined only as certain classes.
Second, the domains of properties cannot be defined
based on considerations of property inheritance. These

T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN 215

Fig. 2. Example illustrating the problems of property definition.

problems are caused mainly by defining the properties
and domains of properties based on infobox templates.
For example, the domains of “nationality” property in-
clude subclasses of the “Person” class such as “Soc-
cer Athlete,” “Politician,” and “Writer.” Thus, these in-
fobox templates are not created based on a consid-
eration of property inheritance between infobox tem-
plates. Therefore, many duplicate attributes (proper-
ties) such as “nationality” are defined in the infobox
templates related to “Person.” In the present version
of JWO, the domains of properties cannot be defined
based on a consideration of property inheritance, so
redundant domains of properties are defined. For ex-
ample, if “nationality” property is defined only as the
“Person” class, property inheritance can be performed
using the subclasses of the “Person” class and the def-
initions of the redundant domains of properties can be
deleted. Moreover, if the domains of properties can be
defined based on a consideration of property inheri-
tance, the specific properties of each class would be-
come clear. It would also be possible to compare the
specific properties shared between superclasses and
subclasses, and between sibling classes to infer the
discriminatory attributes of each class. Furthermore,
properties can be defined based on property inheri-
tance for the classes with no properties at present. Fig-
ure 2 shows an example of the problems of property
definition.

4. Proposed methods

4.1. Overview

In this section, we describe our proposed methods.
An overview of our proposed methods is shown in
Fig. 3. The aims of these methods are to construct
a class hierarchy with defined properties based on a
consideration of property inheritance. To achieve these
aims, we propose two main types of method: integrat-
ing JWO and JWN; and defining the domains of prop-
erties based on a consideration of property inheritance.
Before describing these methods, we present prelimi-
nary research and the policies used to integrate JWO
and JWN. This preliminary research was reported pre-
viously [14].

4.2. Preliminary research

4.2.1. Attempted integration of JWO and JWN
We attempted to integrate the class hierarchy in

JWO and JWN to complement the upper classes in
JWO. The integration procedure was as follows, where
we used JWO during June 2010.

1. We calculated five synonym sets (synsets) in
JWN that were most similar to a root class
in JWO by applying four string-based methods
(prefix, suffix, edit distance, and n-gram) to the

216 T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN

Fig. 3. Overview of our proposed methods.

root classes (3,082) in JWO and the noun synsets
(82,115) in JWN (ver.1.1), as described previ-
ously [7]. In JWO, the class labels include a for-
mal label and alternative labels. If a formal label
of a class in JWO matches a label of a synset in
JWN, the weight of similarity between the class
and the synset is set as twice. We set the n-gram
parameter “n” as 3.

2. When a class in JWO corresponded to two or
more synsets in JWN with the same degree of
similarity, we sorted the synsets in ascending or-
der of the ID of the synset to rank them.

3. We extracted the pairs of a root class in JWO and
a synset in JWN that were most similar to the
root class.

4.2.2. Integration results
Table 1 shows the results obtained after integrating

the root classes in JWO and the synsets in JWN. In
these experiments, we extracted 300 random classes
from the 3,082 root classes in JWO and we manu-
ally evaluated the relationship types between the root
classes and the synsets in JWN.

In Table 1, “sameAs” indicates an equivalent re-
lationhip. “Isa” indicates an is-a relationship. In this
case, a root class in JWO is the subclass of the most
similar synset in JWN. “Isa-reverse” indicates an is-a
relationship. In this case, a root class in JWO is the su-
perclass of the most similar synset in JWN. “Sibling”
indicates a relationship where a root class of JWO is
the sibling of the most similar synset in JWN. “Fail-
ure” indicates that a root class in JWO has no relation-
ship with the most similar synset in JWN. “Error” indi-
cates that a root class in JWO is not a significant class,
such as “Archiving a talk page.”

Table 1 shows that approximately 37% of the re-
lationships were is-a relationships (“isa” and “isa-
reverse”), approximately 34% of relationships were
failures, approximately 17% of relationships were
equivalent relationships, approximately 7% of re-
lationships were sibling relationships, and approxi-
mately 5% of relationships were errors.

Table 1
Results obtained after integrating the root classes in JWO and the
synsets in JWN

Type of relationship Number Ratio

sameAs 52 0.173
isa 90 0.300
isa-reverse 20 0.067
sibling 21 0.070
failure 101 0.337
error 16 0.053

total 300 1.000

Table 2
Examples showing the integration of root classes in JWO and synsets
in JWN

Table 2 shows examples of the integration of root
classes in JWO and synsets in JWN using the four
string-based methods mentioned in Section 4.2.1. The
formal label of a class in JWO and the ID of a synset
are indicated in bold.

4.2.3. Policies used to integrate JWO and JWN
In preliminary research, we attempted to match the

root classes in JWO and the synsets in JWN to inte-
grate JWO and JWN. However, we found that the up-
per classes in JWO included many errors and many
classes had no instances in the root classes. In the
present study, therefore, we integrated the classes in
JWO with instances and the synsets in JWN. In addi-
tion, based on the results of the preliminary research,
we found that some types of relationships, including
failures and errors, were extracted by ontology align-
ment techniques and it was difficult to integrate JWO
and JWN automatically. In the present study, there-
fore, we developed tools to help users refine the class-
instance relationships, identify the JWO classes that
need to be aligned with JWN synsets, and align the
JWO classes with the JWN synsets via user interac-
tion.

T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN 217

In our previous study, we proposed a method for
building a class hierarchy with defined properties
based on a consideration of property inheritance by
elevating the common properties defined in sibling
classes to higher classes in JWO [14]. In the present
study, we modified this method so it could be ap-
plied to a class hierarchy, which was constructed by
refining and integrating JWO and JWN. There are
about 3,000 root classes in the current version of
JWO and the class hierarchy of JWO is a set of
fragmentary is-a relationships, and therefore, it was
difficult to apply this method to the current version
of JWO. Therefore, we aimed to apply the method
to the results obtained after integrating JWO and
JWN. There are about 57,000 noun synsets in JWN,
whereas there are only about 3,000 classes in JWO
with instances. Therefore, if JWO and JWN were
integrated in a straightforward manner, it would be
difficult to apply this method because there may be
few matched classes in JWN and only a few sibling
classes would include the matched classes. To solve
these problems, we removed the synsets that did not
contribute to the classification of the classes in JWO
with instances using DODDLE-OWL [13], which is
a domain ontology development environment for free
text.

4.3. Integrating JWO and JWN

4.3.1. Overview
The procedures used for integrating JWO and JWN

are shown in Fig. 4. These procedures are described as
follows:

1. Extracting class-instance relationships
2. Refining class-instance relationships and identi-

fying alignment target classes
3. Aligning JWO classes and JWN synsets
4. Integrating JWO and JWN using DODDLE-

OWL
5. Removing redundant class-instance relationships

The details of each procedure are explained in the
following sections. Note that we used the version of
JWO from November 2010 and JWN ver. 1.1 in this
study.

4.3.2. Extracting class-instance relationships
To integrate JWO and JWN, we attempted to align

the classes in JWO with instances and the synsets in
JWN. First, we extracted the class-instance relation-

ships. There were 3,010 classes with instances and
434,939 class-instance relationships in JWO.

In our previous study [19], we extracted class-
instance relationships from the listing pages in Japa-
nese Wikipedia. The listing pages of Wikipedia in-
clude various names. For example, many world lan-
guage names are listed on the “Language listing page.”
In this case, the title of a “Language” article is a class
and the listed language names such as “Japanese” and
“English” are extracted as instances. Some instances
might not be described because the listing pages are
created and edited manually. Thus, the type of an in-
stance would be missing in such cases. For exam-
ple, there are classes named “People from ABC Pre-
fecture” (ABC is an actual name of a prefecture) in
JWO. Instances of those classes also have more spe-
cific types such as “Japanese Actor” and “Mathemati-
cian.” However, some instances lack specific types be-
cause of the omission of item descriptions in the listing
pages.

To address this problem, we propose another class-
instance relationship extraction method to complement
the types of instances that cannot be extracted from the
listing pages. This method extracts class-instance re-
lationships from the infoboxes in Japanese Wikipedia.
In our previous study, we extracted instance triples
from infoboxes. We assume that the title of an arti-
cle is an instance (subject), the attributes in the in-
fobox of the article are properties (predicates), and
the values in the infobox of the article are literals
or instances (objects). However, some instance triples
have an object instance name that is the same as a
class name. We assume that class-instance relation-
ships may be included in these instance triples. Ta-
ble 3 shows a property list, which is ranked by the
number of triples where the object instance name is
the same as a class name. We analyzed the instance
triples with the properties shown in Table 3, which
showed that “occupation,” “kind,” and “type” proper-
ties represented class-instance relationships. For ex-
ample, the following instance triples can be regarded
as class-instance relationships: “Akira Ikegami occu-
pation Journalist,” “Rakuten kind Corporation,” and
“Tenryu-river type First-Class River.” We extracted
these instance triples as class-instance relationships.
We extracted 203 classes with more than 10 instances
and 27,821 class-instance relationships from the in-
stance triples.

Finally, we extracted 3,185 classes with instances
and 462,247 class-instance relationships from the list-
ing pages and the instance triples.

218 T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN

Fig. 4. Procedures used to integrate JWO and JWN.

Table 3
Property list ranked by the number of triples with an object instance
name that was the same as a class name

4.3.3. Refining class-instance relationships and
identifying alignment target classes

The class-instance relationships are extracted au-
tomatically in JWO, which means that some errors
may be included. To avoid aligning classes with wrong
instances and synsets in JWN, we refine the class-
instance relationships in advance. In addition, some
classes with instances are high branch classes with
many sibling classes. For example, many “Athlete
from ABC” (ABC is a prefecture, university, etc.)
classes are subclasses of the “People” class in JWO
and we refer to these classes as high branch classes.

When high branch classes have instances, we aim to
align the superclass of the high branch classes to re-
duce the cost of alignment. If there are classes with un-
suitable names, we also aim to refine the class names
at the same time. To address these problems, we devel-
oped a tool that helps to refine the class-instance rela-
tionships and that identifies alignment target classes. A
screenshot of the tool is shown in Fig. 5.

The inputs of this tool are class-instance relation-
ships. When a user inputs class-instance relationships,
the classes are listed on the left side of the tool. When
a user selects one of the classes, 100 instances of the
class are shown at the center of the tool. We assume
that if the 100 instances are correct, the remaining in-
stances are also correct because these instances are ex-
tracted automatically according to the patterns of the
listing pages or infoboxes. If a pattern is incorrect,
most of the instances may be wrong. We also aim to re-
move obviously incorrect class-instance relationships
using the tool. If a class has correct instances, a user se-
lects the “Correct Class” button whereas if a class has
incorrect instances, a user selects the “Wrong Class”
button. A user can also refine the name of the class
at that time if it is unsuitable. In addition, a super-
class of high branch classes can be set. A user can find
high branch classes with a specific pattern by using a
regular expression and set the superclass of the high

T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN 219

Fig. 5. Tool to support the refinement of class-instance relationships and the identification of alignment target classes.

branch classes at the same time. In Fig. 5, classes are
searched for those that are backwardly matched with
“People from High School” and the “People from High
School” class is set as the superclass of the high branch
classes.6 If a user selects multiple classes and then se-
lects the “Correct Class” button, the superclass can be
set at that time.

With the tool, a user refined the class-instance re-
lationships extracted in Section 4.3.2 and identified
the alignment target classes, which required about 7
hours. There were 2,947 classes with correct instances
and 449,186 class-instance relationships. The number
of classes where the superclasses were set was 2,558.
The number of refined classes was 37. The number
of alignment target classes was 736. In this case, the
alignment target classes were the classes with correct
instances. If a superclass was set, the superclass was
used as the alignment target class instead of the high
branch class. If a class name was refined, the refined
class was used as an alignment target class instead of
the original class.

4.3.4. Alignment of JWO classes and JWN synsets
We used OA techniques to integrate JWO and JWN.

OA, or ontology matching, is a process that deter-
mines the correspondences between the semantically-

6This example is only available in Japanese because of the differ-
ence in the sentence structure of English and Japanese.

related entities (class, property, and individual) of dif-
ferent ontologies [4]. These correspondences may rep-
resent equivalence or other relationships, such as con-
sequence, subsumption, or disjointness, between on-
tology entities. A set of correspondences is also called
an alignment. Several similarity measures are defined,
such as string matching and knowledge-based similar-
ities, which have been used widely in ontology map-
ping systems [4,7]. OA is usually applied to similar
structured domain ontologies. However, the structure
of JWO is quite different from that of JWN. Table 4
shows the features of JWO and JWN. There are many
instances and properties in JWO but only a few in
JWN. Therefore, it is difficult to apply OA techniques
using common instances or properties in the two on-
tologies. There are many specific (concrete) classes but
few abstract classes in JWO. The number of specific
classes is lower in JWN than in JWO, but there are
many abstract classes in JWN. Therefore, it is diffi-
cult to apply OA techniques using the class hierarchy
structure of the two ontologies. In addition, the classes
in JWN have glosses whereas those in JWO do not.
Therefore, OA techniques using glosses cannot be ap-
plied. Thus, we used methods based on string match-
ing similarity (prefix, suffix, edit distance, and n-gram)
as OA techniques to integrate JWO and JWN.

The synonyms of the classes in JWO are needed to
enhance the accuracy of methods using string match-

220 T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN

Fig. 6. Tool to support alignments between classes in JWO and synsets in JWN.

Table 4
Features of JWO and JWN

JWO JWN

Instances many few
Properties many few
Abstract Classes few many
Specific Classes many not many
Glosses of Classes none exist

ing similarity. However, the current synonyms of
classes in JWO are extracted from redirect links and
the accuracy of synonym definition is low. In addition,
many classes lack synonyms. Therefore, we applied
the four aforementioned methods to the class names in
JWO and the synsets in JWN.

The methods we selected are very basic OA tech-
niques and the accuracy of the alignments may be low.
Therefore, we developed a tool that supports the align-
ment of classes in JWO and the synsets in JWN via
user interaction. The tool is shown in Fig. 6. The inputs
for the tool are the alignment target classes in JWO,
which were identified in Section 4.3.3. A user can dy-
namically align the classes in JWO and the synsets in
JWN. If a user selects a class and clicks the “Align-
ment” button, the top N (N can be set by the user)
synset IDs in JWN are sorted by similarity, which is
calculated using each method. If a user selects one
of the synset IDs, the synset, Japanese and English
glosses, super synsets, sibling synsets, and sub synsets

Table 5
Alignment results for classes in JWO and synsets in JWN

Relationship # relationships

Equivalent relationship 489
Equivalent relationship (by hand) 90
Is-a relationship 17
Is-a relationship (by hand) 135
Unknown 5

are shown in the tool at the same time. If there are in-
correct synsets in the list, a user can select a synset
from the super-, sibling, or sub- synsets. When a user
selects the “Equivalent relationship” or the “Is-a rela-
tionship” button, the alignment between the selected
class in JWO and the selected synset ID in JWN can
be saved.

Table 5 shows the results of the alignment between
the alignment target classes in JWO and the synsets
in JWN. “Equivalent relationship by hand” and “Is-a
relationship by hand” show that correct synsets were
not included in the alignment results between the se-
lected class in JWO and the displayed synset IDs.
In this case, a user selected one of the super-, sib-
ling, or sub- synsets for the displayed synset IDs or
inputs and another keyword similar to the alignment
target class, before selecting the “Alignment” but-
ton again, and therefore, the correct synset could be
found. “Unknown” shows that the correct synset could
not be found. The user aligned 736 alignment target

T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN 221

Fig. 7. Procedure used to integrate JWO and JWN with DOD-
DLE-OWL.

classes and synsets in JWN using the tool in about 6
hours.

4.3.5. Integrating JWO and JWN using
DODDLE-OWL

We used the domain ontology development envi-
ronment, DODDLE-OWL [13], to integrate JWO and
JWN. DODDLE-OWL refers to existing ontologies
such as JWN and supports the semi-automatic con-
struction of taxonomic and other relationships in do-
main ontologies extracted from documents. Figure 7
shows the procedure used to integrate JWO and JWN
with DODDLE-OWL. In the present study, we in-
put the aligned synsets in JWN into the Hierarchy
Construction Module in DODDLE-OWL. The Hierar-
chy Construction Module constructed an initial class
tree to extract and merge paths from the input synsets
into a root synset in JWN. Then Hierarchy Construc-
tion Module trimmed internal synsets from the initial
class tree that did not contribute to the maintenance
of topological relationships among the input synsets,
such as parent-child relationships and sibling relation-
ships. The results are referred to as a trimmed class
tree. This means that synsets that did not contribute
to the classification of the classes with instances in
JWO were removed. Next, multiple inheritance was
removed using the Hierarchy Refinement Module in
DODDLE-OWL, before the high branch classes with
instances in JWO, where the superclass was set as de-
scribed in Section 4.3.3, were added to the class hi-
erarchy. The classes with instances in JWO that were
aligned to synsets as is-a relationships, as described
in Section 4.3.4, were also added to the class hierar-
chy. Instances were also added to the class hierarchy
from the class-instance relationships extracted in Sec-
tion 4.3.2. As a result, 675 upper classes were comple-
mented with JWN and the final number of classes was
3,462.

4.3.6. Removing redundant class-instance
relationships

We included 344,934 instances in the ontology con-
structed by refining and integrating JWO and JWN.
Each instance had one or more types and some in-
stances had redundant types. For example, the instance
“Keigo Higashino,” who is a famous Japanese novel-
ist, had the following six types: “Novelist,” “Japanese
Novelist,” “Mystery Writer,” “Mystery Writer Born
in the 1950s,” “People from Osaka Prefecture Uni-
versity,” and “People from Osaka Prefecture.” In this
case, “Japanese Novelist” class was a subclass of the
“Novelist” class and the “Mystery Writer Born in the
1950s” class was a subclass of the “Mystery Writer”
class. In these cases, the “Novelist” and “Mystery
Writer” classes could be derived using a reasoner. In
the present study, the types of instances that can be de-
rived using a reasoner are called redundant types. The
procedure used to remove the redundant types is as fol-
lows.

1. Obtain the types of an instance.
2. We obtain the upper classes of each type and if

types other than a target type are included in the
upper classes of the target type, we assume that
they are redundant types.

3. Remove redundant types from the original types.
4. Procedures 1 to 3 are repeated for all instances.

As a result, 4,589 redundant types were removed
from 449,186 class-instance relationships.

4.4. Defining the domains of properties based on a
consideration of property inheritance

In this section, we describe the method used to de-
fine the domains of properties based on a consideration
of property inheritance by refining the definition of the
domains of properties in JWO. The procedure of this
method is as follows.

1. Extract the domains of properties from instance
triples and the types of subject resources for the
instance triples

2. Calculate the depths of classes
3. Elevate the properties
4. Remove inherited properties that are defined ex-

pressly

4.4.1. Extracting the domains of properties from
instance triples and the types of subject
resources for the instance triples

In our previous study [19], we defined the domains
of properties based mainly on the infobox templates.

222 T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN

Fig. 8. Example showing the extraction of the domains of properties.

In the present study, we extracted the properties and
domains of the properties from instance triples and the
types of subject resources for the instance triples in
JWO to define the domains of properties based on a
consideration of property inheritance. If there is an in-
stance triple s-p-o and the type of s is T, the class T
has a property p. In other words, the domain of prop-
erty p is T.

Figure 8 shows an example of the extraction of the
domains of properties, where we extracted instance
triples from the infobox of the Natsume Soseki arti-
cle and the type of Natsume Soseki from the listing
page of the Japanese Novelists. We extracted proper-
ties, such as “representative work” and “nationality,”
from the instance triples and defined the domains of
the properties. In this case, the domain of properties
was Japanese Novelist.

4.4.2. Calculating the depths of classes
To elevate properties from lower classes to upper

classes in an appropriate manner, we need to elevate
properties from leaf classes to a root class in order.
Therefore, we extract paths that include is-a relation-
ships from target classes to the root class for all classes
in JWO and we calculate the depth, which is the dis-
tance from a target class to the root class. When we
integrate JWO and JWN, we remove multiple inheri-
tance from the constructed class hierarchy. Therefore,

it was not necessary to consider classes with multiple
inheritance In the present study.

4.4.3. Elevating properties
We elevate common properties that are defined in

the sibling classes to higher classes in JWO. At this
point, we add “complete” labels to properties shared
by all sibling classes and we remove these properties
from the sibling classes. We also add “candidate” la-
bels to properties with two or more sibling classes and
remove the properties from the sibling classes. More-
over, we add “default” labels to properties only owned
by a target class, and we do not remove or elevate these
properties. The properties labeled “default” are spe-
cific properties of the target class, which allow us to
remove redundant definitions of domains of properties
and to identify the difference between the specific and
the inherited properties. Properties labeled “candidate”
may be used as indicators of the generation of interme-
diate classes or class hierarchy reconstruction.

Figure 9 shows an example of the elevation of prop-
erties. In Fig. 9, there are A, B, C, and D classes. Class
A has P1, P2, and P3 properties. Class B has P1, P2,
and P4 properties. Class C has P1, P3, and P5 prop-
erties. Class D has no properties. After elevating the
properties, Class D has a P1 property labeled “com-
plete” and the P2 and P3 properties are labeled “can-
didate.” All of the properties removed from class A

T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN 223

Fig. 9. Example showing the elevation of properties.

are elevated properties. The P1 and P2 properties of
class B, and the P1 and P3 properties of class C are also
removed by elevating the properties. The P4 property
of class B and the P5 property of class C are specific
properties labeled “default.”

4.4.4. Removing inherited properties that are defined
expressly

Finally, we remove inherited properties that are de-
fined expressly from the class hierarchy with defined
properties. After elevating the properties, some classes
have properties that are also defined in superclasses of
the classes. We describe these properties as inherited
properties that are defined expressly. These properties
can be derived using a reasoner, so we regard them as
redundant properties and remove them.

5. Evaluation

5.1. Evaluation of integrating JWO and JWN

As mentioned in Section 4.3.5, 675 upper classes
were complemented with JWN. Figure 10 shows part
of the upper classes in the integrated class hierar-
chy. The JWN synset IDs are indicated in brackets in
Fig. 10.

The left of Fig. 11 shows the classes related to “ath-
lete” in the original JWO and the right of Fig. 11 shows
the classes related to “athlete” in the integrated class
hierarchy. The right of Fig. 11 shows classes with icons
where the background color is white, such as “a liv-
ing thing,” “a human being,” and “People from Uni-
versity,” which are upper classes complemented with
JWN, or upper classes of high branch classes that are
set by a user. These classes do not have instances.
Other classes with icons where the background color
is not white are classes from the original JWO with in-
stances. Some classes, such as “Dancer” and “Boxing
Champion,” were root classes in JWO before integrat-
ing JWO and JWN. By contrast, these classes are de-
fined as subclasses of the “Athlete” class in the inte-

Table 6
Numbers of classes, properties, and class-instance relationships

total classes 3,462

classes from JWO 2,787

classes from JWN 675

properties 4,357

class-instance relationships 444,597

grated class hierarchy. In addition, upper classes such
as “a living thing” and “physical_entity” are comple-
mented.

5.2. Evaluation of the definition of domains of
properties based on a consideration of property
inheritance

5.2.1. Quantitative results
Table 6 shows the total number of classes, the num-

ber of properties, and the number of class-instance re-
lationships in the ontology constructed by refining and
integrating JWO and JWN. The total number of classes
comprises the number of classes from JWO and the
number of classes from JWN, which are also shown in
Table 6.

Table 7 shows the number of domains of properties
and classes with properties in each step. Before ele-
vating the properties, the number of domains of prop-
erties was 143,500. After elevating the properties, we
reduced the number of domains of properties from
143,500 to 33,706. In addition, after removing inher-
ited properties that were defined expressly, we reduced
the number of domains of properties from 33,706 to
18,678. We reduced the number of classes with prop-
erties (classes defined directly as domains of proper-
ties) from 2,929 to 1,690 after elevating the proper-
ties. Some of properties elevated to the upper classes
were from JWN, so the number of classes from JWN
with properties was increased from 223 to 344. Before
elevating the properties, the number of classes from
JWN with properties was 223. Some JWN classes with
properties were extracted from the instance triples be-
fore elevating the properties, and therefore, some JWO
classes with instances were aligned with JWN classes
after we integrated JWO and JWN. After removing the
inherited properties that were defined expressly, the
number of classes with properties was not changed.

Table 8 shows the number of classes, the number
of removed domains of properties, and the number of
domains of properties for every label during each step
and at each depth of the classes. Next, we provide an
explanation of Table 8.

224 T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN

Fig. 10. Part of the upper classes in the integrated class hierarchy.

T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN 225

Fig. 11. Classes related to “athlete” in both JWO and the integrated class hierarchy.

Table 7
Number of domains of properties and classes with defined properties

Step # domains of properties # classes from JWO
with properties

classes from JWN
with properties

classes with
properties

Before elevating the properties 143,500 2,706 223 2,929
After elevating the properties 33,706 1,346 344 1,690
After removing inherited properties 18,678 1,346 344 1,690

First, note the line where the depth of classes is 12.
There were 17 classes where the depth was 12. We
found that 12 was the maximum depth in the class hier-
archy constructed by refining and integrating JWO and
JWN. Before elevating the properties, 530 domains of
properties were labeled “default” and no domains of
properties were labeled “complete” or “candidate.” Af-
ter elevating the properties, 139 domains of properties
labeled “complete” and 87 domains of properties la-
beled “candidate” were elevated and removed from the
classes where the depth was 12. As a result, 304 do-
mains of properties labeled “default” remained in the
classes where the depth was 12. Furthermore, after re-

moving inherited properties, 175 domains of proper-
ties labeled “default” were defined in the classes where
the depth was 12.

Next, note the line where the depth of classes is 11.
There were 219 classes where the depth was 11. Be-
fore elevating the properties, 18 domains of proper-
ties were labeled “complete,” 17 domains of proper-
ties were labeled “candidate,” and 8,571 domains of
properties were labeled “default.” The domains of the
properties labeled “complete” or “candidate” were el-
evated from the classes where the depth was 12. If
two or more sibling classes shared the same properties,
the properties were elevated to a higher class among

226
T.M

orita
etal./B

uilding
up

a
class

hierarchy
w

ith
properties

by
refining

and
integrating

JW
O

and
JW

N

Table 8
Number of classes, number of removed domains of properties, and the number of domains of properties for every label during each step and at each depth of the classes

Depth of
classes

classes # domains of properties
before elevating the properties

removed domains of properties # domains of properties
after elevating the properties

domains of properties
after removing inherited properties

complete candidate default complete candidate complete candidate default complete candidate default

0 1 0 0 0 0 0 0 0 0 0 0 0
1 5 3 0 0 0 0 3 0 0 3 0 0
2 2 0 6 0 6 0 0 0 0 0 0 0
3 11 12 10 0 0 21 0 1 0 0 1 0
4 38 31 61 62 24 34 13 36 47 13 36 38
5 85 93 652 567 88 139 63 611 411 48 602 389
6 214 93 2,226 4,121 405 2,307 40 1,892 1,796 34 1,878 1,671
7 407 412 7,034 7,188 502 9,699 117 1,795 2,521 109 1,678 2,285
8 1,304 361 3,018 84,300 3,036 74,576 94 1,590 8,383 45 452 4,860
9 824 420 1,680 22,756 2,144 15,418 149 758 6,387 71 218 2,113

10 335 102 774 15,405 1,921 9,922 13 255 4,170 11 134 1029
11 219 18 17 8,571 1,093 5,256 0 3 2,254 0 2 783
12 17 0 0 530 139 87 0 0 304 0 0 175

– 3462 – – 143,500 – – 492 6,941 26,273 334 5,001 13,343

T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN 227

Fig. 12. Part of the integrated class hierarchy.

the sibling classes. The properties were then removed
from the sibling classes and a property was elevated
to a higher class. Therefore, the number of removed
domains of properties labeled “complete” or “candi-
date” at the depth of classes with a value of 12 dif-
fered from the number of domains of properties la-
beled “complete” or “candidate” before elevating the
properties at the depth of classes with a value of 11.
After elevating the properties, 1,093 domains of prop-
erties labeled “complete” and 5,256 domains of prop-
erties labeled “candidate” were elevated and removed
from the classes with a depth of 11. Thus, three do-
mains of properties labeled “candidate” and 2,254 do-
mains of properties labeled “default” remained in the
classes with a depth of 11. Furthermore, after remov-
ing inherited properties, two domains of properties la-
beled “candidate” and 783 domains of properties la-
beled “default” were defined in the final classes with a
depth of 11.

Thus, the lines indicating the depths of classes with
values ranging from 10 down to 0 can be understood
in the same manner. The class with a depth of 0 repre-
sents a root class in the class hierarchy.

5.2.2. Qualitative results
Figure 12 shows part of the integrated class hierar-

chy. The first set of parentheses in each class node in
Fig. 12 shows whether each class came from JWN or

JWO. If a class came from JWN, the synset id of the
class is shown in the first set of parentheses. If a class
came from JWO, “JWO” is shown in the first paren-
theses. The second set of parentheses in each class
node in Fig. 12 shows the number of properties defined
in each class before and after elevating the proper-
ties. For example, in the case of “Social Group” class,
the number of defined properties before elevating is 0
whereas the number of defined properties after elevat-
ing is 5. Table 9 shows examples of elevated properties
in part of the integrated class hierarchy, as shown in
Fig. 12.

No properties were defined in the “Social Group,”
“Organization,” “Group of People,” “Company,” “In-
stitution,” “Japanese Company,” “Financial Institu-
tion,” and “Educational Institution” classes before ele-
vating the properties. The depth of the “Social Group”
class is 4, which means that these classes with no prop-
erties are upper to middle level classes in the integrated
class hierarchy. After elevating the properties, some
properties were elevated to the upper to middle level
classes.

Some examples of the appropriate elevation of prop-
erties are also shown, as follows. Note that we could
not depict all of the classes and properties related to the
following examples in Fig. 12 and Table 9 because of
space limitations. Thus, each class actually has more
subclasses and properties. We focus on the essential

228 T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN

Table 9
Examples of elevated properties

Classes Defined properties before elevation Defined properties after elevation

Social Group (07950920-n) film, founded, official site, outline,
other

Organization (08008335-n) corporate development, employees,
founder, location, location of central
office, shareholder

Company (08056231-n) affiliate company

Institution (08053576-n) date of foundation, institution
personnel

Organization of Railway Operation (JWO) shareholder

Financial Institution (08054721-n) bank code

Educational Institution (08276342-n) educational policy, school type

American Company (JWO) affiliate company, corporate development, date of
foundation, employees, founder, location of central
office

Japanese Service Company (JWO) affiliate company, corporate development, date of
foundation, employees, founder, location, official site

Japanese Electric Power, Gas Company (JWO) affiliate company, corporate development, date of
foundation, employees, founder, location of central
office

Bank (080420278-n) central bank code, date of foundation, founder,
location of central office

central bank code

Credit Bank (JWO) bank code, date of foundation, founder, location of
central office

Labor Bank (JWO) bank code, date of foundation, founder

School (08276720-n) institution personnel, location, school type

University (08278324-n) institution personnel, location, school type

Japanese University (JWO) educational policy, institution personnel, location,
school type

South Korean University (JWO) institution personnel, location, school type

classes and properties to explain these examples of
the appropriate and inappropriate elevation of proper-
ties.

– The “bank code” property was defined in the
“Credit Bank” and “Labor Bank” classes before
elevating the properties, and the property was el-
evated to the “Financial Institution” class.

– The “educational policy” property was defined in
the “Japanese University” class and the “school
type” property was defined in the “School,” “Uni-
versity,” “Japanese University,” and “South Ko-
rean University” classes before elevating the
properties, and these properties were elevated to
the “Educational Institution” class.

– The “affiliate company” property was defined
in the “American Company,” “Japanese Service
Company,” and “Japanese Electric Power, Gas
Company” classes before elevating the properties,
and the property was elevated to the “Company”
class.

– Some general purpose properties, such as
“founded,” “official site,” and “location,” were el-
evated in an appropriate manner to upper classes
such as “Social Group” and “Organization.”

Some examples of the inappropriate elevation of
properties are described as follows.

– The “film” property was elevated to the “So-
cial Group” class, but this property should not

T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN 229

have been elevated to this class. This was be-
cause the “film” property was elevated to the “So-
cial Group” class from the “Organization” and
“Group of People” classes. The “film” property
was used in many instances of classes related to
People, Organization, Game Software, TV pro-
gram, etc., which explains why the property was
elevated to the “Organization” and “Group of
People” classes. Note that because all of the prop-
erties elevated to the “Group of People” class
were elevated to the “Social Group” class, the
number of defined properties in the “Group of
People” class after elevating the properties was 0.

– The “shareholder” property was elevated to the
“Organization” class, but the property should
have been elevated to a more specific class such
as “Company” class. This occurred because the
“Organization of Railway Operation” class had
the “shareholder” property defined as a subclass
of the “Organization” class. Because the “share-
holder” property was elevated to the “Company”
class, this property was also elevated to the “Or-
ganization” class from the “Organization of Rail-
way Operation” and “Company” classes.

5.2.3. Comparison with our previous study
In our previous study [14], we considered that errors

in the class hierarchy and the lack of upper and mid-
dle classes in JWO led to erroneous definitions of the
domains of properties. Therefore, we integrated JWO
and JWN to resolve these errors in the present study.

Figures 13 and 14 shows examples of the incorrect
elevation of properties in our previous study.

The first example (Fig. 13) was caused by errors
of the class hierarchy. The “award history” and “birth
date” properties were elevated to the “Movie” class,
but these properties were not appropriate properties of
the “Movie” class. This problem occurred because the
“Movie” class was defined incorrectly as a superclass
of the “Actor” and “Scriptwriter” classes. For this rea-
son, the “award history” and “birth date” properties of
the “Actor” and “Scriptwriter” classes were elevated to
the “Movie” class. After we integrate JWO and JWN,
and refined the class hierarchy, these types of errors
were eliminated in the present study.

The second example (Fig. 14) was caused by a lack
of upper classes. In this case, 5,004 properties were el-
evated to the common root class named ROOT. Both
the “Temple of Japan” and “Temple of Kanagawa Pre-
fecture” classes were defined as subclasses of ROOT,
so it was considered that the “principal image” prop-

Fig. 13. Example showing the incorrect elevation of properties
(cause: errors in the class hierarchy) in our previous study.

Fig. 14. Example showing the incorrect elevation of properties
(cause: lack of upper classes) in our previous study.

erty, which was defined in the classes related to tem-
ples, was elevated to the ROOT class. After we inte-
grated JWO and JWN, and complemented the “Tem-
ple (04407435-n)” class as a superclass of “Temple of
Kanagawa Prefecture,” “Temple of Japan,” etc., these
types of errors were eliminated in the present study.

In the present study, no properties were elevated to
the ROOT class, as shown in Table 8. However, three
general-purpose properties (http://xmlns.com/foaf/0.1/
page, http://www.w3.org/2000/01/rdf-schema#label,
http://www.w3.org/2002/07/owl#sameAs) were ele-
vated to the “Entity (00001740-n),” class which was a
subclass of ROOT. This result was appropriate because
most of the classes in the class hierarchy were defined
as subclasses of the “Entity (00001740-n)” class and
these three properties can be defined for any classes.

Thus, we confirmed that our proposed method re-
solved the problems encountered in our previous study.

5.3. Discussion

In Section 5.1, we showed part of the upper classes
in the integrated class hierarchy and confirmed that our
proposed method complemented the upper classes of
JWO. In Section 5.2.1, we described the number of
classes, the number of removed domains of properties,
and the number of domains of properties for every la-
bel during each step and at each depth of the classes, as
shown in Table 8. Thus, our proposed method reduced
the number of domains of properties from 143,500 to
18,678 based on a consideration of property inheri-
tance. In Section 5.2.2, we confirmed that part of the
integrated class hierarchy and some properties were el-
evated to upper classes in the integrated class hierarchy

230 T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN

in an appropriate manner. In Section 5.2.3, we com-
pared our previous results with the present study and
confirmed that our proposed method resolved the prob-
lems encountered previously.

However, some problems were still encountered in
the present study.

The first problem was the refinement of the inte-
grated class hierarchy and domains of properties. As
shown in Section 5.2.2, some properties such as “film”
and “shareholder” were elevated to classes higher than
the properties merited. In these cases, we need to refine
the class hierarchy to insert another class or to relegate
the properties to lower classes. As described above, it
is necessary to refine the integrated class hierarchy and
the domains of properties based on a consideration of
the properties that merit elevation.

The second problem was that synonymous proper-
ties are not integrated. In Table 9, we confirmed that
some synonymous properties existed separately (e.g.,
“location” and “location of central office,” “bank code”
and “central bank code,” “date of foundation” and
“founded,” etc.). Thus, these synonymous properties
should be integrated to simplify the domains of the
properties. To address this problem, we have been try-
ing to relate the properties obtained from JWO to the
standardized vocabularies used in other research, such
as the Dublin Core.

The third problem was defining the types of proper-
ties. In our previous study [20], we proposed a method
for extracting the types of properties (owl:ObjectProp-
erty, owl:DatatypeProperty, owl:SymmetricProperty,
owl:TransitiveProperty, owl:FunctionalProperty, and
owl:InverseFunctionalProperty) but we made addi-
tional property definition refinements to this method in
the present study.

The fourth problem was that property elevation logs
were not easy to access. At present, users cannot ac-
cess the property elevation logs easily, so it is difficult
to explain why a property has been elevated to a spe-
cific class. To address the first and second problems
described above, it is necessary to develop an ontology
debugging environment that allows users to access the
property elevation logs to refine the integrated class hi-
erarchy and the domains of properties.

6. Related work

Many studies have been done with knowledge en-
gineering, natural language processing, and data min-
ing techniques to make possible automatic ontology

construction from texts and general ontologies [3,13,
24]. Since there is a structural gap between texts and
ontologies, there are still several problems to con-
struct ontologies automatically from texts. Therefore,
we have tried to construct ontologies automatically
from Wikipedia that is semi-structured information re-
sources.

Several domain (such as search engine, web ser-
vices, and biology) specific ontology construction
methods have been proposed [6,9,12,15]. Our target
ontology is a general ontology.

In order to reduce the cost of ontology construc-
tion, there are several collaborative ontology construc-
tion tools [22,25]. WebProtégé [22] is one of the most
famous collaborative ontology editors in the ontol-
ogy community. WebProtégé is based on Collabora-
tive Protégé [21] and it provides extensive collabo-
ration support, including change tracking, contextual-
ized threaded discussions, watches and notifications,
an extensible access policy mechanism, and gener-
ation of statistics of the ontology-development pro-
cess. WebProtégé provides editing support for both the
class level and instance level information. On the other
hand, our approach is not collaborative but supporting
semi-automatic ontology construction.

Several similarity measures are proposed, such
as string matching and knowledge-based similari-
ties, which have been used widely in ontology align-
ment(OA) systems and semantic web service match-
ing [4,7,10,17]. We used OA techniques to integrate
JWO and JWN. OA is usually applied to similar struc-
tured domain ontologies. However, the structure of
JWO is quite different from that of JWN. Thus, we
used methods based on string matching similarity (pre-
fix, suffix, edit distance, and n-gram) as OA techniques
to integrate JWO and JWN.

There are several studies to construct ontologies au-
tomatically from Wikipedia [1,5,18–20,23].

Suchanek et al. proposed YAGO [18], which en-
hanced WordNet using the Conceptual Category. Con-
ceptual Category is a category in English Wikipedia
such that its head (title) is in plural form, for exam-
ple “American singers of German origin.” The authors
of [18] map Conceptual Categories onto classes and
the articles that belong to each Conceptual Category
become instances of corresponding class(es). Unfor-
tunately, the techniques used to perform this mapping
rely heavily on properties of the English grammar.
Hence, they are of almost no use for material presented
in Japanese. The properties in the discussed work were
extracted from attributes found in infoboxes. The au-

T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN 231

thors have collected 170 most frequent such attributes
and then, after manual refinement, identified them with
properties. YAGO2 [5] was enhancing of the knowl-
edge base of YAGO. It was not only enhancing Word-
Net but also spatially and temporally enhancing by us-
ing Wikipedia and GeoNames. They defined relations
such as wasBornOnDate and isLocatedIn and related
them and instances. However, they built these proper-
ties by hands and these domains and ranges ware built
by hands too. By contrast, we extracted the proper-
ties and domains of the properties automatically. Fur-
thermore, we removed redundant definitions of the do-
mains of properties by elevating common properties
defined in sibling classes to higher classes in a class hi-
erarchy, where the properties were constructed by re-
fining and integrating JWO and JWN.

Auer et al. constructed DBpedia, which is a large
RDF database of semi-structured information re-
sources from Wikipedia [1]. They used information
resource such as infoboxes, external links, and cate-
gories. JWO is similar to DBpedia, but the proper-
ties and classes are built manually in DBpedia. By
contrast, we built the properties and classes automat-
ically based on the infoboxes and categories. In ad-
dition, DBpedia creates multilingual data using lan-
guage links between English articles and other lan-
guage articles in Wikipedia. However, DBpedia can-
not handle Japanese articles that do not correspond to
English articles in Wikipedia. JWO handles Japanese-
specific articles, but it includes many RDF triples that
are not present in DBpedia. A version of DBpedia
in Japanese,1 which was constructed from Japanese
Wikipedia, was released recently but it does not pro-
vide enough information needed to achieve our goals.
For our purposes the amount of semantic information
for properties, the distinction between classes and in-
stances, and the embedded class hierarchy, is insuffi-
cient.

Wu & Weld [23] built a rich ontology by combin-
ing English Wikipedia infoboxes with English Word-
Net using statistical-relational learning. They mapped
infobox classes (template names) to WordNet nodes
and they mapped the attributes between related classes
to facilitate property inheritance. They also tried to add
attributes from English Wikipedia infoboxes to En-
glish WordNet. By contrast, we add properties from
Japanese Wikipedia infoboxes to a class hierarchy con-
structed from Japanese Wikipedia. In addition, to de-
fine the domains of properties based on a consideration
of property inheritance, we elevated common proper-
ties defined in sibling classes to higher classes in the

class hierarchy, which had properties constructed by
refining and integrating JWO and JWN.

There are several studies to extend existing general
ontologies using Japanese Wikipedia [11,16].

Kobayashi et al. proposed a method for constructing
an ontology by merging GoiTaikei (a Japanese lexi-
con)7 and Japanese Wikipedia [11]. In this method, the
classes were extracted from GoiTaikei and Japanese
Wikipedia categories, and the instances were ex-
tracted from Japanese Wikipedia pages. This method
matched category names in Japanese Wikipedia and
class names in GoiTaikei using backward string match-
ing. If a category was not matched, the category was
removed.

Shibaki et al. proposed a semi-automatic method
for constructing a generic, large-scale is-a ontology
from Japanese Wikipedia using GoiTaikei as its upper
ontology [16]. If the following rules were matched,
the class in GoiTaikei and the category in Japanese
Wikipedia were aligned temporarily before a user
made the final alignment decision manually. Next, the
subcategories were generate automatically by extract-
ing is-a relationships from the Wikipedia category net-
work. Finally, the titles of the articles that belonged
to each Wikipedia category were extracted as the in-
stances.

1. A class name in GoiTaikei matched perfectly
with a category name in Japanese Wikipedia.

2. An instance name in GoiTaikei matched per-
fectly with a category name in Japanese Wiki-
pedia.

3. More than three instance names in a class in
GoiTaikei matched perfectly with more than
three titles of articles that belonged to a category
in Japanese Wikipedia, or more than three sub-
category names in the category.

In our study, we tried to align classes with instances
in JWO and the synsets in JWN using the following on-
tology alignment techniques based on string-matching
similarity: prefix, suffix, edit distance, and n-gram. In
addition, we developed a tool to support the alignment
between classes in JWO and synsets in JWN via user
interaction.

To the best of our knowledge, previous studies have
not tried to construct a large-scale class hierarchy with
properties automatically. Thus, we consider that our
approach is novel.

7http://www.kecl.ntt.co.jp/icl/lirg/resources/GoiTaikei/index-
en.html

232 T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN

7. Conclusion

In this study, we complemented the upper classes
in JWO by refining and integrating JWO and JWN.
We developed tools that help users to refine the class-
instance relationships, to identify the JWO classes that
need to be aligned with JWN synsets, and to align
the JWO classes with the JWN synsets via user in-
teraction. In addition, we integrated JWO and JWN
using these tools and with a domain ontology devel-
opment environment, DODDLE-OWL. We also pro-
posed a method for building a class hierarchy with de-
fined properties based on a consideration of property
inheritance. We performed quantitative and qualitative
evaluations of our methods and we confirmed that our
proposed methods resolved the problems encountered
in our previous study. Thus, a class hierarchy with de-
fined properties based on a consideration of property
inheritance can be constructed using our methods.

The refined JWO and source code of the developed
tools can be downloaded via a GitHub repository.8

In the future, we will develop an ontology debug-
ging environment that allows users to access property
elevation logs so they can refine the integrated class hi-
erarchy and the domains of properties. In addition, we
will develop a method that relates the properties ob-
tained from JWO to standardized vocabularies such as
the Dublin Core to integrate synonymous properties.

Acknowledgment

This work was supported by MEXT/JSPS KAK-
ENHI Grant Number 24700150.

References

[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and
Z. Ives, DBpedia: A Nucleus for a Web of Open Data, The Se-
mantic Web, 6th International Semantic Web Conference, 2nd
Asian Semantic Web Conference, Lecture Notes in Computer
Science, Vol. 4825, Springer, 2007, pp. 722–735.

[2] C. Bizer, T. Heath, and T. Berners-Lee, Linked data – the story
so far, special issue on linked data, International Journal on
Semantic Web and Information Systems (IJSWIS) 5(3) (2009),
1–22.

[3] P. Buitelaar, P. Cimiano, and B. Magnini, eds, Ontology Learn-
ing from Text: Methods, Evaluation and Applications, Frontiers
in Artificial Intelligence and Applications, Vol. 123, IOS Press,
2005.

8http://t-morita.github.io/JWO_Refinement_Tools/

[4] J. Euzenat and P. Shvaiko, Ontology Matching, Springer-
Verlag, 2007.

[5] J. Hoffart, F. Suchanek, K. Berberich, and G. Weikum,
YAGO2: A spatially and temporally enhanced knowledge base
from Wikipedia, Research report MPI-I-2010-5-007, Max-
Planck-Institut für Informatik, 2010.

[6] X.T. Hu, T.Y. Lin, I.-Y. Song, X. Lin, I. Yoo, and M. Song, A
semi-supervised efficient learning approach to extract biolog-
ical relationships from web-based biomedical digital library,
Web Intelligence and Agent Systems 4(3) (2006), 327–339, IOS
Press.

[7] R. Ichise, An analysis of multiple similarity measures for on-
tology mapping problem, International Journal of Semantic
Computing 4(1) (2010), 103–122.

[8] H. Isahara, F. Bond, K. Uchimoto, M. Utiyama, and K. Kan-
zaki, Development of the Japanese WordNet, in: Sixth Inter-
national Conference on Language Resources and Evaluation
(LREC 2008), 2008.

[9] J. King, Y. Li, X. Tao, and R. Nayak, Mining world knowl-
edge for analysis of search engine content, Web Intelligence
and Agent Systems 5(3) (2007), 233–253, IOS Press.

[10] M. Klusch and F. Kaufer, WSMO-MX: A hybrid semantic web
service matchmaker, Web Intelligence and Agent Systems 7(2)
(2009), 23–42, IOS Press.

[11] A. Kobayashi, S. Masuyama, and S. Sekine, A method for au-
tomatic construction of general ontology by merging Goitaikei
and Japanese Wikipedia, IPSJ SIG Technical report, 2008-NL-
187, 2008.

[12] Y.-J. Lee and C.-S. Kim, A learning ontology method for
RESTful semantic web services, in: Proc. of IEEE Interna-
tional Conference on Web Services (ICWS), Washington, DC,
USA, 2011, pp. 251–258.

[13] T. Morita, N. Izumi, N. Fukuta, and T. Yamaguchi, DODDLE-
OWL: Interactive domain ontology development with open
source software in Java, IEICE Transactions on Information
and Systems, Special Issue on Knowledge-Based Software En-
gineering E91-D(4) (2008), 945–958.

[14] T. Morita, Y. Sekimoto, S. Tamagawa, and T. Yamaguchi,
Building up a class hierarchy with properties from Japanese
Wikipedia, in: 2012 IEEE/WIC/ACM International Conference
on Web Intelligence, 2012, pp. 514–521.

[15] M. Sabou, C. Wroe, C. Goble, and H. Stuckenschmidt, Learn-
ing domain ontologies for semantic web service descriptions,
Journal of Web Semantics 3(4) (2005), 340–365.

[16] Y. Shibaki, M. Nagata, and K. Yamamoto, Construction of gen-
eral ontology from Wikipedia using a large-scale Japanese the-
saurus, IPSJ SIG Technical report, 2009-NL-194-4, 2009.

[17] N. Silva and J. Rocha, Semantic web complex ontology map-
ping, Web Intelligence and Agent Systems 1(3) (2003), 235–
248, IOS Press.

[18] F.M. Suchanek, G. Kasneci, and G. Weikum, Yago: A Core of
semantic knowledge, in: Proc. of the 16th International Con-
ference on World Wide Web, ACM, 2007, pp. 697–706.

[19] S. Tamagawa, S. Sakurai, T. Tejima, T. Morita, N. Izumi,
and T. Yamaguchi, Learning a large scale of ontology from
Japanese Wikipedia, in: 2010 IEEE/WIC/ACM International
Conference on Web Intelligence, 2010, pp. 279–286.

[20] S. Tamagawa, T. Morita, and T. Yamaguchi, Extracting prop-
erty semantics from Japanese Wikipedia, in: 2012 Inter-

T. Morita et al. / Building up a class hierarchy with properties by refining and integrating JWO and JWN 233

national Conference on Active Media Technology, LNCS,
Vol. 7669, Springer, 2012, pp. 357–368.

[21] T. Tudorache, N.F. Noy, S. Tu, and M.A. Musen, Support-
ing collaborative ontology development in Protégé, in: Sev-
enth International Semantic Web Conference, ISWC 2008, Lec-
ture Notes in Computer Science, Vol. 5318, 2008, pp. 17–
32.

[22] T. Tudorache, C. Nyulas, N.F. Noy, and M.A. Musen, WebPro-
tégé: A collaborative ontology editor and knowledge acquisi-
tion tool for the Web, Semantic Web 4(1) (2013), 89–99.

[23] F. Wu and D.S. Weld, Automatically refining the Wikipedia in-
fobox ontology, in: International World Wide Web Conference
2008, 2008, pp. 634–644.

[24] E. Zavitsanos, G. Paliouras, G. Vouros, and S. Petridis, Learn-
ing subsumption hierarchies of ontology concepts from texts,
Web Intelligence and Agent Systems 8(1) (2010), 37–51, IOS
Press.

[25] A.V. Zhdanova, Community-driven ontology construction in
social networking portals, Web Intelligence and Agent Systems
6(1) (2008), 93–121, IOS Press.

