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Retinal disease in ciliopathies:
Recent advances with a focus on stem
cell-based therapies
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Abstract. Ciliopathies display extensive genetic and clinical heterogeneity, varying in severity, age of onset, disease progres-
sion and organ systems affected. Retinal involvement, as demonstrated by photoreceptor dysfunction or death, is a highly
penetrant phenotype among a vast majority of ciliopathies. Photoreceptor cells possess a specialized and modified sensory
cilium with membrane discs where efficient photon capture and ensuing signaling cascade initiate the visual process. Dis-
ruptions of cilia biogenesis and protein transport lead to impairment of photoreceptor function and eventually degeneration.
Despite advances in elucidation of ciliogenesis and photoreceptor cilia defects, we have limited understanding of pathogenic
mechanisms underlying retinal phenotype(s) observed in human ciliopathies. Patient-derived induced pluripotent stem cell
(iPSC)-based approaches offer a unique opportunity to complement studies with model organisms and examine cilia disease
relevant to humans. Three-dimensional retinal organoids from iPSC lines feature laminated cytoarchitecture, apical-basal
polarity and emergence of a ciliary structure, thereby permitting pathogenic modeling of human photoreceptors in vitro.
Here, we review the biology of photoreceptor cilia and associated defects and discuss recent progress in evolving treatment
modalities, especially using patient-derived iPSCs, for retinal ciliopathies.
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1. Introduction

Ciliopathies encompass a broad group of genetically and phenotypically diverse diseases, caused by
mutations in almost 200 genes that contribute to cilia biogenesis and transport [1–4]. The cilium is an
intricately-structured organelle that protrudes from the extracellular surface of most mammalian cells.
Since the first documentations by Otto Frederik Muller in 1768 and long thought to be vestigial, the
cilia are now recognized to have a prominent role in cell physiology [5–7]. The cilia perform divergent
tasks in mechanical processes, such as cerebrospinal fluid flow as motile cilia, or in signal transduction
in response to environmental cues as in case of non-motile primary (sensory) cilia. Significant progress
has been made to further characterize cilia structure, particularly through the application of advanced
techniques and the use of animal models, to better define cilia function in the normal and diseased states
[8, 9]. Nonetheless, unravelling clinical manifestations of ciliopathies [10, 11] have been complicated,
particularly because of disparate syndromic and non-syndromic phenotypes, affecting different tissues
and cell types, by distinct mutations even in a single gene.
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Retinal degeneration is a frequently-observed clinical entity in ciliopathies, mainly caused by dys-
function of proteins involved in biogenesis, function, or maintenance of photoreceptor primary cilium
[12–15]. As an easily accessible tissue and immune privileged site, the retina is an ideal tissue to
investigate molecular and cellular pathways implicated in ciliopathies and evaluate novel treatment
modalities [16–18]. Application of model organisms to investigate pathophysiology of retinal cil-
iopathies has greatly advanced our understanding and provided valuable proof-of-concept evidence
to evaluate therapeutics [5, 19–21]. However, model organisms do not faithfully recapitulate many
characteristics of human pathophysiology, such as clinical progression, and a key challenge for devel-
oping treatments has been to robustly replicate the retinal photoreceptor-associated manifestations of
ciliopathies. Human pluripotent stem cells (PSCs) provide a valuable resource for generating specific
somatic cell types. Advent of induced pluripotent stem cell (iPSC) technology [22] and differentiation
systems have made it possible to examine the relationship of specific mutations with disease pheno-
types. Three-dimensional (3-D) retinal organoids derived from PSCs [23, 24] can effectively mimic in
vivo development and are a powerful complementary platform to model retinal degeneration caused
by ciliary gene defects, interrogate pathogenic mechanisms in vitro using patient-derived cells, and
develop relevant treatment strategies.

Retinal ciliopathies are an active area of research since almost 25% of all retinal degeneration are
caused by genes associated with photoreceptor cilia structure and/or function [14, 25, 26]. In this review,
we provide a brief overview of photoreceptor cilia biology and retinal ciliopathies but have attempted
to cite as many relevant references and reviews as possible. We then illustrate recent advances in
stem cell-based technologies pertaining to retinal organoids and discuss their applications in modeling
human retinal ciliopathies for translational therapeutics.

2. Photoreceptor cilia

2.1. Structure

Primary cilia are extracellular microtubule-based protrusions present in almost every quiescent
mammalian cell and serve as cellular antenna to execute crucial roles in response to exogenous cues
including light, mechanical stimulation and morphogens [7, 15, 27]. The cilium exhibits a complex
structure with extensive multiprotein assemblies, originating from the basal body, which, similar to
other cells, serves as the primary microtubule organizing center in photoreceptors. The basal body,
analogous to the centrioles, possesses a specialized structural organization comprising of 9-fold sym-
metry of microtubule arrays. The microtubule organization of the cilium changes from triplets at the
basal body to a doublet structure in the transition zone and the axoneme, becoming singlet near the tip.
The transition zone contains additional Y-linkers that connect the doublet microtubules to the ciliary
membrane. The distal and subdistal appendages are required for docking the basal body to the cellular
membrane and to facilitate the transport of cargo proteins [4]. The ciliary axoneme is constructed and
maintained by intraflagellar transport (IFT) [5, 28]. IFT proteins form an intricate network and interact
with numerous proteins to regulate ciliary length, composition and cargo trafficking [4, 29, 30]. The
IFT process involves IFT complex B, including kinesin motor proteins, to transfer proteins from the
ciliary base to the tip (anterograde transport) and IFT complex A for moving cargos from the tip down
to the base via dynein motor proteins by retrograde transport [31]. The trafficking of ciliary cargo
proteins, including building blocks of the axoneme (e.g., � and � tubulin) and signaling molecules
associated with multiple pathways (such as Sonic Hedgehog, Wnt and Notch), are crucial for cellular
functions [32].
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2.2. Ciliogenesis

In post-mitotic cells such as photoreceptors, apical anchoring of the mother centriole with distal
appendages assembles the basal body [33, 34]. During early ciliogenesis, dynamic remodeling occurs at
the distal appendages of the basal body by docking and fusion of membrane vesicles to produce a larger
ciliary vesicle, which in turn leads to uncapping by removal of the negative regulators of ciliogenesis
such as CP110 [34]. Interestingly, CP110 also promotes proper docking of the ciliary vesicles as
well as the assembly of subdistal appendages [35]. Subsequent accumulation and complex assemblies
of the transition zone facilitated by IFT proteins lead to elongation of the axonemal microtubules,
and eventually the emergence of ciliary axoneme through the cell membrane [36–40]. Photoreceptor
cilia biogenesis and function may require over 1000 proteins [41]; defects in several of these have
been associated with blindness in Leber congenital amaurosis (LCA), Bardet Biedl Syndrome (BBS),
nephronophthisis (NPHP) and other cilioapthies.

2.3. The transition zone

The specialized region between the basal body and the ciliary axoneme is called the transition zone,
which serves as a gate to control the entry to and the exit from the ciliary shaft [30, 42] (Fig. 1).
In photoreceptors, the formation of outer segment (OS) membrane discs (see below, section 2.4) is
initiated just distal to the transition zone (also called connecting cilium). Given its unique placement,
the transition zone proteins exhibit complex interaction dynamics with other cilia associated proteins
(see, for example, the mutant phenotype modifications reflected by CEP290 and BBS alleles [43, 44].

2.4. The outer segment

The primary cilium of the retinal photoreceptor is modified to maximize photon capture and facilitate
phototransduction [45] to become a unique and highly specialized structure, called OS, which are
densely packed with hundreds of membranous discs that are highly enriched with proteins essential
for phototransduction (Fig. 1A). The two types of photoreceptors, rods and cones, exhibit distinct
OS features, reflecting their respective contributions to dim-light and day-light vision. The rod OS
discs are separated from the ciliary membrane and are typically more elongated in contrast to cone
cells, which possess a shorter, wider OS tapered towards the tip and features discs continuous with
the plasma membrane [46–48]. Due to their similarities in initiating the visual process, rods and cones
express numerous common proteins for maintaining their OS integrity and function; however, several
rod- and cone-specific versions of proteins are tailored towards the requirement of each photoreceptor
type. Another unique feature of this modified cilium is the high rate of OS disc renewal; 8–10% of the
membrane discs at the distal end are shed and engulfed by retinal pigment epithelium daily, with new
discs formed at the cilia base to compensate for the loss and maintain OS homeostasis [49]. The OS
renewal process involves ciliary transport, which is critical for photoreceptor survival.

2.5. Phototransduction

The photoreceptor cilia, like other primary cilia, perform sensory function and capture visual infor-
mation via the visual pigment (rhodopsin in rods and opsin of distinct wavelength excitation in different
cone subtypes), which constitutes over 90% of the protein in membrane discs [50] (Fig. 1). The light
(photon) leads to photoisomerization of the chromophore 11-cis retinal to all-trans retinal and triggers
a conformational change within the opsin protein, which in turn activates the G-protein transducin
leading to the dissociation of subunit G� from �� [51]. cGMP phosphodiesterase is then activated and
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Fig. 1. Schematic of the rod photoreceptor primary cilium. (A) The rod primary cilium is highly adapted to efficiently
capture photons of light that initiate the phototransduction cascade through rhodopsin GPCR activation (in the photoreceptor
outer segment) and facilitate the transportation of proteins involved cilia maintenance, structure and function from the inner
segment to the outer segment (photoreceptor connecting cilium). The photoreceptor inner segment is crucial for photoreceptor
proteins and lipid synthesis. (B) Within the inner segment, vesicles containing cargo proteins are transported from the Golgi
apparatus to the basal body via small Rab GTPases together with proteins involved in trafficking cargo to the cilia (e.g.,
TULP1). The basal body is formed of the mother centriole and daughter centriole, the mother centriole docks onto the apical
photoreceptor cell membrane to supports ciliogenesis and axoneme development. The basal body also contains additional
structural elements, including distal appendages, with subdistal appendages and associated proteins (e.g., CC2D2A) to
support vesicular transportation.The BBSome complex, including a number of BBS proteins, and multiprotein complexes in
the pericentriolar material play critical functions in ciliogenesis and ciliary trafficking. Cargo transport to the outer segment is
further regulated by proteins within the photoreceptor connecting cilium, such as CEP290 and NPHP proteins. Other proteins,
such as prominin-1 (PROM1), peripherin (PRPH2), RP1 and RP1L1 regulate more structural components of the cilia, such
as outer segment disk stacking and organization. Proteins are transported along the axoneme within the photoreceptor outer
segment through anterograde and retrograde transportation, involving kinesin and dynein motor proteins, respectively. IFT
particles help to support the protein transportation along the axoneme.

catalyzes the hydrolysis of cGMP to GMP, resulting in the closure of cyclic-nucleotide-gated (CNG)
channels on the plasma membrane. Thus, unlike other neurons, the photoreceptor is hyperpolarized
in response to light and signals are transmitted to interneurons by modulation of neurotransmitter
release. Termination of phototransduction is initiated in part by reduced influx, and consequently
lower intracellular Ca2+ levels due to the closure of CNG channels. At low Ca2+, guanylyl cyclase
activating proteins activate guanylyl cyclase to promote cGMP synthesis and restore its levels to reopen
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CNG channels. The termination process also requires inactivation of rhodopsin by phosphorylation
and binding of arrestin. The movement of transducing and arrestin along the cilium in response to
visual pigment activation and subsequent regeneration process is critical for phototransduction and
consequently vision.

3. Retinal disease in ciliopathies

Depending on the gene function, the mutation type, the location of mutation within a gene, and/or
other genetic modifiers, ciliopathies comprise a broad spectrum of clinical entities that affect cilio-
genesis and ciliary function [4, 10]. Functional defects when confined primarily to the photoreceptor
cilia result in non-syndromic ciliopathies [14, 25, 26](RetNet, http://sph.uth.edu/retnet), such as LCA
and retinitis pigmentosa (RP), with occasional manifestation of ciliary dysfunction in other cell types
[52–54]. LCA is a severe, early onset retinal disease with mutations identified in at least 20 different
genes; of these, CEP290 is the most common LCA gene, accounting for 20–25% of disease [55, 56].
RP is the most common form of inherited retinal dystrophy caused by mutations in almost 50 distinct
genes; mutations in RPGR are a major cause of X-linked forms of RP [57–60] and account for a sig-
nificant proportion of simplex male RP patients [61]. Photoreceptor cilia disease also manifests as part
of a broad range of syndromic ciliopathies with involvement of multiple cell types and tissues; these
include BBS, Senior Loken syndrome, Joubert syndrome (JBTS), and Alstrom syndrome (Table 1)
[13, 14, 16, 26, 62]. Most ciliopathies affect cilia function by disrupting key steps in photoreceptor
cilia biogenesis or transport.

Defects in early stages of cilia formation can also lead to severe clinical manifestations. For example,
mutations in CC2D2A which encodes a subdistal appendage protein associated with vesicular transport
[63, 64] (Fig. 1B) can cause divergent phenotypes including JBTS and Meckel syndrome (MKS)
[65–67], with the latter being the most severe form of ciliopathy. Genetic mutations that influence
transition zone structure or function are a prominent cause of ciliopathies with divergent clinical
spectrum from the least severe form in LCA to early lethality in MKS [4]. Photoreceptor dysfunction
and death are commonly observed in ciliopathies caused by mutations in transition zone proteins [14,
68]. In addition, unique to photoreceptors, disruptions in the formation and/or daily renewal of OS
membrane discs, requiring transport of large amounts of nascent macromolecules to the cilia, can also
result in photoreceptor dysfunction or death. For example, the tubby family proteins serve as adapters
for ciliary trafficking [69, 70]; specifically, Tulp1 (tubby-like protein 1) is implicated in rhodopsin
transport to OS and is essential for rod function [71] (Fig. 1B). Mutations in TULP1 lead to RP [72]
and LCA [73].

Given the genetic diversity and functional complexities associated with retinal ciliopathies, we
will focus on two transition zone proteins – CEP290 and RPGR. Genetic defects in numerous
cilia-associated CEP290 and RPGR interacting proteins also cause retinal degeneration [13, 14].
However, mutations in CEP290 and RPGR constitute a major cause of LCA and RP phenotypes,
respectively (https://sph.uth.edu/retnet/), and these proteins have been investigated extensively in the
photoreceptors.

3.1. CEP290 and ciliopathies including retinal disease

The 290-kDa centrosome-cilia protein CEP290 tethers microtubules in the transition zone to the
ciliary membrane, where it interacts with multiple ciliary proteins, including NPHP and BBS proteins,
and is proposed to be a gatekeeper of ciliary protein transport [74] (Fig. 1B). CEP290 protein includes
multiple distinct domains that can interact with numerous ciliary proteins [13]. In photoreceptors,

http://sph.uth.edu/retnet
https://sph.uth.edu/retnet/
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Table 1
Ciliopathies featuring retinal degeneration, including associated gene mutations and clinical phenotypes (Based
on Retnet http://sph.uth.edu/retnet, and National Library of Medicine Genetics Home Reference: https://

ghr.nlm.nih.gov/resources#databases)

Selected ciliopathies Associated gene mutation Major phenotypes

Leber Congenital Amaurosis (LCA) CEP290, GUCY2D, RPE65, AIPL1, SPATA7,
RPGRIP1, CRX, LCA5, NMNAT1, RD3,
LRAT, IMPDH1, RDH12, TULP1, MYO7A,
NPHP5, ALMS1, CNGA3, CABP4, GDF6,
KCNJ13, CRB1, NPHP4, NPHP1, NPHP5,
NPHP3, CC2D2A, DTHD1, AHI1, GDF6,
NPHP2, INPP5E, TMEM216, CCT2,
POC1B, OTX2, RDH12, IFT140, CLUAP1,
AIPL1

Retinal degeneration (rod and cone
degeneration)

Retinitis Pigmentosa (RP) RP1, RP2, RP9, RPE65, RPGR, ABCA4,
BEST1, CA4, ZNF513, WDR19, USH2A,
TULP1, CERKL, CLRN1, CNGA1, CRX,
TTC8, TOPROS, SPATA7, CNGB1, CRB1,
CRX, EYS, FAM161A, SNRNP200,
SEMA4A, SAG, ROM1, RLBP1, RHO,
RGR, FSCN2, GUCA1B, IDH3B, IMPDH1,
IMPG2, KLHL7, LRAT, RDH12, RBP3,
PRPH2, PRPF31, MERTK, MT-TS2,
NR2E3, NRL, PCARE, PRPF8, PRPF3,
PROM1, PRCD, PDE6 G, PDE6B, PDE6A

Retinal degeneration (primarily
rod degeneration)

Senoir Loken Syndrome (SLS) NPHP1, 2 (INVS), 3, 4, 5 (IQCB1), 6
(CEP290), 7 (GLIS2), 8 (NEK8), 13
(WDR19)

Retinal degeneration,
nephronophthisis

Bardet Biedl Syndrome (BBS) BBS1, 2, 3 (ARL6), 4, 5, 6 (MKKS), 7, 8
(TTC8), 9, 10, 11 (TRIM32), 12, 13
(MKS1), 14 (CEP290), 15 (WDPCP), 16
(SDCCAG8), 17 (LZTFL1), 18 (BBIP1), 19
(ITF27), 20 (ITF172), 21 (C8orf37),
NPHP1, CEP19

Retinal degeneration, obesity,
polycystic kidney disease,
polydactyly, cognitive impairment,
hypogonadism, anosmia

Joubert Syndrome (JBTS) MKS1, 2, 3, 4, 5, 6, NPHP1, TMEM237,
CC2D2A, AHI1, CSPP1, INPP5E,
TMEM216, CEP290, POC1B, ZNF423,
RPGRIP1 L, TMEM67, ARL13B, TCTN1,
TCTN2, TCTN3, TMEM231, C5orf42,
CEP41, KIF7

Retinal degeneration, polycystic
kidney disease, polydactyly,
cognitive impairment, brain
development abnormalities,
muscle hypotonia, ataxia

Meckel Syndrome (MSK) TMEM216, TMEM67, RPGRIPL, MKS1,
CEP290, CC2D2A, B9D1, B9D2, WDPCP,
CSPP1

Retinal degeneration,
encephalocele, polydactyly,
polycystic kidney disease,
cognitive impairment

Jeune Syndrome IFT80, WDR19, IFT140, IFT172 Retinal degeneration, polydactyly,
abnormal bone growth

Alstrom Syndrome (AS) ALMS1 Retinal degeneration, hearing loss,
dilated cardiomyopathy, obesity,
acanthosis nigricans

http://sph.uth.edu/retnet
https://ghr.nlm.nih.gov/resources#databases
https://ghr.nlm.nih.gov/resources#databases
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CEP290 is precisely localized in Y-linkers of the transition zone [75]. CEP290 mutations have been
associated with most ciliopathy phenotypes [76, 77]. In case of LCA, mutations in CEP290 account for
20–25% of all patients [78, 79]. Most CEP290-LCA patients also exhibit additional sensory deficits
[53]. How different CEP290 mutations contribute to a broad spectrum of human ciliopathies is still
poorly understood though mouse models have begun to provide some insights [75, 80].

The rd16 mouse carries an in-frame deletion in the myosin tail of Cep290 and phenocopies the human
CEP290-LCA phenotype [81], demonstrating early-onset retinal degeneration, failure to develop outer
segments and mis-localization of rhodopsin and RPGR [81, 82]. However, CEP290-LCA patients
typically retain cone cell bodies in the macular region even at an advanced age; therefore, rd16/Nrl−/−

mice represent a better model for the disease by recapitulating extended survival of dysfunctional cone
photoreceptors [83]. The ciliary defects can partially be replicated in vitro, as demonstrated by studies
using CEP290-LCA patient fibroblasts and iPSCs, which exhibit lower CEP290 expression, shorter
ciliary length and/or less ciliated cells upon serum starvation [84–87].

3.2. RPGR and non-syndromic retinal ciliopathies

The RPGR protein is localized to photoreceptor transition zone [88] and interacts with CEP290
[81] and multiple centrosome-cilia proteins [89] (Fig. 1B). The retina of Rpgr-knockout mouse shows
normal development, but eventually the mislocalization of opsins within the photoreceptor cells results
in progressive degeneration at later stages [90]. The rd9 mouse model of RPGR-disease harbors a
frameshift mutation and demonstrates a similar rate of photoreceptor degeneration [91]. Two RP dog
models exhibit frameshift deletions in RPGR, with the XLPRA1 model resembling Rpgr-knockout
mouse and the XLPRA2 model showing somewhat rapid photoreceptor degeneration [92, 93]. Despite
extensive studies, we still have poor understanding of the precise ciliary role of the RPGR protein and
pathogenesis of RPGR disease [60].

4. Stem cell–based modeling of retinal ciliopathies

Model organisms have provided invaluable insights in unravelling pathogenesis of retinal ciliopathies
(Fig. 2). Studies in Chlamydomonas reinhardtii, Tetrahymena thermophila and Caenorhabditis elegans
have permitted fundamental understanding of cilia structure and diversity [94, 95], ciliary proteome
[96, 97], cilia biology and compartments [74, 98, 99], and association of cilia defects to human
disease [100–102]. Xenopus [103], Zebrafish [104] and mice [20, 105] (https://www.jax.org/) have
also been extensively employed for investigating cilia function and ciliopathies, due to their easy
and inexpensive management in a laboratory environment and availability of genetic mutants. The
findings across multiple models have untangled complex aspects of ciliogenesis and ciliopathies,
including the role of CEP290 and other transition zone proteins in regulating cargo proteins into the
cilium [74, 81, 83, 99, 106]. However, many human disease-associated phenotypes are not faithfully
replicated in model organisms; e.g., in case of Usher syndrome, the Myo7a knockout mouse model
fails to present retinal degeneration [107, 108]. Notably, a number of common ciliopathy-causing
mutations are specific to humans, whereby human cells adopt unique mechanisms to largely preserve
the functions of mutated proteins, such as nonsense-mediated alternative splicing in CEP290-LCA
[109, 110]. Hence, underlying mechanisms of human pathology remain largely unclear for retinal
ciliopathies and development of useful therapies is still in infancy.

One complementary approach to model organisms is to use patient-derived cell lines, which can
allow evaluation of cilia phenotypes in relevant human genetic background [85–87]. Fortunately,
terminally-differentiated somatic cells from patients can now be reprogrammed to iPSCs with the

https://www.jax.org/
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Fig. 2. Modeling human retinal ciliopathies using model organisms (such as mice), human-derived somatic cells, and human
iPSC-derived retinal organoids.

capacity of self-renewal and differentiation into three germ layers by delivery of Yamanaka factors
[111]. Patient iPSC lines have been successfully used to produce photoreceptors in 2-D culture and in
3-D retinal organoids [23, 112–116], thereby presenting a more relevant platform for understanding
genotype-phenotype relationship in retinal ciliopathies and for developing therapies for human disease
(Fig. 2).

4.1. Photoreceptor differentiation and disease modeling using stem cells

Early efforts to generate photoreceptors and retinal cells from embryonic stem cells relied on the use
of co-culturing systems with mouse retina [117] or using telencephalic serum-free floating culture of
embryoid body-like aggregates systems [118] in order to induce forebrain cell fate before promoting
retinal differentiation. These systems modulate key growth signaling pathways involved in driving
early neural differentiation, such as Wnt (Dickkopf-1), Nodal (LeftyA), early retinal differentiation
(TGF� (activin A), Noggin, IGF-1) and photoreceptor generation (retinoic acid, Shh, Notch (DAPT),
FGF), in addition to adjusting medium compositions, serum content and basal lamina components [112,
119–121]. These 2-D adherent methods have been used to generate photoreceptor cells from patient
iPSCs in order to characterize the RP disease phenotype caused by photoreceptor cilia/OS genes such
as RP1, PRPH2 and RHO [122]. In addition to providing initial insights into disease mechanisms, these
adherent cultures are also relatively easy to scale up, suggesting their use in high throughput screening
of small molecules to develop new therapies. Although patient-derived photoreceptors can reveal
disease-associated phenotypes, 2-D iPSC-derived retinal cultures do not replicate cell-cell and cell-
matrix interactions that are critical for organogenesis [123], and even more importantly, photoreceptors
in 2-D culture lack cell polarity, making them less desirable for studying ciliogenesis in vitro.

With the advances in 3-D culture system, aggregates of stem cells can self-organize into retinal
organoids, forming optic vesicles or optic cups, with major cell types self-patterning into a polarized,
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laminated cytoarchitecture highly reminiscent of the human retina in vivo [23, 24, 124–126]. Further
improvements in retinal organoid cultures are reported to facilitate the emergence of a rudimentary
outer segment-like structure [126, 127], possible light-sensitive properties [24] and response to cGMP
and GABA stimulation [128], suggesting at least partial maturation and functioning of photoreceptor
cells. The human stem cell-derived retinal organoids are now being used to model LCA and RP
[86, 87, 129, 130]. Here, we will highlight the progress in using 3-D retinal organoids for modeling
CEP290-LCA and RPGR-RP disease.

4.2. Modeling LCA and RP disease in retinal organoids

A deep intronic mutation identified in most CEP290-LCA patients was one of the first retinal
degenerations to be modeled using 3-D retinal organoids; in this case, patient iPSC-derived photore-
ceptors demonstrated reduced cilia length and mis-localization of ciliary proteins [86]. Notably, patient
iPSC-derived photoreceptors also demonstrated a high level of aberrant splicing compared to patient
fibroblast and iPSC-derived RPE cells, suggesting tissue-specific splicing can have a direct effect on
the phenotype presentation [86]. The tissue-specific disease-associated phenotypes were also observed
in another study using CEP290-LCA cells, where ciliary defects were detected in patient iPSC-derived
organoid photoreceptors but not in patient fibroblasts, further illustrating the value of retinal organoids
in disease modeling [87]. Similarly, cilia defects in photoreceptors, such as abnormal cell morphol-
ogy with shorter outer segments and opsin mis-localization have also been demonstrated in RPGR
patient-derived retinal organoids [129]. This study also included the use of RNA-seq to show reduced
levels of opsin gene expression in RP patient organoids compared to the control organoids [129]. A
transcriptomic approach was also applied to PRPF31-RP patient iPSC-derived photoreceptors, which
revealed defects in splicing, cilia biogenesis and phototransduction [130].

4.3. Limitations of current organoid cultures

Despite exciting advances, several limitations exist in the current 3-D organoid culture systems.
First, although the neural retina in organoids structurally recapitulates in vivo human development, it
is unclear whether similar cellular machineries are involved in vivo and in vitro. With the availability
of human fetal transcriptome data [131], a comparison of developing organoid transcriptomes to the
in vivo developing retina would be helpful and yield valuable insights. Second, retinal development in
human organoids requires as many as 200 days to achieve photoreceptor maturation which includes the
formation of inner segment, CC and rudimentary OS structures, making it expensive, labor intensive
and difficult to use for routine screening of potential therapies. Initial bioreactor works demonstrate
that efficient exchange of nutrients and waste might facilitate a more rapid differentiation of retinal
organoids [132, 133]. However, due to the positioning of photoreceptor cilia to the exterior in human
organoids, the developed cilia are vulnerable to shear force or mechanical damage in the bioreactor.
Development of new types of bioreactors or incorporation of extracellular matrix to protect the cilia may
facilitate human organoid culture in bioreactors [134]. Third, in vitro differentiation system for human
organoids exhibits high variability because of different protocols, reagent batches, iPSC clones, and
clonal variations, contributing to non-disease-associated phenotypes and false interpretation of data.
Observed abnormalities in organoids must be concordant with natural history of disease pathogenesis
in humans and caused by the targeted mutations and not by organoid culture variability. Though time-
and resource-intensive, the use of different clones from the same patient or different patients with same
mutations to perform multiple experiments is recommended to confirm disease-causing phenotypes in
organoids. Fourth, as elaborated previously, the photoreceptor primary cilium features a more intricate
sensory structure with OS membrane discs that are not present in cilia of other cell types. Transmission
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electron microscopy studies do not reveal long cilia and OS disc formation in the retinal organoids
[24, 126, 127, 129]. This could be due to the lack of additional exogenous cues, such as those provided
by the retinal pigment epithelium, which is needed for OS disc morphogenesis in vivo [135]. This
limitation greatly hinders the application of organoid cultures to model retinal ciliopathies. Nonetheless,
retinal organoids derived from patients with mutations in transition zone proteins display disease-
relevant phenotypes and thus provide valuable experimental platform to investigate pathophysiology
of ciliopathies and evaluation of treatments. As the field continues to advance, we believe these systems
will impart greater insight into the pathology of retinal ciliopathies.

5. Development of stem cell-based therapies for retinal ciliopathies

Given that the retina is readily accessible, the subretinal space and the intravitreal cavity offer
convenient conduits for delivery of drugs, genes or cells for evaluation of therapies. We will now discuss
the use of stem cell-derived retinal organoid cultures as a renewable cell source for photoreceptor
replacement or as a platform to assess small molecule and gene-based therapies of retinal ciliopathies
(Fig. 3).

5.1. Cell replacement

Replacement of dying or dysfunctional rods and cones is a highly relevant therapeutic option as pho-
toreceptors are presynaptic and functional connections may be easier to form with the host interneurons
[136]. Notably, interneurons and ganglion cells are preserved during retinal degeneration even though
retinal remodeling can be extensive [137, 138]. The ideal outcomes of a successful photoreceptor cell
replacement therapy would include the survival and maturation of transplanted cells and formation of
functional connectivity with the host inner retina. One of the original methods used to achieve photore-
ceptor replacement involved subretinal transplantation of developing and immature transgenic mouse
(Nrl-GFP) rods [139] into mouse recipient retina, whereby the transplanted cells appear to integrate
into the host retina, allowing for partial restoration of light-sensitivity [140]. Later, cell transplantations
were conducted using mouse or human stem cell-derived photoreceptors [141–146]. However, recent

Fig. 3. Translational therapeutics using patient iPSC-derived retinal organoids. Patient fibroblasts are obtained from skin
biopsy samples and subsequently reprogramed to generate induced pluripotent stem cells (iPSCs). Retinal organoids can be
differentiated from iPSCs and applied as a cell source to replace dysfunctional or dead photoreceptors in retinal ciliopathy
patients, or as an in vitro platform to evaluate gene-based treatments or drug candidates.
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evidence suggests that the majority of transplanted photoreceptors engage in cytoplasmic material
(RNA and/or protein) transfer with host photoreceptor cells, and only a small number of donor cells
may integrate into the recipient retina depending on the host environment [147–151]. For late stage
retinal degeneration where the host photoreceptor layer has completely degenerated, transplantation of
dissociated donor cells in the host retina may still be feasible [152] using improved strategies including
enrichment of human photoreceptor cells prior to transplantation by targeting surface antigens and cell
sorting [153–155] and making use of better animal models [156].

Another strategy for replacing lost photoreceptors is to transplant retinal sheets into the degenerating
retina [157]. Proof-of-principle studies have demonstrated survival of the graft following the transplan-
tation of stem cell-derived retinal sheets into mouse or monkey models and possible interaction with
the host inner retina [158, 159]. Improvement of light response was also reported in a late stage retinal
degeneration model following transplantation of a iPSC-derived retinal sheet [160]. Transplantation of
retinal sheets maintains correct cell polarity, interaction with neighboring cells and state of differenti-
ation in the donor cells, thereby providing an advantage over dissociated photoreceptors. However, a
major problem in transplanting retinal sheets is establishment of connectivity between the donor graft
and host cells, which is required to restore visual response.

Cell replacement therapy requires further assessment of donor/host interaction, especially with
regards to cytoplasmic material transfer, and assessment of the appropriate time window for therapeutic
intervention since the outcome of grafted cell integration and functional recovery are likely related
to the type of disease, stage of disease progression, glial scar formation and/or activation of immune
responses in the recipient retina [161–164].

5.2. Drug discovery

Progress towards drug discovery for the treatment of retinal ciliopathies has been hampered by the
lack of appropriate models for high throughput screening (HTS). Proof-of-concept studies have been
performed to target disease-relevant molecular pathways using human iPSC-derived somatic cells
with promising results [165]. Stem cell-based 2-D photoreceptors and 3-D retinal organoids provide a
valuable clinically relevant resource for HTS to develop effective drugs for retinal ciliopathies [166,
167].

Previous efforts in drug development predominantly focused on target-based drug discovery (TDD),
which is based on defined molecular targets from prior knowledge of disease pathogenesis [168]. How-
ever, TDD may not be suitable for retinal ciliopathies, which harbor complex pathological phenotypes
with largely unknown disease mechanisms. An alternative approach is to employ phenotypic drug
discovery (PDD), which does not require prior knowledge of underlying mechanisms and screens for
compounds to reverse disease-associated phenotypes [169]. This approach has already been developed
and tested with kidney organoids, in which multiple organoids are cultured in a fully automated, HTS-
compatible platform for individual compounds [170]. Thus, retinal organoids can be employed for a
similar PDD screening to identify novel therapeutics for retinal ciliopathies by assessing photoreceptor
dysfunction, death or survival as final outcomes of drug application.

Several issues should be addressed to fully utilize retinal organoids for HTS. Heterogeneity of the
retinal organoids can lead to false positives or negative hits in a PDD screen. Application of multiple
organoids for a single compound might be able to compensate for the variability among organoids
and reduce false positives or negative readouts. However, human retinal organoids are not suitable for
an automated HTS platform due to their size, tissue rigidity and long time needed for differentiation.
Though mini-retinal organoids from mouse PSCs [171] have been attempted, the process is labor-
intensive and time-consuming. One possible approach is to dissociate the organoids into single cells,
which would ensure cell homogeneity for testing of compounds before isolating the desired cell type
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[166]. This however eliminates the apical-basal polarity of photoreceptors after dissociation, which is
needed to examine the pathology of retinal ciliopathies. The design of secondary assays on 3-D retinal
organoids to test positive candidate hits would be crucial to facilitate the identification of effective
drug candidates. Another downside of human retinal organoids is the long differentiation time, which
extends the treatment window and makes it difficult for HTS due to issues related to expense and media
change. An alternate strategy is to use organoids from mouse models of CEP290-LCA or RPGR-RP,
which would require a shorter differentiation period [172], for HTS and then validate promising drug
candidates using the patient-derived retinal organoids. RNA-seq analysis has been used for assessing
drug efficacy for retinal degeneration [173] and could help in identifying molecular phenotypes before
the appearance of photoreceptor cilia defects in patient organoids.

5.3. Gene-based therapies

CRISPR/Cas system can be exploited to correct the mutant gene in patient iPSCs as a proof-of-
concept approach for therapeutics; for example, correction of a RPGR mutation in patient-derived
iPSCs has been reported [129]. Photoreceptors in retinal organoids from corrected patient iPSCs
appear to show improved ciliogenesis and survival, and transcriptome analysis revealed somewhat
restored gene expression pattern. Although gene profiles from corrected photoreceptors still deviated
from the control ones raising off-target concerns, this study demonstrates the feasibility of genome-
editing-based treatment paradigms. However, as is the case for CEP290-LCA, many ciliopathies are
caused by single nucleotide mutations and the base editing efficiency by CRISPR system is far below
therapeutic needs (<10% in monolayered cell culture) in such scenarios [174].

Additional approaches are being considered as treatment modelities for retinal ciliopathies, such
as the delivery of CEP290 into patient-derived cells using lenti- or adeno-associated virus (AAV).
However, one must be cautious as overexpression of CEP290 may lead to cytotoxicity [85]. AAV
is a non-integrating virus with low immunogenicity, largely reducing the probability of insertional
mutagenesis [175], and has been a vector of choice for the retina [176, 177]. However, the packaging
limit of AAV is less than 5 kb and thus AAV can not be used for delivery of large genes such as
CEP290. Some studies propose to use AAV dual vectors which recombine in vivo but the efficiency
and feasibility remain uncertain [178]. As different domains of CEP290 have relatively diverse and
independent functions [84], a recent study innovatively delivered a small region of CEP290 into rd16
mouse to complement the in-frame deletion in the myosin tail and largely restore structure and function
of photoreceptors [179]. However, LCA-associated mutations are distributed throughout CEP290 and
cause disease pathogenesis probably through different mechanisms. Evaluation of discrete CEP290
domains to rescue photoreceptor ciliogenesis in different patient-derived retinal organoids, though
labor intensive, could provide useful information for designing AAV-based gene therapies.

Over 80% of CEP290-LCA patients carry at least one copy of IVS26 + 1665A>G mutation, which
leads to aberrant alternative splicing and subsequent inclusion of a cryptic exon with premature stop
codon [110]. Thus, a possible therapeutic approach can be to target disease-causing splicing in patient
cells/organoids using antisense oligonucleotides (AONs) [86, 180]. AON therapeutic strategy is shown
to be effective in CEP290-LCA fibroblasts and more disease-relevant patient iPSC-derived photore-
ceptors, where aberrant CEP290 splicing is corrected and ciliary defects are rescued [86, 181, 182].

6. Conclusions

Biogenesis of photoreceptor modified cilium, including the OS membrane discs, relies on complex
interactions of hundreds of proteins and dozens of multiprotein complexes. The phenotypes of retinal
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ciliopathies are determined by specific disease-causing mutations and by modifying factors including
variations in interacting genes. Model organisms have contributed greatly to our fundamental under-
standing of ciliogenesis and retinal biology. More recently, patient-derived iPSCs have been used to
complement animal models by in vitro generation of photoreceptors and retinal organoids to investigate
disease-relevant cilia defects and design of therapies. Rapid advances of human iPSC-based approaches
provide a real opportunity to interrogate genotype-phenotype relationships, high throughput screening
of small molecules, and evaluation of personalized mutation-based treatments. Stem cell-based in vitro
modeling and therapeutics of retinal ciliopathies are still in its infancy. We, however, are confident
that better understanding of human retina development and advances in bioengineering platforms for
retinal organoids would overcome current barriers for stem cell-based design of therapies for retinal
ciliopathies.
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