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Abstract. The human TMPRSS2 gene is pathogenetically implicated in both coronaviral lung infection and prostate cancer,
suggesting its potential as a drug target in both contexts. SARS-COV-2 spike polypeptides are primed by the host transmem-
brane TMPRSS2 protease, triggering virus fusion with epithelial cell membranes followed by an endocytotic internalisation
process that bypasses normal endosomal activation of cathepsin-mediated innate immunity; viral co-opting of TMPRSS2
thus favors microbial survivability by attenuating host inflammatory responses. In contrast, most early hormone-dependent
prostate cancers express TMPRSS2:ERG fusion genes arising from deletions that eliminate the TMPRSS2 coding region
while juxtaposing its androgen-inducible promoter and the open reading frame of ERG, upregulating pro-inflammatory ERG
while functionally disabling TMPRSS2. Moreover, inflammatory oxidative DNA damage selects for TMPRSS2:ERG-fused
cancers, whereas patients treated with antiinflammatory drugs develop fewer of these fusion-dependent tumors. These find-
ings imply that TMPRSS2 protects the prostate by enabling endosomal bypass of pathogens which could otherwise trigger
inflammation-induced DNA damage that predisposes to TMPRSS2:ERG fusions. Hence, the high oncogenic selectability
of TMPRSS2:ERG fusions may reflect a unique pro-inflammatory synergy between androgenic ERG gain-of-function and
fusogenic TMPRSS2 loss-of-function, cautioning against the use of TMPRSS2-inhibitory drugs to prevent or treat early
prostate cancer.
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1. Introduction

Of the twenty thousand genes in the human genome, one has gained recent recognition for two distinct
reasons: transmembrane serine protease 2 (TMPRSS2) is one of two key genes encoding membrane
proteins that mediate infectivity of the COVID-19 coronavirus (CV) SARS-COV-2, whilst also being
one of two (fused) genes implicated in 50% of primary prostate cancers [1–3]. Is this a coincidence,
or could there be a function of the TMPRSS2 gene product that accounts for its involvement in both
pathogenetic contexts?
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Two percent of human genes encode proteases, the functions of which remain incompletely under-
stood; part of this interpretational difficulty lies in the cascade-like feedback interactions between
proteases and their substrates [4, 5] which hamper clarifying the role of any single protease-encoding
gene. Examples include androgen-inducible kallikrein-related peptidases in seminal fluid such as
KLK2 and prostate-specific antigen (PSA), which have been implicated as either tumor-suppressive or
oncogenic in different contexts [6–9]. The TMPRSS2 gene on chromosome 21q22.3 encodes another
androgen-inducible serine protease found in semen; this gene is most highly expressed in the adult
prostate [10], and at lower levels in the gut, breast, ovary, kidney, heart and lung [11, 12], in which latter
organ it is targeted by SARS-COV-2 [13]. Some research, though not all [14], has raised hopes about
the value of androgen-deprivation therapy for blocking lung TMPRSS2 expression and thus reducing
SARS-COV-2 infectivity [3, 15–19], while similar interest has focused on using TMPRSS2 inhibitors
to prevent or treat this infection [20].

The frequent involvement of TMPRSS2 in prostate cancer gene fusions [21] has likewise led to
suggestions that oral drug inhibitors of the TMPRSS2 protease may benefit patients with, or at risk
of, this disease [10, 12, 22, 23]. The hypothesis of TMPRSS2 being an actionable driver of prostate
cancer [24] has also received support from preclinical models [22, 25]. Here this thesis is revisited in
the light of recent cross-disciplinary insights from SARS-COV-2-related research.

2. TMPRSS2 structure and function

TMPRSS2 encodes a type II transmembrane serine protease (TTSP) that includes three adjacent
extracellular domains – the juxtamembrane LDL receptor A (LDLRA) domain, an intermediary scav-
enger receptor cysteine-rich (SRCR) domain, and a carboxyterminal serine protease (SP) domain –
which modular structure is tightly conserved across phylogeny [26], even extending to invertebrates
[1] (Fig. 1A). In addition, human TMPRSS2 expression varies markedly between fetal and adult life
in a bidirectional and tissue-dependent manner [26] (Table 1). These findings imply that TMPRSS2
serves an important, albeit not yet sharply defined, biologic function.

The extracellular location of the tripartite LDLRA-SRCR-SP cassette suggests a transmembrane
signaling function, such as proteolytic activation of extracellular matrix proteins [22] or growth factors
[25], and/or a defense function targeting extrinsic pathogens, as suggested by the role of TMPRSS2
in SARS-COV-2 infection [27] (see below). Mutagenesis studies have shown that the SRCR domain
adjacent to the SP domain is essential for TMPRSS2 catalytic activity, whereas the LDLRA domain is
dispensable [28]. Evolutionary conservation of the SRCR domain is consistent with, but does not prove,
an affinity for microbial polyanionic molecules including proteins, lipopolysaccharides – which activate
other proteases implicated in prostate cancer invasion [29] – or polynucleotides [30]. Another androgen-
inducible serine protease, PSA, has been implicated in prostatic innate defence [31], consistent with
PSA rises associated with either microbial [32] or non-microbial [33, 34] prostatic inflammation.

TMPRSS2 is synthesized as a latent zymogen which is first expressed as an intact 58–70 kDa trans-
membrane protein, but may later undergo autocatalytic secretion into apical glandular lumina as the
32–42 kDa carboxyterminal SP domain [10, 35] (Fig. 1B). Both the androgen-inducibility and immuno-
histochemical location of the latter process suggest a proteolytic role for TMPRSS2 in semen [35]. This
raises further questions: is autocatalytic cleavage and secretion of the SP fragment confined to prostatic
tissues? Does androgen-dependent TMPRSS2 activation occur due to overexpression [10], with the
protein’s unpaired extracellular cysteine-140 in the SP domain [35] enabling disulfide bond formation
between adjacent protease moieties, facilitating enzymatic cross-cleavage followed by secretion? If so,
could this represent a mode of negative feedback on the sequelae of androgenic signaling, rather than
simply a protease activation event? Does the transmembrane TMPRSS2 holoprotein containing the
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Fig. 1. Structure and posttranslational modification of prostatic TMPRSS2. A, The zymogen includes three adjacent extra-
cellular subdomains, LDLRA, SRCR, and SP, in addition to transmembrane (TM) and a short intracellular (IC) domain. B,
In response to androgen receptor (AR) stimulation, TMPRSS2 protein becomes overexpressed at the cell surface, followed
by catalytic cleavage and secretion of proteolytically active SP domains into seminal fluid.

Table 1

Dynamic tissue-specific changes in TMPRSS2 mRNA expression levels1

TMPRSS2 expression Fetal Adult

Lung +++ +
Brain +/− +++

1As measured by Northern blotting, in human tissues sampled in fetal and adult life, per the
cited study by Paoloni-Giacobino et al. [26]. Such contrasting changes of expression suggest
conserved functional roles not expected of a gene exhibiting true evolutionary redundancy.

uncleaved SP domain exert a function distinct from that of the secreted SP fragment; and following SP
cleavage, does the residual stem LDLRA-SRCR-containing transmembrane protein retain a receptor
function [10]? If so, does mislocalisation of transmembrane TMPRSS2 from apical cell membranes –
as reported with loss of cell polarity due to oxidative stress [36] or transformation [35, 37] – cause a
change in protein function that could, in different contexts, either promote or inhibit tumorigenesis?

3. TMPRSS2 as a fertility factor

Pertinent to these knowledge gaps, TMPRSS3 is another TTSP containing an LDLRA-SRCR-SP
cassette. Germline TMPRSS3 mutations affecting either the LDLRA or SRCR domains impair the pro-
teolytic function of the SP domain via unknown mechanisms, with these non-SP mutations abolishing
amiloride-sensitive sodium channel (ENaC) function and thereby causing autosomal recessive nerve
deafness [38]. Wild-type TMPRSS2 downregulates ENaC activity [39], opposing the normal effect of
TMPRSS3; however, gene-targeted knockout mice lacking only the SP domain of TMPRSS2 appear
viable, fertile, and without any abnormal phenotype [40]. Null mutations knocking out all domains
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of the TTSP matriptase gene – MT-SP1, which encodes a TMPRSS2 substrate [22] – are lethal [41].
Since sodium channel function is important for sperm fertility [42], and similar sperm-regulatory
channelopathies cause male infertility [43], one possibility is that incomplete TMPRSS2 knockouts
involving only SP domain loss are fertile due to compensatory retention of ENaC, analogous to hearing
retention in pseudohypoaldosteronism patients who, like TMPRSS3 knockouts, have genetic loss of
cochlear ENaC expression [44].

Another explanation beyond redundancy for the failure to demonstrate a TMPRSS2 knockout phe-
notype, even in whole-gene knockouts [45], is that a further stressor is needed to reveal the gene’s
function [46], with viral infection being one candidate. For example, the mumps paramyxovirus (MuV)
is a common cause of orchitis and male sterility [47], such as could select for genes that prevent these
outcomes. MuV increases its infectivity via inhibition of cytokine pathways mediating innate immunity
[48], whereas other viruses including influenza and SARS-COV-2 evade the antiviral innate inflam-
matory responses by hijacking TMPRSS2 as an entry portal [49] (see below). Since TMPRSS2 is
expressed in the testis together with its SARS-COV-2 co-receptor angiotensin-converting enzyme 2
(ACE2) [50, 51], and given that SARS-COV-2 viremia is often associated with mild orchitis [52],
germline TMPRSS2 losses could predispose to more severe orchitis with higher risk of sterility. More-
over, since mumps (also known as epidemic parotitis) causes prominent salivary gland inflammation,
and given that both TMPRSS2 and ACE2 are expressed in salivary glands [53], the possibility is raised
by analogy that germline TMPRSS2 or ACE2 aberrations might affect fertility outcomes of orchitis
caused not only by CVs but also by MuV.

In common with TMPRSS2 – and hence plausibly related to their joint role in enabling extrinsic
pathogens to bypass endosomal innate immunity (see below) – ACE2 expression is associated with
reduced inflammation [54, 55], although it is not yet clear whether this phenotype is independent
of co-localised TMPRSS2 [56]. Against the latter possibility are reports that ACE2 activates inflam-
masomes on SARS-COV-2 binding [57], and that pro-inflammatory cytokines upregulate TMPRSS2
while downregulating ACE2 [58]. Nonetheless, since decreased expression of ACE2 also characterises
Sertoli cells in patients with non-obstructive azoospermia [59], it seems possible that pre-existing
ACE2 defects could unmask TMPRSS2 hypofunction (e.g., due to heterozygous germline defects or
promoter methylation) as a predisposition to infertility.

4. TMPRSS2 as a virus trafficker

New insights into the function of TMPRSS2 have been gained from its exploitation by RNA viruses,
including influenza A – the hemagglutinin of which is cleaved by TMPRSS2 [60] – parainfluenza
viruses [61], hepatitis C [62], and CVs such as SARS-COV-2; indeed, TMPRSS2 polymorphisms are
reported to be predictors for the susceptibility and severity of such viral diseases [63]. The spike (S)
proteins of SARS-COV-2 contain two TMPRSS2 cleavage sites, S1 and S2; proteolytic TMPRSS2
priming of S1 enables viral binding to human ACE2 receptors in bronchial secretory cells, then acti-
vation of S2 permits fusion of viral and cell membranes, allowing viruses entry to host cytoplasm
[13]. Of note, the priming of S1 in this lung context implies that androgen-inducible catalytic cleavage
and secretion is not essential for TMPRSS2 enzymatic activity; however, cells or organisms lack-
ing TMPRSS2 are resistant to CVs [64], implying that the role of transmembrane TMPRSS2 in CV
infection is indeed essential.

The evolutionarily deselected pathway of interest in this context appears to be endosomal endocytosis
involving pathogen processing by intracellular cathepsins B/L, which is the entry pathway for CVs
that infect cells lacking TMPRSS2 [65] (Fig. 2A). Consistent with this, TMPRSS2 inhibitors reduce
CV pathogenicity whereas cathepsin inhibitors do not [66]. Since cathepsin-linked endosomes host
Toll-like receptor (TLR) recognition proteins which mediate innate immunity [67], and given also that
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Fig. 2. Schematic depiction of internalisation pathways with dissimilar inflammatory effects triggered by different viruses. A,
Activation of the TLR-mediated endosomal cathepsin pathway, initiating innate immune signaling, thus leading to higher cell
inflammation and lower viral survival. ROS, reactive oxygen species (which damage DNA, thus predisposing to potentially
carcinogenic genetic changes, including but not limited to TMPRSS2:ERG fusions). B, Activation of TMPRSS2/ACE2
intracellular trafficking, which bypasses endosomal capture and innate immunity, leading to lower cell inflammation and
higher viral survival.

TLR-deficient mice are hypersusceptible to CVs [68], such viruses appear to have selected TMPRSS2
binding affinity in order to evade cathepsin-mediated inflammatory responses [69–72] (Fig. 2B). Viral
subversion of inflammatory innate host cell defense via TMPRSS2-mediated endosomal TLR bypass
thus provides a teleologic rationale: TMPRSS2 balances the strength of non-adaptive endocytotic
pathogen defense against the severity of innate immune inflammatory reactions, such as could damage
fertility in early adult life (see above) or predispose to multistep carcinogenesis during later life (see
below). Of note, human papillomavirus (HPV)-positive head and neck cancers upregulate TMPRSS2
when compared with HPV-negative tumors [73], consistent with a defensive role in HPV infections,
notwithstanding that E6/E7 expression may be driven by viral integration rather than replication.

5. TMPRSS2 as an inflammation moderator

The function of TMPRSS2 has sometimes been assumed to be that of a monofunctional protease, with
a spectrum of substrates having been proposed: these include matriptase [22], PAR-2 [74], precursors of
uroplasminogen activator and PSA [12], and of the c-Met ligand (pro-hepatocyte growth factor, HGF)
[25]. No key physiologic proteolytic function of TMPRSS2 has yet been experimentally established,
however – not even in the prostate, where the androgen-inducibility of TMPRSS2 coupled to the
secretion of its SP domain strongly implies a role in seminal fluid.

Recognition functions of the transmembrane zymogen could also contribute to a host defense mission
of TMPRSS2. In the prostate, for example, androgenic induction of wild-type TMPRSS2 would enable
certain phagocytosed antigens to bypass endosomal cathepsin L, thereby reducing the intensity of
inflammatory damage, and maintaining tissue androgen-dependence by permitting survival of oxidant-
stressed epithelial cells which could otherwise (e.g., in the presence of TMPRSS2 gene loss) transform
into prostate inflammatory atrophy (PIA) [75], prostatic intraepithelial neoplasia (PIN) or cancer [76].
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Moreover, polynucleotide activation of prostatic endosomal TLR3 receptors causes innate NFκB-
mediated inflammatory responses that trigger apoptosis of androgen-dependent cells, as may lead to
androgen-independence [77, 78].

This is consistent with the established role of innate immunity in inflammatory [79, 80] and neoplastic
processes [81, 82] in the prostate and other organs. In the prostate, for example, non-adaptive endo-
cytotic reactions to non-self antigens can cause apoptotic loss of androgen-dependent cells in normal
young adult males, suppressing progression to neoplastic invasion while maintaining androgen respon-
siveness of the remaining cell population [83–85]. With aging, however, prostatic senescence may give
rise to an androgen- and cytokine-mediated senescence-associated secretory phenotype (SASP, ‘inflam-
maging’) that comes to exceed the anti-inflammatory capacity of TMPRSS2, and could thus play a role
in benign prostatic hypertrophy (BPH) [86] or PIA [87]. Short-term SASP-driven inflammaging may
inhibit neoplastic progression of immortalized (but not metastatic) cells [88], suggesting a protective
effect of senescent inflammation against early cancer. However, more chronic androgen-dependent
SASP selects for loss-of-function mutations affecting the tumor suppressor gene PTEN [89], driving
tumor progression towards androgen-independence [90].

Ubiquitous skin microbiota such as Propionibacterium acnes (formerly Corynebacterium parvum,
now reclassified as Cutibacterium acnes) have been implicated in chronic prostatic infections, BPH
[91] and prostate cancer [92], possibly via stimulation of innate immunity-mediated inflammatory
responses [93]. Phagosomic elimination of this bacterium itself appears independent of cathepsin-
mediated lysosomal fusion [94], however, raising the possibility of prostatic vulnerability to this
infection due to androgen-inducible TMPRSS2 expression. Other sources of chronic intraprostatic
inflammation include dietary carcinogens and estrogens [75], sexually transmissible bacterial infections
such as Chlamydia and Neisseria spp., and viral infections such as herpes simplex-2 and HPV [95].
Hence, if TMPRSS2 does indeed have the function of moderating inflammation, the prostate appears
to be an ideal tissue expression site.

6. TMPRSS2 as a prostate protector

The prostate (‘protector’ - Greek ��o�� ά���) gland optimises male reproductive function by
expediting outgoing sperm delivery, as well as by shielding from infection the seminal vesicles and
epididymis; the latter organs are 100,000-fold less prone to cancer than the prostate, despite similar
vulnerability to infection [96], reliance on innate immune responses [97], and DNA damage han-
dling [95]. The hallmark androgen-inducibility of TMPRSS2 implies that a symbiotic balance between
host defense optimisation and inflammation moderation could be most needed in the prostate, where
androgen-driven sexual activity predisposes to microbial, xenobiotic or other pro-inflammatory expo-
sures. The importance of this balance is suggested by an association of defective interferon-dependent
functioning with prostate cancer risk in male cohorts with high numbers of lifetime sexual partners
[98]. The gene of interest in this respect, IFNL4, plays a counterintuitive pro-viral anti-inflammatory
role [99], reminiscent in this respect of TMPRSS2.

The pathogenetic importance of the endosomal pathway in the prostate is further supported by the
finding that NADPH oxidase (NOX) proteins generating oxidant DNA damage are overexpressed in the
endosomal compartments of prostate cancers [100]. Conversely, downregulation of tumor-promoting
androgenic signaling occurs via endosomal/lysosomal degradation of androgen receptors induced
by the suppressor gene TSG101 [101]. Hence, for prostate cancers which have progressed beyond
early hormone-dependent growth, endosome-based innate immunity-mediated inflammatory positive
feedback loops now represent a rational new therapeutic target [102].
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Remarkably, the TMPRSS2:ERG fusion occurs in around 50% of primary prostate cancers, mak-
ing it one of the most consistent genetic aberrations in oncology, and in turn raising questions as
to why this chromosomal fusion is so avidly selected. The androgen response element (ARE) in
the TMPRSS2 5’-untranslated region is typically fused to the ETS-encoding ERG gene – confer-
ring androgen-inducibility on the latter, and explaining both the association of TMPRSS2:ERG with
hormone-dependent rather than castrate-resistant cancers [103], and the lack of potent transforming
activity of the fusion gene [104].

These fusions often arise from ∼2.8 mB deletions extending from the 21q22.2 ERG proto-oncogene
to the telomeric TMPRSS2 gene; as such, the deleted region usually extends from the first intron of
TMPRSS2 to the functional 3’ ERG exons [21], excluding the TMPRSS2 coding region containing and
beyond exon 2 [105]. These fusogenic deletions also tend to involve sixteen interstitial genes – some
of which have tumor-suppressor activity, loss of which leads to progression that is independent of
ERG [106] – with such deletions being commoner than fusogenic translocations in castrate-resistant
metastases [107].

Since TMPRSS2 protein translation is silenced in promoterless TMPRSS2-fused cells [1, 108]
and given that the fused/deleted protein lacks protease activity [109], the tumor-specific selection
of TMPRSS2 dysfunction is consistent with the hypothesis that this loss promotes tumor growth. The
fact that some TMPRSS2:ERG fusion transcripts encode ERG proteins which are N-truncated due to
premature stop codons [110] further implies that the selectability of these fusions could arise from
TMPRSS2 loss of function per se rather than solely from ERG gain of function. These conclusions are
also compatible with the findings that non-TMPRSS2:ERG prostate cancers are associated with auto-
catalytic TMPRSS2 processing that leads either to secretion of inactive fragments, and/or cytoplasmic
mislocalization of dysfunctional full-length proteins [10, 35, 37].

Inflammation-induced oxidant DNA damage causing loss of TMPRSS2 protective function at
the cellular level [36] predisposes at the chromosomal level to TMPRSS2:ERG fusion events
[111]. Androgen-inducible ERG expression drives prostaglandin-mediated inflammation both in
TMPRSS2:ERG-expressing prostate cancer cells [112] and tumors [113], a phenotype that is reinforced
by ERG-inducible downregulation or loss of heterologous tumor suppressor genes such as NKX3.1
[114]. This androgenic addiction cycle seems only breakable by evolution to androgen-independence
[115]. Furthermore, anti-inflammatory cytokines repress both androgen receptor (AR) and TMPRSS2
expression in prostate cancer cells [116], and TMPRSS2:ERG-expressing incident prostate cancers
occur less often in patient cohorts receiving anti-inflammatory drugs [117]. These findings imply
that downregulation of TMPRSS2 in prostatic tissues, including but not limited to those containing
TMPRSS2:ERG fusions, promotes androgen-driven prostate cancer by removing a negative constraint
on endosomally-mediated inflammation, thereby synergizing with ERG-driven inflammation [113,
118].

Long-term non-senescent (e.g., microbial) inflammation may not only select for TMPRSS2:ERG
fusions [111], but may also exacerbate prostatitis and promote evolution of androgen-dependent inva-
sive cancer [119] or progression via epithelial-mesenchymal transition [120]. Such tumorigenicity can
occur irrespective of ERG upregulation – which downregulates PTEN expression [121] – via direct
selection for TMPRSS2 dysfunction [122, 123]. This predicts that if drug inhibitors are used to block
prostatic TMPRSS2 with the aim of cancer prevention, inadvertently increasing inflammation, reduced
selection for TMPRSS2-deleted fusion genes could result – i.e., despite the fact that in the absence
of TMPRSS2 drug inhibition, inflammation selects for TMPRSS2:ERG fusions [111] – since in this
drug-treated context there is no additional tumor-selecting advantage for a translocation that abrogates
TMPRSS2 function. This reasoning predicts that TMPRSS2 protease-inhibitory drugs could reduce
short-term low-grade androgen-dependent neoplasia but at the same time predispose to high-grade
androgen-independent tumors.
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Carcinogenic inflammation in the prostate has been linked to high-fat diets [124, 125]. Dietary
estrogens have been implicated as a specific cause of tumorigenic prostatitis [75], and estradiol-
activated estrogen receptors (ER�) induce TMPRSS2 expression in extra-prostatic androgen-insensitive
tissues such as the heart [126]. In prostate cancers the tumor-promoting function of TMPRSS2:ERG
fusions appears mediated by ER� expression in basal epithelial cells, but may be repressed during early
hormone-dependent disease by ER	 splice variants [127]. Since antiandrogen treatment of prostate
cancer cells reduces TMPRSS2 expression but also transactivates ER� expression via ESR1 induction
[128], a synergistic tumor-promoting effect of ER� expression and TMPRSS2 functional loss is a
possibility. During progression to castrate-resistant prostate cancer (CRPC), non-canonical estradiol
signaling via ER	 may supervene, triggering TMPRSS2:ETV5 fusions in AR-null cells which – unlike
TMPRSS2:ERG fusions in AR-expressing cells – drive NF-κB-dependent metastasis in the absence of
innate immune signaling upregulation [129].

7. TMPRSS2 as a tumor suppressor

The heterogeneity of TMPRSS2 and ERG-like aberrations in prostate cancers [2] creates challenges
for etiopathogenetic assessment [130]. Cancer-associated fusion genes may arise via intra- or inter-
chromosomal rearrangements, with such clonal rearrangements implying tumor selection for a driver
genotype [24]; in most instances the 5’ gene sequence drives expression of the 3’ gene partner, with
‘actionable’ inhibitors of the latter gene product – or downstream targets thereof [131] – often able
to slow tumor growth [132]. Since the TMPRSS2:ERG genotype is an upregulating ARE-ERG fusion
accompanied by loss of normal TMPRSS2 function, with the latter gene contributing only untranslated
sequences to the fusion [104], data showing TMPRSS2 gene induction in such tumors [12, 18, 133]
should not be interpreted as signifying overactivity of the normal functional protein. Moreover, in
one study reporting prostate cancer-specific TMPRSS2 overexpression based on in situ hybridization,
the only TMPRSS2 gene aberration was a protease-inactivating null mutation [134]. This and other
groups also reported that prostate cancer cell progression to androgen-independence is associated with
TMPRSS2 downregulation [135].

Upregulation of a given wild-type transcript or protein in tumor tissue, unassociated with selectable
hardwired genotypes such as gene amplification, is hard to interpret, since it could imply either a primary
oncogenic driver or secondary (i.e., reactive, compensatory or suppressor) regulatory role. Relevant to
this, one study showed that TMPRSS2 expression is upregulated in a subset of tumors including not only
prostate cancer and HPV-positive cervix cancer, but also cancers of the rectum, colon and stomach; this
transcriptional upregulation was associated with promoter hypomethylation, but not with increased
TMPRSS2 copy number [136]. A further study likewise showed ACE2 transcriptional upregulation
due to promoter hypomethylation in rectal, colon and stomach tumors, as well as similar methylation-
induced downregulation in testicular and thyroid cancers [137]. Considered in the context of their
collaborative endosome-bypassing anti-inflammatory roles, these studies suggest that the previously
reported tumor-suppressive properties of ACE2 [138] may be supplemented in tandem by its membrane
partner TMPRSS2.

The ERG fusion event involving TMPRSS2 loss of function is implicated in early, but not late, pro-
static neoplasms [108]; moreover, judged by immunohistochemical expression, there is no difference
in TMPRSS2 protein expression between malignant and benign tumors [37], nor between poorly-
and well-differentiated neoplasms [22, 35]. Although these findings do not suggest a proto-oncogenic
function for TMPRSS2, support for a pro-metastatic action has been forthcoming from studies using
transformed model systems such as xenografts [22] or SV40-driven tumor-bearing TRAMP mice
[25]. In the latter study the protease inhibitor bromhexine blocked TMPRSS2 activity while also
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reducing prostate cancer metastasis in vivo; more recent research reported that bromhexine does not
inhibit TMPRSS2, however, and also noted that the TRAMP mouse study used a TMPRSS2 recom-
binant lacking the LDLRA domain [20]. Another intriguing finding of the TRAMP study was that
Tmprss2−/− mice with deletions of TMPRSS2 produced tumors over double the size of those occur-
ring in Tmprss2+/+ mice [25], suggesting a tumor-suppressor function. The lack of TMPRSS2 gene
amplification events reported in prostate tumors, as well as the reported homozygous loss of TMPRSS2
in cancer cell lines [139], further favor a suppressor role. Additional support for this interpretation
comes from the original subtractive cloning of TMPRSS2 as a gene downregulated in bone metastases
[26], as well as from frameshift loss-of-function TMPRSS2 mutations occurring in metastatic prostate
tumors [140].

These findings do not exclude the possibility that TMPRSS2 plays different roles in different contexts,
e.g., in the normal prostate, in the development of hormone-dependent invasive cancer, and/or in
progression to castrate-resistant metastatic disease. Since cancer evolution may be associated with a
gene changing its function due to epistatic effects [141] – with such genes comparable to electronic
components, the effect of which depends upon placement in a circuit [142] – it is possible that in the
metastatic context TMPRSS2, either independently or via interaction with other TTSPs [109], could
drive tumor dissemination by a path involving, say, proteolytic activation of pro-HGF in extracellular
matrix [22, 25]. One study supporting this hypothesis showed that a recombinant TMPRSS2 inhibitor
reduced prostate cancer cell invasion and metastasis [143]; however, the same inhibitor had earlier
been reported to inhibit invasion and metastasis of lung cancer cells [144] for which TMPRSS2 is not
a co-factor.

A key concern relating to the notion of TMPRSS2 as a tumor suppressor in the prostate is that
selection for the TMPRSS2:ERG fusion removes only one functional TMPRSS2 copy. Hence, given
that even homozygous knockouts have shown no discernible phenotype [40, 45], it is fair to ask
whether or not such a heterozygous loss could plausibly manifest as haploinsufficiency and thus
contribute to pro-inflammatory cancer progression ‘beyond ERG’, as it were [145]. We previously
reported that homozygous knockouts of caretaker tumor suppressor genes – which maintain cell and
genomic integrity, unlike gatekeeper suppressor genes which regulate apoptotic threshold and cell-
cycle traverse – generally yield viable offspring of normal phenotype but impaired male fertility
[146]. As noted earlier, male infertility as a haploinsufficient phenotype of TMPRSS2 loss could well
be conditional on thresholds for sterility-inducing testicular inflammation, such as may vary with
epidemic viral orchitis or ACE2 hypofunction. The high frequency of TMPRSS2:ERG fusion events in
prostate cancer mirrors this conditionality by creating the precise circumstances needed to unmask the
modest 50% decline in TMPRSS2 function predicted by protein alone; for this 20–100-fold androgen-
driven ERG fusion/upregulation event [147] induces exactly the prostaglandin- [112, 148] and innate
immunity-mediated inflammatory insults [79, 102] that wild-type TMPRSS2 ameliorates both in lung
infections [149] and in the prostate [80, 116]. Hence, in this context the TMPRSS2:ERG gene fusion
represents the perfect gene imbalance to reveal TMPRSS2 haploinsufficiency [46]. Similarly, an ideal
environment to promote selection for TMPRSS2 dysfunction (i.e., such as could in due course undergo
fixation as a TMPRSS2:ERG fusion) would be prostatitis of a subtype that is usually controllable by
TMPRSS2 transcriptional upregulation alone, but which in severe or prolonged cases stochastically or
stoichiometrically overwhelms normal capacity (Table 2).

A limitation of this model is that there is as yet no definitive evidence whether the putative TMPRSS2
molecular targets in the normal prostate – involving either proteolytic or non-proteolytic interactions
– are microbial antigens [120, 150], inflammation-associated molecules [151], or tumor neoantigens
[152]. Further work is needed for elucidation, including controlled comparisons of null vs. SP-only
TMPRSS2 knockout mice under stressed conditions, such as microbial infections, short- and long-term
inflammation, and/or high testosterone levels.
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Table 2

Genetic or environmental variables that could unmask TMPRSS2 haploinsufficiency2

Genotype: TMPRSS2 loss Conditional haploinsufficiency

Genetic Environmental

Phenotype:
Male infertility ACE2 loss Viral orchitis
Inflammatory prostate carcinogenesis ARE:ERG fusion Chronic prostatitis

2Based on references in the text, hypothesised polygenic or extrinsic triggers that could convert
TMPRSS2 from apparent redundancy or heterozygous haplosufficiency to conditional haploinsuffi-
ciency, with respect either to male infertility or prostate cancer development. ARE, functional 5’
androgen response element of exon-deleted TMPRSS2.

8. Conclusions

The recently recognised role of TMPRSS2 in SARS-COV-2 infection has spawned hypotheses
that antiandrogens and/or TMPRSS2 inhibitors could reduce viral infectivity. The credibility of these
hypotheses has since been supported by studies which indicate that SARS-COV-2 and other RNA
viruses have evolved their predilection for TMPRSS2-mediated cell entry as a way of evading the
host’s innate immune inflammatory reactions, thus enhancing viral infectivity. Clinical trials will soon
assess the utility of targeted drug antagonists in this disease setting.

The notably high frequency of fusions between the TMPRSS2 and ERG genes in early hormone-
dependent prostate cancers has likewise suggested that one or both of these gene products could be
useful anticancer drug targets. However, data confirming a targetable driver role for TMPRSS2 in
the setting of primary prostate cancer – this being the clinical context in which TMPRSS2:ERG gene
fusions are most relevant – remain weak. In contrast, there is growing albeit still circumstantial evidence
as to a role for wild-type TMPRSS2 in moderating the infertility and/or neoplastic consequences of
uncontrolled inflammation in the testis and/or prostate. Since worsening of inflammatory damage could
be counterproductive, caution remains appropriate for applying TMPRSS2 inhibition to the preventive
or early cancer treatment settings.
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