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Abstract.
BACKGROUND: 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is an effective anticancer agent, and when combined with other
agents it shows superior activities. Vitamin B12 has been shown to contribute to increasing the effectiveness of anticancer
drugs when used in combination. Thus, the current study aimed at investigating the anticancer potential of the combination
of 1,25(OH)2D3 and vitamin B12.
METHODS: MTT assay was used to determine the cytotoxic activity of combining 1,25(OH)2D3 and vitamin B12 against
six different cancer cell lines and one normal cell line. The surviving fraction after clonogenic assay was measured, and
the effects of 1,25(OH)2D3/B12 combination on the activity of different caspases, cell adhesion, actin cytoskeleton, cell
morphology, and percentage of polarized cells were evaluated.
RESULTS: Vitamin B12 did not cause cytotoxicity, however, it enhanced the cytotoxicity of 1,25(OH)2D3 against cancer
cells. The cytotoxic effects of 1,25(OH)2D3 and its combination with vitamin B12 was not evident in the normal mammary
MCF10A cell line indicating cancer cell-specificity. The cytotoxic effects of 1,25(OH)2D3/B12 combination occurred in
a dose-dependent manner and was attributed to apoptosis induction which was mediated by caspase 4 and 8. Moreover,
1,25(OH)2D3/B12-treated cells showed enhanced inhibition of clonogenic tumor growth, reduced cell adhesion, reduced cell
area, reduced percentage of cell polarization, and disorganized actin cytoskeleton resulting in reduced migratory phenotype
when compared to cells treated with 1,25(OH)2D3 alone.
CONCLUSION: 1,25(OH)2D3 and vitamin B12 exhibited synergistic anticancer effects against different cancer cell lines.
The combination therapy of 1,25(OH)2D3 and vitamin B12 may provide a potential adjunctive treatment option for some
cancer types.
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1. Introduction

Worldwide, cancer is the second leading reason of death next to cardiovascular diseases. The three
most common cancers are breast, lung, and colon cancers with lung cancer being the primary cause of
cancer-related deaths [1, 2]. Common cancer treatments include surgery, chemotherapy, and radiation.
For certain cancer types and cancer patients, the best approach is combining more than one treatment
option or combining more than one therapeutic drug. Combined drug therapy enhances treatment
effectiveness either in a synergistic or in an additive fashion [3].

Vitamin D is a set of fat-soluble secosteroids that regulate calcium-phosphate metabolism and
homeostasis. The two forms of vitamin D are cholecalciferol (vitamin D3) and ergocalciferol (vita-
min D2). Vitamin D3 is biologically inactive requiring a complex series of enzymatic reactions,
either through the classical pathway in which CYP2R1 is the most important enzyme, [4–8] or
the non-classical pathway mediated by CYP11A1, [9–12] to be converted to its active form 1�,25-
dihydroxyvitamin D3 (1,25(OH)2D3). The activity of 1,25(OH)2D3 depends on its interaction with
vitamin D receptor (VDR), inducing gene expression involved in cell proliferation and differentiation
[13, 14]. 1,25(OH)2D3 and VDR have important roles in apoptosis, angiogenesis, and immune-
modulatory properties by genomic and non-genomic pathways. Interestingly, vitamin D function
and metabolism are dysregulated in many cancer types, reversing vitamin D antitumorigenic effect
or causing resistance to it. Thus, understanding vitamin D dysregulation in cancer may be crit-
ical for development of new strategies intended for successful vitamin D-based cancer therapy
[15].

Vitamin D concentrations in blood and tissues are highly regulated, and vitamin D deficiency has
major consequences as it contributes to increased risk of diseases such as obesity, diabetes, cardiovascu-
lar disease, inflammatory diseases, cancers, and some neurological diseases. The link between vitamin
D and cancer prevention through its anti-proliferative and pro-differentiation effects were reported
[15]. The anti-cancer activities of vitamin D are mediated through apoptosis induction, differentiation
stimulation, angiogenesis inhibition, and metastasis inhibition [15–17].

When U937 leukemia cells were treated with 1,25(OH)2D3, a rapid rise in cell proliferation was
observed followed by growth inhibition and differentiation and induction of apoptosis [18]. In contrast,
1,25(OH)2D3-treated MCF-7 breast cancer cells directly entered into cell cycle arrest in G1 [19].
Thereby, cell death-enhancing effect of 1,25(OH)2D3 varies with cell type. 1,25(OH)2D3 induced
apoptosis by the activation of cell cycle genes (p21, p27, and RB) and pro-apoptotic genes (BAK
and BAX) and the inhibition of cyclin-dependent kinases (G1-cyclin/CDK complex) causing the G1/S
transition blockage [20].

1,25(OH)2D3 has been reported to be a promising chemotherapeutic agent against breast cancer.
Treating estrogen receptor (ER) positive breast cancer cells with 1,25(OH)2D3 resulted in reducing
mRNA expression of ER, downregulating the pro-survival BCL2 protein, and upregulating cell cycle
regulation genes and apoptotic genes [21, 22]. 1,25(OH)2D3-treated MCF-7 breast cancer cells (ER+)
were stuck at the G0-G1 transition phase, which lead to mitochondrial stress, release of cytochrome
c and accumulation of pro-apoptotic proteins [22]. On the other hand, Ozkaya and colleagues, 2017,
found that 1,25(OH)2D3 exerted its cellular actions on treated MCF-7 breast cancer cell line via
induction of the endoplasmic reticulum (ER)-stress-like response; [23] however, ER stress by itself
was found to be insufficient to cause 1,25(OH)2D3-mediated cytotoxicity [24]. Remarkably, it was
reported that the anti-tumor effects of 1,25(OH)2D3 are enhanced significantly when combined with
other treatments [25–27].

Vitamin B12 (cobalamin) is an essential cofactor in different methylation processes such as
DNA synthesis and mitochondrial metabolism which are crucial in maintaining neuronal health and
hematopoiesis. When vitamin B12 enters the cell, it is transformed into two active coenzymes,
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methylcobalamin which maintains the homocysteine homeostasis, and adenosylcobalamin which
maintains the methylmalonic acid homeostasis [28]. Vitamin B12 reduces superoxide levels in the
cytosol and mitochondria and stimulates reactive oxygen species (ROS) scavenging by glutathione
preservation, [29] its deficiency mediates ROS accumulation [30]. There is an association between
antioxidant vitamins (such as vitamin B12) and prevention of some types of cancer such as pancreatic
cancer [31]. Methylated B vitamins such as vitamin B12 are required for DNA stability, integrity and
synthesis; [32] consequently, any defect will affect DNA stability and cell metabolism negatively.
Vitamin B12 deficiency and elevated plasma homocysteine are positively correlated with increased
micronucleus formation and carcinogenesis.

Studies have reported that deficiency of B vitamins, including B12, induces genetic modifica-
tion by adding uracil base instead of thymine resulting in chromosomal breaks, accordingly, high
intake of vitamin B12 reduces the risk of TT-genotype colon cancer mutation [33]. Most studies
conducted using vitamin B12 have proven that when it is used in combined therapy it contributes
to increasing the effectiveness of anticancer drugs. As a new promising therapeutic application,
vitamin B12-conjugates such as vitamin B12-labeled poly(D,L-lactide-co-glycolide) and polyethy-
lene glycol nanoparticles (PLGA-PEG-VB12 NPs), have been used with microRNA system in the
form of miR-532-3p-loaded PLGA-PEG nanoparticles as an anti-proliferative agent for gastric cancer
via activating the ARC/Bax/mitochondria-mediated apoptosis signaling pathway [34]. Additionally,
it was shown that vitamin B12 contributes to a distinctive mechanism of cell death known as
paraptosis-like cell death. The combination of vitamin B12 with diethyldithiocarbamate stimulated
disulfiram oxiderivatives formation resulting in severe ER stress and extensive ER vacuolization
leading to paraptosis-like cell death [35]. Moreover, a study done on HL-60 human lymphocytic
leukemia cell line showed that the use of vitamin B12 in combination with thiol antioxidants such as
dithiothreitol (DTT), glutathione, and N-acetylcysteine resulted in lysosome dysfunction followed by
apoptosis [36].

Since the therapeutic role of vitamin B12 in cancer cells is to increase the effectiveness of other
antitumor agents, the current study aimed at investigating the anticancer potential of the combination
of 1,25(OH)2D3 and B12 on different cancer cell lines.

2. Materials and methods

2.1. Cell culture

Human BT549, MDA-MB-453, and SUM159PT triple negative breast cancer (TNBC) cells were
cultured in high glucose Dulbecco’s Modified Eagle’s Medium (HGDMEM; Gibco, USA) supple-
mented with 10% fetal bovine serum (FBS; VWR, USA), human HeLa cervical cancer cells were
cultured in LGDMEM (Gibco, USA) supplemented with 10% FBS, human HL-60 promyelocytic
leukemia cells were cultivated in in RPMI 1640 medium (Gibco, USA) supplemented with 20% FBS,
human MCF-7 breast cancer cells were cultured in RPMI-1640 medium supplemented with 10% FBS,
and the mammary non-tumorigenic MCF10A cells were grown in DMEM/F12 (Gibco, USA) supple-
mented with 5% horse serum (Invitrogen, USA), EGF (20 ng/mL, Sigma), hydrocortisone (0.5 mg/mL,
Sigma), cholera toxin (100 ng/mL, Sigma), and insulin (10 mg/mL, Sigma). For subculture, trypsin-
EDTA (HyClone, USA) was used. Cell growth was carried out in a 5% carbon dioxide and 95%
air atmosphere at 37 C◦. HeLa, HL-60, MCF-7, and MCF10A cell lines were purchased from ATCC.
MDA-MB-453, BT549 and SUM159PT cell lines were purchased from University of Colorado Cancer
Center (UCCC) Tissue Culture Core.
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2.2. In vitro cytotoxicity (3-(4,5-dimethylthiazol-2-yl)–2,5-diphenyltetrazolium bromide) MTT test

Cytotoxicity of 1�,25-dihydroxyvitamin D3 (1,25(OH)2D3; Sigma-Aldrich, USA), vitamin B12
(Sigma-Aldrich, USA) and the combination (1,25(OH)2D3/B12) on the different cancer cell lines was
evaluated by means of MTT test [37, 38]. Vitamin stock solutions were prepared in 10% DMSO with
final DMSO concentration not exceeding 0.1%. For each compound, six concentrations (0.01, 0.1,
1, 10, 100, and 1000 nM) were prepared in growth media. The absorbance of each well at 570 nm
was measured and then used to determine cell growth inhibition induced by the vitamins (Biotek
Synergy HT Multi-Mode Microplate Reader, VT, USA). Growth percent was calculated according to:
Growth (%) = OD treated/OD vehicle-treated control×100%. The concentration percent growth curve
was used to calculate 50% growth inhibition (IC50) by linear interpolation from a semi-log plot of a
dose response curve. Each experiment was repeated in triplicates.

2.3. Detection of apoptosis

Apoptosis induction was detected with DAPI using a Nikon Eclipse Ti-E microscope visualizing
nuclei after staining and confirmed by phosphatidylserine translocation to the cell surface using annexin
V-FITC apoptosis detection kit (Invitrogen, USA).

2.4. Clonogenic assay

Cells were subcultured and 2 × 105 were seeded and incubated in a humidified 5% CO2 incubator
at 37◦C for 24 h. Afterwards, cells were incubated for 3 h in the presence of increasing concentrations
(0.01, 0.1, 1, 10, 100, and 1000 nM) of 1,25(OH)2D3 or B12 or the combination. One thousand
HeLa, MCF-7, and SUM159PT cells were seeded on soft agar, while HL-60 cells were seeded on
methylcellulose, [39, 40] then incubated for 12 days. Colonies were then stained with crystal violet
(0.01%) and counted [40]. Surviving fraction (SF) was calculated as plating efficiency (PE) of treated
sample/ PE of vehicle-treated control×100, where PE is the number of colonies counted/ number of
cells seeded×100 [39]. The experiment was repeated in duplicates three times.

2.5. Cytochrome c release apoptosis assay

Control and IC50-treated cells (5 × 107) were centrifuged at 2,900 RPM for 5 min and the cell pellet
was washed with ice cold PBS and re-centrifuged at 2,900 RPM for 5 min, then re-suspended with
cytosolic extraction buffer containing protease inhibitors and dithiothreitol (DTT). Cells were then
incubated for 10 min on ice, homogenized and re-centrifuged for 10 min at 3,100 RPM. The cytosolic
fraction (CF) was collected from the supernatant by centrifugation at 12,000 RMP for 30 min, while the
mitochondrial fraction (MF) was collected from the pellet by suspending it in mitochondrial extraction
buffer (Cytochrome c Release Apoptosis Assay Kit, Abcam, USA).

2.6. Measurement of caspase activity

The activity of the different caspases (3/7, 4, 8 and 9) was measured using the Caspase-Glo assay
according to the manufacturer instructions (Promega, USA).

2.7. Western blot analysis

Proteins were resolved by electrophoresis from both control and IC50-treated cells (10% – 12.5%)
SDS-polyacrylamide gels. Proteins were transferred onto nitrocellulose membranes, then blocked with
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2% (w/v) bovine serum albumin (BSA) in tris-buffered saline (TBS) at 4◦C. The nitrocellulose mem-
branes were exposed to the primary antibodies: mouse monoclonal anti-caspase 3 (1:500, Invitrogen,
USA), rabbit polyclonal anti-caspase 4 (1:1000; Invitrogen, USA), mouse monoclonal anti-caspase
8 (1:1000; Invitrogen, USA), mouse monoclonal anti-caspase 9 (1:1000; Invitrogen, USA), rabbit
polyclonal anti-smac/DIABLO (1:1000; R&D Systems, Germany), mouse monoclonal anti-GAPDH
(1:6000; CHEMICON, USA), mouse monoclonal anti-tubulin (1:500, Sigma, USA) diluted in 1%
BSA in a solution of TBS and 0.05% Tween 20. This was followed by incubation with secondary
antibodies conjugated to 680 nm or 800 nm fluorescent dyes (IRDye 680 or IRDye800). Membranes
were then washed and visualized on FluorChem R system (Oxford, UK). Quantification of the signals
were carried out by AlphaView software (ProteinSimple, USA).

2.8. Adhesion assay

Control and IC50-treated cells were suspended in serum-free media with 0.35% BSA and replated
(5 × 104 cells/well) onto collagen I (10�g/ml)-precoated 96-well tissue culture dishes. After incubation
at 37◦C for 1 h, cells were washed with PBS two times, and adherent cells were fixed for 30 min by
paraformaldehyde and stained with 1% methylene blue and 1% borax. Absorbance (at 630 nm) was
measured after solubilization with 1% SDS [41].

2.9. Cell staining and microscopy

On sterile glass cover slips, cells were plated for 24 h. Later, cells were treated with 1,25(OH)2D3,
vitamin B12, and the combination of 1,25(OH)2D3/vitamin B12 at the IC50 concentration. Cells were
fixed with 4% paraformaldehyde (Sigma-Aldrich, USA) in PBS for 45 min. Cells were washed with
0.1% Triton X-100 in PBS for three times (three min each). Fluorescent- conjugated phalloidin (Invit-
rogen) was used to stain F-actin for 1 h. Prolong Gold Antifade containing DAPI (Invitrogen) was used
to mount the cells. Images were captured with a CCD camera and 60×NA 0.85 objective on Nikon
Eclipse Ti-E microscope run by NIS Elements software.

2.10. Statistical analysis

Results are expressed as mean ± SD. GraphPad Prism version 7.0 (GraphPad Software, San Diego,
CA, USA) was used to carry out statistical analysis. One-way ANOVA with Fisher’s LSD was used to
determine the differences between 3 or more means, with p value < 0.05 as a significant value.

3. Results

3.1. Vitamin B12 enhances the cytotoxicity of 1,25(OH)2D3 against different types of cancer cells

The cytotoxic effects of 1,25(OH)2D3, vitamin B12 and the combination of 1,25(OH)2D3 and vitamin
B12 (1,25(OH)2D3/B12) were evaluated against 6 different human cancer cell lines (BT549, HeLa, HL-
60, MCF-7, MDA-MB-453, and SUM159PT) and one normal cell line (MCF10A) by means of MTT
assay. The IC50 values are shown in Table 1. The results reveal that 1,25(OH)2D3 caused cytotoxicity
in 4 out of the 6 cancer cell lines tested (Table 1), while vitamin B12 did not cause cytotoxicity in
cancer cells even at the 1000 nM concentration after 72 h of treatment (Table 1). However, vitamin B12
enhanced the cytotoxic effects of 1,25(OH)2D3 significantly in HeLa, HL-60 and MCF-7 cancer cells
but not in SUM159PT cells (Table 1). On the other hand, none of the vitamins used (1,25(OH)2D3 and
B12) or their combination caused cytotoxicity in MCF10A normal cells even after 72 h of treatment
with the highest concentration used (1000 nM) indicating cancer-cell specificity (Table 1), The amounts
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Table 1

IC50 values of 1,25(OH)2D3,vitamin B12 and the combination(1,25(OH)2D3/B12) in
different cell lines asdetermined bythe MTT assay

Cell line 1,25(OH)2D3 Vitamin B12 1,25(OH)2D3/B12

BT549 No effectc No effectc No effectc

HeLa 653.6 nMa No effectc 473.7 nMa��

HL-60 444.0 nMc No effectc 367.4 nMc�

MCF-7 453.5 nMa No effectb 301.4 nMa��

MDA-MB-453 No effectc No effectc No effectc

SUM159PT 1006.8 nMb No effectb 972.0 nMb

MCF10A No effectc No effectc No effectc

a: after 24 h; b: after 48 h; c: after 72 h of vitamin(s) addition. �p < 0.05, ��p < 0.01 versus
1,25(OH)2D3 alone.

Fig. 1. Vitamin B12 enhances the dose-dependent cytotoxicity of 1,25(OH)2D3. Cells were treated with different concentra-
tions (0.01, 0.1, 1, 10, 100, 1000 nM) of 1,25(OH)2D3, vitamin B12 and combination of both (1,25(OH)2D3/B12) for different
time periods as shown in Table 1. The percentage of non-viable cells relative to control cells was measured by MTT assay
for A) HeLa cells; B) HL-60 cells; C) MCF-7 cells; D) SUM159PT cells. Bars = mean ± SD. Experiments was repeated in
triplicates. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001 compared to DMSO-treated control cells, φP < 0.05; φφ P < 0.01 compared to
1,25(OH)2D3-treated cells.

of 1,25(OH)2D3 and 1,25(OH)2D3/B12 combination used in subsequent experiments were the IC50

values from this table, unless stated then. In addition, and as shown in Fig. 1A-D, the cytotoxic effects of
1,25(OH)2D3 and 1,25(OH)2D3/B12 combination (but not vitamin B12) occurred in a dose-dependent
mode, i.e., increasing the concentration of 1,25(OH)2D3 as well as 1,25(OH)2D3/B12 combination
caused an increase in the percentage of non-viable cells.

3.2. Cytotoxicity of 1,25(OH)2D3 and the combination of 1,25(OH)2D3 and B12 is attributed to
induction of apoptosis

To investigate the type of cell death (apoptosis versus necrosis) caused by 1,25(OH)2D3 and the
combination (1,25(OH)2D3/B12), cells were treated at the IC50 concentration from Table 1 and the
cells were stained with DAPI or subjected to flow cytometry. The results presented in Fig. 2 show that
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Fig. 2. 1,25(OH)2D3 and the combination of 1,25(OH)2D3 and B12 cause cytotoxicity by induction of apoptosis. Cells were
treated at the IC50 concentration for 1,25(OH)2D3 and 1,25(OH)2D3/B12 from Table 1, and at 1000 nM for vitamin B12. A)
Fluorescence images of treated HeLa, HL-60, MCF-7, and SUM159PT cancer cells showing apoptotic nuclei (fragmented
nuclei) after DAPI staining. The image of 1,25(OH)2D3/B12-treated HL-60 nuclei is a composite image since very few cells
remained attached to the cove slip. Scale bar: 10 �m; B) Flow cytometry analysis for both control and treated HL-60 stained
for annexin V-FITC and PI. Live cells (PI negative, Annexin V negative), apoptotic cells (PI negative, Annexin V positive)
and necrotic cells (PI positive, Annexin V positive).
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Fig. 3. The combination of vitamin B12 with 1,25(OH)2D3 enhances the inhibition of clonogenic tumor growth caused
by 1,25(OH)2D3 alone. Cells were treated for 3 h with increasing concentrations of 1,25(OH)2D3, vitamin B12 and the
combination of both and the number of colonies was quantified after 12 days. Bars = mean ± SD of three different experiments
performed in duplicates. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001 compared to DMSO-treated control cells, �P < 0.05; ��P < 0.01
compared to 1,25(OH)2D3-treated cells.

1,25(OH)2D3 and the combination caused cytotoxicity in cancer cells by apoptosis induction that was
detected by visualizing fragmented nuclei in a fluorescence microscope (Fig. 2A) and analyzed by
annexin V-FITC and PI flow cytometry analysis (Fig. 2B).

3.3. Vitamin B12 augments 1,25(OH)2D3 inhibition of clonal tumor cell growth

The antiproliferative activity of 1,25(OH)2D3, vitamin B12 and the combination was also evaluated
by studying cells clonal growth capacity (Fig. 3). Figure 3 showed that 3 h treatment of cancer cells
with 1,25(OH)2D3 or the combination of 1,25(OH)2D3 and B12 caused a dose-dependent inhibition of
clonogenic tumor growth in all cell lines tested, and that the combination (1,25(OH)2D3/B12) resulted
in a better inhibition in HeLa cells (Fig. 3A), HL-60 cells (Fig. 3B), and MCF-7 cells (Fig. 3C) than
when treating these cells with 1,25(OH)2D3 alone.

3.4. Caspase 4 and 8 mediate 1,25(OH)2D3/B12-induced apoptosis

Since 1,25(OH)2D3 and the combination (1,25(OH)2D3/B12) induced apoptosis in cancer cells
(Fig. 2), we aimed to investigate the role of different caspases in this process. The activity of the caspases
3/7, 4, 8 and 9 were measured using the Caspase-Glo assay after treatment with vitamin 1,25(OH)2D3,
vitamin B12, and the combination of 1,25(OH)2D3 and vitamin B12 (Fig. 4A). Active caspase 3/7 and
caspase 9 levels were lower in treated HL-60 cells when compared to control cells. On the other hand,
the levels of active caspase 4 and caspase 8 were significantly increased in 1,25(OH)2D3-treated cells
compared to control levels (Fig. 4A). In addition, combining vitamin B12 with 1,25(OH)2D3 increased
the levels of active caspase 4 and caspase 8 in treated cells (Fig. 4A) more than when these cells were
treated with 1,25(OH)2D3 by itself although insignificantly except for the IC50 treatment.

Moreover, the activation of the different caspases was assayed by Western blotting (Fig. 4B). Treating
cells with 1,25(OH)2D3 or the combination resulted in the activation of caspase 4 (procaspase cleavage
to p20 active form) and caspase 8 (procaspase cleavage to p42 and p44 active forms) but not caspase 3
or 9 (without cleavage of the procaspase to p17 active form, or p35 and p37 active forms, respectively)
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Fig. 4. (Continued)
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Fig. 4. 1,25(OH)2D3 and 1,25(OH)2D3/B12 combination-induced apoptosis is dependent on caspase 4 and caspase 8 acti-
vation. A) Analysis of caspase 3/7, 4, 8 and 9 activation in treated cells by the Caspase-Glo assay compared to HL-60
control cells [fixed to 1.0 arbitrary unit]. The experiment was repeated in triplicate; B) Western blots presenting cleavage
“activation’ of procaspase 4 to p20 active form and procaspase 8 to p42/44 active forms in treated HL-60 leukemia cells
(IC50 for 1,25(OH)2D3 and 1,25(OH)2D3/B12, and 1000 nM for vitamin B12). The experiment was repeated three times and
the corresponding quantification is shown in (C); C) Quantification of procaspase 3, 4, 8, and 9 and their cleaved forms in
1,25(OH)2D3-, vitamin B12-, and 1,25(OH)2D3/B12-treated HL-60 cells relative to the control values set as 1.0 obtained from
pixel density of Western blots; D) Representative Western blot showing that 1,25(OH)2D3 or its combination with vitamin
B12 caused the release of Smac/DIABLO (Smac) but not cytochrome c from the mitochondria (MF, mitochondrial fraction)
to the cytosol (CF, cytosolic fraction) of treated cells (IC50) as compared to vehicle-treated cells. Equal protein loading was
controlled by staining membranes with Ponceau S (an illustrative section of the stained membrane is shown). Similar results
were achieved in the other cancer cell lines. The experiment was repeated three times and the corresponding quantification
is shown in (E); E) Quantification of cytochrome c and Smac/DIABLO in control and IC50-treated HL-60 cells. ∗P < 0.05;
∗∗P < 0.01; ∗∗∗P < 0.001 compared to DMSO-treated control cells, �P < 0.05 compared to 1,25(OH)2D3-treated cells.

Fig. 5. 1,25(OH)2D3/B12-treated cells are less adhesive than 1,25(OH)2D3-treated cells. Control and treated cells (IC50 for
1,25(OH)2D3 and 1,25(OH)2D3/B12, and 1000 nM for vitamin B12) were subjected to the adhesion assay. Bars = mean ± SD
of three independent experiments. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001 compared to DMSO-treated control cells, �P < 0.05
compared to 1,25(OH)2D3-treated cells.

(Fig. 4B), interestingly, treating cells with 1,25(OH)2D3 showed enhanced caspase 8 cleavage compared
to the combination of 1,25(OH)2D3 /B12, in contrast to caspase 4 cleavage (Fig. 4C). In addition, when
cytochrome c release assay was performed, the results showed that treatment of HL-60 cancer cells with
1,25(OH)2D3 or the combination of 1,25(OH)2D3 and vitamin B12 showed no release of cytochrome
c from mitochondria (mitochondrial fraction; MF) to the cytosol (cytosolic fraction, CF) (Fig. 4D). In
contrast, the release of the protein Smac/DIABLO (Smac) was enhanced in response to this treatment
(Fig. 4D). HeLa, MCF-7, and SUM159PT cells showed similar results (except for caspase 3 in MCF-7
cells) [42] (data not shown).

3.5. Vitamin 1,25(OH)2D3/B12-treated cells are less adhesive than 1,25(OH)2D3-treated cells

Cell adhesion is an essential step during cell migration, [41] thus we analyzed the effects of
1,25(OH)2D3 and its combination with vitamin B12 on cell adhesion by subjecting control and
treated cells to the adhesion assay (Fig. 5). The results indicate that vitamin B12 treatment reduced
cell adhesion when compared to control cells, however insignificantly (P > 0.05). On the other hand,
1,25(OH)2D3-treated cells showed decreased adhesion compared to control cells, and HeLa cells as
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well as MCF-7 cells treated with both 1,25(OH)2D3 and vitamin B12 were even less adhesive than
vitamin 1,25(OH)2D3-treated cells (Fig. 5).

3.6. Vitamin B12 intensifies the effects of 1,25(OH)2D3 on cell morphology and polarization

To study the effects of 1,25(OH)2D3 and the combination of 1,25(OH)2D3 and vitamin B12 on the
morphology and polarization of cells, control and treated cells were stained with fluorescently labeled
phalloidin. 1,25(OH)2D3-treated HeLa cells showed reduced length, width, and cell area (Table 2),
disorganized and reduced actin filaments, as well as more cell protrusions and reduced cell migratory
morphology as compared to control cells (Fig. 6A), similarly, 1,25(OH)2D3-treated MCF-7 cells were
smaller in size (Table 2), showed actin aggregates and short actin filaments and most cells had thin
lamellipodia (Fig. 6A). Combining vitamin B12 with 1,25(OH)2D3 caused cell rounding in both cell
types, a common feature of apoptotic cells (Table 2, Fig. 6A). Control HL-60 cells have a round shape
and cortical actin filaments distribution, 1,25(OH)2D3-treated cells lost that typical cell morphology
and became smaller (Table 2), actin filaments got shorter and less cortical, and cells showed protrusion,
the same was more evident in 1,25(OH)2D3/B12-treated cells (Fig. 6A). The effect of 1,25(OH)2D3 on
SUM159PT cell morphology and actin cytoskeleton was not as pronounced, the most obvious effect
was thinning of actin filaments (Fig. 6A), the same was observed in 1,25(OH)2D3/B12-treated cells in
addition to the formation of thin protrusion. Cell area, height, and width of 1,25(OH)2D3/B12-treated
SUM159PT cells were significantly smaller than control cells but not than 1,25(OH)2D3-treated cells
(Table 2). In all cell lines, vitamin B12 did not cause a significant change to cell morphology, actin
cytoskeleton or cell area (Fig. 6 and Table 2)

HeLa, MCF-7, and SUM159PT cells were classified as apolar (no or more than 2 lamellipodia),
bipolar (2 lamellipodia) or polar (one leading edge/lamellipodium) (Fig. 6B). Figure 6C showed that
the percentage of polar cells in 1,25(OH)2D3-treated cells was reduced compared to control, and that
combining vitamin B12 with 1,25(OH)2D3 decreases the percentage of polar cells as compared to
1,25(OH)2D3 treated cells.

4. Discussion

Most cancers are associated with activation of several oncogenic signal transduction pathways.
Therefore, recent studies have focused on the development of combination therapies using multi-
ple anticancer agents to efficiently inhibit compound oncogenic pathways. A previous clinical study
reported the anticancer effects of vitamin D3; [43] additionally, several in vivo and in vitro studies
showed that vitamin D3 induced cell growth inhibition [44, 45]. However, and up to our knowledge,
no previous study investigated the synergistic antitumor effects of combined vitamin D3 or its active
form (1,25(OH)2D3) and B12 on different cancer cell lines.

The biological activity of 1,25(OH)2D3 depends on its association with one of the binding sites of
vitamin D receptor (VDR), either a genomic pocket (VDR-GP) or an alternative pocket (VDR-AP).
In the genomic pathway, the 1,25(OH)2D3/VDR complex acts as a transcription factor that produces
a heterodimeric complex with retinoid X receptor (RXR). This complex in turn binds to vitamin D
responsive elements stimulating transcriptional co-activators or co-repressors that cause positive or
negative downstream regulations [6]. On the other hand, 1,25(OH)2D3 via the non-genomic pathways,
exerts short-term effects and acts as a protective agent against skin cancer and against sunlight-induced
DNA damage [16]. It is worth mentioning that in addition to the VDR canonical pathway, some active
forms of vitamin D such as 20(OH)D3 and 20,23(OH)2D3 bind other nuclear receptors such ROR�
and ROR�, [46] AhR, [47, 48], and liver X receptors (LXRs) [49].
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Table 2

Vitamin B12 enhances the effects of 1,25(OH)2D3on cell shape parameters.

Area (�m2) Height (�m) Width (�m)

HeLa HL-60 MCF-7 SUM HeLa HL-60 MCF-7 SUM HeLa HL-60 MCF-7 SUM

Control 1569.4 ± 593.3 654.9 ± 148.1 2387.1 ± 1674.8 2589.6 ± 1389.4 48.7 ± 20.7 27.5 ± 15.3 67.2 ± 30.8 71.4 ± 31.6 45.7 ± 28.4 24.4 ± 10.0 62.2 ± 27.0 65.4 ± 18.4

1,25(OH)2D3 1209.2 ± 359.9∗ 406.3 ± 114.1∗ 1692.4 ± 818.0∗∗ 1989.2 ± 712.9 40.5 ± 18.5 17.7 ± 21.4∗ 59.1 ± 29.6 63.2 ± 22.3 35.0 ± 21.3∗ 14.0 ± 9.5∗ 49.3 ± 26.9∗ 53.4 ± 19.4

Vitamin B12 1429.7 ± 429.6 623.7 ± 127.5 2019.7 ± 989.4 2444.2 ± 1002.1 42.3 ± 16.5 24.1 ± 12.8 60.0 ± 26.6 73.2 ± 28.8 41.3 ± 29.6 23.3 ± 9.3 62.4 ± 25.4 61.8 ± 22.4

1,25(OH)2D3/B12 799.3 ± 205.9∗∗�� 371.8 ± 152.0∗ 1087.8 ± 905.4∗∗∗� 1883.2 ± 992.1∗ 29.4 ± 12.8∗∗� 14.5 ± 8.7∗ 40.9 ± 21.6∗∗� 59.1 ± 24.6∗ 22.6 ± 24.3∗∗∗�� 9.5 ± 7.5∗∗� 39.0 ± 19.6∗∗ 49.5 ± 16.7∗∗

Data are expressed as mean ± SD, n ≥ 100 cells in each experiment, three independent experiments. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 versus control, �P < 0.05; ��P < 0.01
compared to 1,25(OH)2D3-treated control cells



M.F. Atoum et al. / 1,25(OH)2 D3 & B12 synergistic antitumor effects 29

Fig. 6. Vitamin B12 intensifies the effects of 1,25(OH)2D3 on cell polarization. A) Control and treated cells (IC50 for
1,25(OH)2D3 and 1,25(OH)2D3/B12, and 1000 nM for vitamin B12) were stained with fluorescently-labeled phalloidin. The
image of 1,25(OH)2D3/B12-treated HL-60 cells is a composite image since very few cells remained attached to the cove slip.
Scale bar: 10 �m; B) Control and treated HeLa, MCF-7, and SUM159PT cells were categorized as apolar, bipolar or polar
(arrows show the leading edge and direction of movement) and the percentage of polarized cells was scored in (C); C) Control
and vitamin-treated cells were scored for percentage of polarized cells. Bars = mean ± SD of three independent experiments.
∗P < 0.05; ∗∗P < 0.01 compared to DMSO-treated control cells, �P < 0.05 compared to 1,25(OH)2D3-treated cells.
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The role of vitamin D3 in preventing cellular oncogenic transformation is mediated through several
modulations in various stages of oncogenesis ranging from tumor initiation to progression, and cell-
microenvironment interactions [10]. These modulations induce cell cycle arrest, differentiation, and
apoptosis.

Vitamin B12 is a water-soluble vitamin essential to cell production, DNA synthesis and neurologic
function. Moreover, vitamin B12 acts as a co-enzyme in the metabolism of different amino acids such
as methionine, threonine, and valine [50]. Additionally, vitamin B12 was reported to have potential
antioxidant properties by scavenging reactive oxygen species [51]. So far, there is no proof that dietary
vitamin B12 alone decreases the risk of cancer. However, vitamin B12 may lessen the risk of breast
cancer when taken with folate, vitamin B6, and methionine [52].

The results of this study demonstrated significant concentration-dependent cytotoxic effects of
1,25(OH)2D3 but not B12 on four out of the six cancer cell lines tested (HeLa, HL-60, MCF-7, and
SUM159PT; Fig. 1). Moreover, a synergistic cytotoxic effect for combining 1,25(OH)2D3 and B12
together on HeLa, HL-60, and MCF-7 cancer cells was also shown (Fig. 1). However, this synergetic
effect was not constant, some concentrations of the combination did not show a higher cytotoxic when
compared to 1,25(OH)2D3 alone such as the 1000 nM in HeLa cells and 100 nM in MCF-7 cells. It
was reported previously that some drug combinations achieve their optimum effects when the concen-
tration of the combination is lower than the concentration of the best individual drug, sometimes this
is referred to as antagonism or hyperantagonism, where the pair has a lower effect than either or one
of the two single drugs.

Our results indicated that 1,25(OH)2D3 and B12 synergism inhibited the growth of these cancer
cells, primarily due to apoptosis (Fig. 2). These results are in accordance with previous studies that
showed that vitamin D3 treatment reduced the number of cancer stem cells in MCF-7 cell line, [53]
comparable results were also reported [54].

The results presented in Table 1 indicate that 1,25(OH)2D3 treatment (and the combination) exhibited
cytotoxic effects in only one of the TNBC cell lines tested (SUM159PT) but not in BT549 or MDA-
MB-453 TNBC cell lines (Table 1). This was in contradiction to previous studies reviewed by Blasiak
et al. (2020) [55]. Low vitamin D levels are noticed in TNBC patients, suggesting that vitamin D can
be used as a protective agent. Vitamin D3 can decrease the metastatic potential of TNBC cells by
down-regulating invasion and metastasis genes. Additionally, vitamin D3 can act as anti-proliferative
agent by inducing growth arrest and DNA damage-inducible 45 alpha (GADD45) proteins as well as
stimulating the synthesis of TNF-� in TNBC cells to prevent their propagation [55].

Apoptosis is an active cell suicide process that maintains homeostasis in cells. This process is clas-
sified as either caspase (cysteine protease)-dependent or caspase-independent. A caspase-dependent
action is mediated via the mitochondrial-dependent intrinsic pathway characterized by cytochrome
c release from the mitochondria and caspase 9 activation, and the death receptor-mediated extrinsic
pathway characterized by caspase 8 activation [56]. The present study showed that caspase 8 was
activated in treated cells as shown by the caspase activity assay and Western blot analysis (Fig. 4).
Moreover, the result showed that neither 1,25(OH)2D3, vitamin B12 nor their combination stimulated
cytochrome c release from the mitochondria (Fig. 4), and they did not stimulate caspase 3/7 or caspase
9 activation (Fig. 4). These results indicate that 1,25(OH)2D3 induced apoptosis in the tested cancer
cells through the extrinsic apoptosis pathway.

Additionally, the results presented in Fig. 4 show that 1,25(OH)2D3 treatment (and the combination
of vitamin B12 and 1,25(OH)2D3) worked through activating the ER stress pathway. ER stress is
caused by dysregulation of protein folding, and if this is prolonged or if the repair system fails, then
ER-mediated apoptosis signaling is activated. The hallmarks of this atypical apoptosis pathway are
activation of caspase 4, enhanced phosphorylation of the eukaryotic translation initiation factor 2 (eIF2)
and release of Smac/DIABLO into the cytosol [23, 57]. Previous work has reported that 1,25(OH)2D3
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induced apoptosis in MCF-7 breast cancer cells by induction of the endoplasmic reticulum (ER)-stress-
like response [23]. The collaborative activation of both caspases (4 and 8) in other processes such as
in response to infection has been reported previously [58, 59].

Acquiring a polarized morphology is essential for cell migration and cancer metastasis. The dynamic
reorganization of actin cytoskeleton regulates almost all steps of cell migration including formation pf
protrusions, cell adhesion, cell body contractility and formation of invadopodia [60, 61]. The results
presented in Fig. 6A show that treated cells exhibited disorganized actin cytoskeleton and consequently
they were less adhesive (Fig. 5) and less polarized (Fig. 6C). Additionally, it was shown that cells treated
with the combination of vitamin B12 with 1,25(OH)2D3 were less adhesive (Fig. 5) and showed reduced
percentage of cell polarization (Fig. 6C) when compared to 1,25(OH)2D3-treated cells.

5. Conclusions

In conclusion, the present study revealed the synergistic anticancer effects of 1,25(OH)2D3 and
B12 against different cancer cell lines. 1,25(OH)2D3 induced cytotoxicity in HeLa, HL-60, MCF-7
and SUM159PT cancer cells by induction of apoptosis as evident by fragmented nuclei after DAPI
staining and flow cytometry analysis. The combination of vitamin B12 with 1,25(OH)2D3 enhanced
the cytotoxic effects of 1,25(OH)2D3 as well as its inhibition of clonal tumor cell growth. The induc-
tion of apoptosis by 1,25(OH)2D3/B12 was achieved through activation of both caspase 4 and 8.

Fig. 7. Proposed scheme of various apoptotic pathways involved in 1,25(OH)2D3/B12-induced apoptosis. The combination
of 1,25(OH)2D3 and vitamin B12 stimulates the death receptor and activates caspase 8, then the combination is internalized
where it induces the ER stress pathway and then caspase 4. Caspase 4 and 8 then activate an executioner caspase such as
caspase 6 which leads to activation of the apoptotic process such as nuclear fragmentation, dysregulation of actin cytoskeleton
and reduced cell migration.
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1,25(OH)2D3/B12-treated cells were less adhesive, showed reduced cell area, disorganized actin
cytoskeleton and reduced percentage of polarized cells and thus had reduced migratory phenotype
(Fig. 7) compared to cells treated with 1,25(OH)2D3 alone. The combination therapy of 1,25(OH)2D3

and vitamin B12 may provide a potential adjunctive treatment option for some cancer types.
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