Enid Gilbert-Barness^{a,b} and Philip M. Farrell^{c,d,*}

^aDepartment of Pathology, Cell Biology, Pediatrics and Obstetrics and Gynecology, Tampa General Hospital, University of South Florida Morsani College of Medicine, Tampa, FL, USA

^bPathology and Laboratory Medicine, Distinguished Medical Alumni Professor Emeritus, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA

^cDepartment of Pediatrics and Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA

^dDepartment of Pediatrics, University of South Florida Morsani College of Medicine, Tampa General Hospital, Tampa, FL, USA

Abstract. Inborn errors of metabolism are generally categorized as rare diseases. Their presentations are often so subtle and insidious as to cause daunting diagnostic challenges for even the most astute clinicians. Thus, irreversible morbidity and preventable mortality have been unavoidable until recent decades because of delayed diagnoses. This unfortunate circumstance has led to newborn screening programs worldwide for 40 or more hereditary metabolic disorders beginning with the dramatic improvements for patients with phenylketonuria in the 1960's. Increasingly sophisticated testing procedures such as tandem mass spectrometry and other multiplex technologies applied to dried blood spot specimens are now having greater impact without raising costs significantly. The advent of next generation sequencing methods is likely to stimulate further progress and lead to whole genome or exome sequencing as prenatal and neonatal screening expands further. With early diagnosis through screening and expedited therapies better outcomes are routinely possible, and even preventive therapies amounting to "cures" can be anticipated through research.

Keywords: Gene, genetic mutations, inborn errors of metabolism, hyperglycemia

1. Conceptual overview

The term "inborn errors of metabolism" was first used by Sir Archibald Garrod in his Croonian Lectures in 1908 [1] and in his monograph *Inborn Errors of Metabolism* in 1909 [2]. He defined these inborn errors as genetically determined diseases caused by blocks in the metabolic pathways due to deficient activity of an enzyme [3]. From Sir Garrod's observations of patients with alkaptonuria, albinism, cystinuria, and pentosuria, he developed the concept that certain diseases of lifelong duration arise because an enzyme governing a single metabolic step is reduced in activity or missing altogether [4]. Most of these disorders may be classified as rare diseases because newborn screening data show clearly that their incidence ranges from 1:4,000 for congenital hypothyroidism to >1:250,000 (many disorders such as Maple Syrup Urine Disease (branched chain ketoaciduria).

^{*}Corresponding author: Philip M. Farrell, Departments of Pediatrics and Population Health Sciences, UW School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792, USA. Tel: +1 608 345 2308; Fax: +1 608 263 0510; E-mail: pmfarrell@wisc.edu.

The definition of an inborn error of metabolism is arbitrary. Scriver et al. [5] include several hundred diseases with definite biochemical genetic bases. McKusick's catalog [6] contains several thousand diseases and disease states whose genetic abnormalities are described or assumed. Scriver et al. [5] solved the problem of exclusivity by adding "molecular" before encompassing every disease of the "textbook of the future." The 2nd Edition of *Metabolic Diseases: Foundations of Clinical Management, Genetics, and Pathology* [7] is limited to those diseases with either: 1) recognized biochemical abnormalities supplemented with pathologic and genetic information, and in which a mutation leads to an enzyme deficiency that causes a metabolic disease such as phenylketonuria (PKU); or 2) disorders associated with known genetic mutations that have altered cellular physiology such as the chloride channel defect in cystic fibrosis or caused severe structural, cellular, or subcellular abnormalities. Emphasis in the book has been given to the more common and/or well defined hereditary biochemical hereditary biochemical disorders. Prototype conditions such as Lesch Nyhan Disease, an excellent example of a nucleotide (purine) metabolism disorder, are also emphasized.

Investigation of the molecular functions of genes has determined that they control the cellular metabolic function in the pathogenesis of disease far beyond that commonly understood as a metabolic disease. The genetics of variant human phenotypes is discussed by Scriver et al. [5] and Champion [8]. The relationship between gene and enzyme was described as "one gene, one enzyme" by Beadle and Tatum [9–11]. Tatum expanded this concept as follows: 1) all biochemical processes in all organisms are under genetic control; 2) these biochemical processes are resolvable into series of individual stepwise reactions; 3) each biochemical reaction is under the ultimate control of a different single gene; and 4) mutation of a single gene results only in an alteration in the ability of the cell to carry out a single primary chemical reaction.

Pauling et al. [12] discovered direct evidence that human mutations actually produce an alteration in the primary structure of proteins. Their seminal research revealed a value substitution for glutamic acid in sickle cell hemoglobin. Ingram [13] showed that inborn errors of metabolism were caused by mutant genes that produced abnormal proteins whose functional activities were altered.

It is estimated that some 30,000 genes constitute the human genome. A variety of genome maps are available, including some that are disease specific such as the "cancer cell map" [14]. The genome map is being constantly improved, with updated gene sequences and locations of intronic elements, revised lists of benign SNPs, additional reference genomes, databases of variant frequencies that are ethnicity-specific, and associations of specific genes with specific human diseases. In addition, combinations of genes can result in a metabolic error. Thus, although \sim 7000 hereditary metabolic disorders are currently known, at least the same number of significant genetic errors as the number of genes seems theoretically possible, and an undetermined but large percentage of these may cause biochemical disorders with clinical impact. An estimation of genetic disease frequencies is shown in Table 1.

Table 1
Estimation of genetic disease frequencies

^{• 1%} of live-born infants have monogenic disease

- 6%-8% of hospitalized children have monogenic disease
- 29%-41% of hospitalized children have gene-influenced disease
- 60% of older individuals have genetically influenced diseases, if multifactorial diseases are included
- 100% of humans carry 6-8 lethal genes
- 20%-30% of all infant deaths are due to genetic disorders
- 30%-50% of post-neonatal deaths are due to congenital malformations
- 50% of mental retardation has a genetic basis

^{• 5%} of individuals under 25 can expect to have a disease due to a genetic component

2. Diagnostic strategies and tactics

Clinical diagnosis of metabolic disease is made by specific tests, biochemical analyses, and histologic and genetic studies that are discussed by Leonard et al. [15] and Cleary et al. [16]. New methods such as next generation sequencing of genes [17, 18] and even whole genome sequencing [19, 20] are facilitating diagnoses and other goals such as genetic counseling. Clinicians seek diagnosis, effective treatment, an understanding of prognosis, and the capability to explain and counsel patients and their families. Parents and patients appreciate gaps in knowledge but may be left seriously disappointed or angry without a cure. Fortunately, our increased genetic knowledge and better understanding of molecular pathophysiology of the past two decades has led to dramatic improvements in therapies using novel methods such as small molecule modulators of defective proteins [e.g., CFTR modulators for cystic fibrosis [21], gene therapy [22], and stem cell infusions [23]]. Thus, investments in expedited diagnostic strategies such as newborn screening can pay great dividends when well targeted, highly effective therapies are available.

Identification of inborn errors of metabolism provides the basis for diagnosis, prognosis, genetic counseling, and, in an increasing number of patients, targeted treatments aimed directly at the fundamental defect. Many infants and children present as medical emergencies and life-preserving treatment is begun before a definite diagnosis is available. Diagnosis should be made rapidly and the implications and complexities of treatment explained in detail. Metabolic disease is usually not suspected in patients until more common diseases are considered. Those children with a history of consanguinity or those in families with a history of unexplained death, multiple spontaneous abortions, or previously diagnosed metabolic diseases have an increased likelihood of a metabolic disease. Frequently, children (and some adults) with metabolic diseases are first seen as critically ill patients with non-specific findings. Dehydration, acidosis, vomiting, ammonemia, hypoglycemia, or seizures must be managed aggressively. Inborn metabolic errors may be suspected if response to emergency treatment is not as expected.

Metabolic diseases can be divided into 3 main categories as listed in (Table 2). The majority of these disorders are inherited as autosomal recessive traits. Some such as Duchenne muscular dystrophy are X-linked. A few are inherited as dominant traits, and mitochondrial disorders form a genetically separate category. Mitochondrial enzymes are coded by both the maternal nuclear genome and by the mitochondrial DNA.

Clinical findings associated with metabolic diseases are listed in Table 3. It has been well recognized that symptoms may be quite variable, even in a group of patients with the same mutation. Thus, it has become clear that genetic modifiers may alter the expression of signs/symptoms and that gene-environment and nutrition-metabolism relationships can also influence the disease liability of pathologic genetic mutations.

The newborn with a severe metabolic abnormality may present with symptoms of apparent sepsis or asphyxia. These symptoms usually consist of irritability, failure to feed or suck, flaccidity, or coma. Previous miscarriages or sudden unexpected death in a sibling should trigger a screening investigation for metabolic disease. Sophisticated newborn screening using 4-5 blood spots on filter paper ["Guthrie cards" named for Robert Guthrie, the originator of population-based newborn screening with dried blood spots [24]], combined with tandem mass spectrometry as discussed by Ziadeh et al. [25] and Millington et al. [26] or molecular analyses [21] can identify a number of life-threatening diseases with a single, multiplex assay. The hereditary metabolic diseases that can now be screened for from filter paper blood spots in the newborn are listed in Table 4. Recently, severe combined immunodeficiency (SCID) has been added in many regions as well as "point of care" screening methods such as oxygen saturation measurements for critical congenital heart diseases.

Metabolic abnormalities may be suspected in infants with *hydrops fetalis* Table 3, or with placental abnormalities. Routine placental examination may disclose fetal metabolic storage disease by the

Table 2
Categories of metabolic disease (Examples)

Large Complex Molecule Diseases
Complex lipid degradation (Gaucher, Niemann-Pick, Tay-Sachs, metachromatic leukodystrophy)
Glycoprotein degradation (fucosidase and mannosidase deficiency)
Mucopolysaccharidoses (Sanfilippo and Hurler syndrome)
Lipofuscin storage disorders (Batten disease)
Glycogen storage disease type I (von Gierke disease), type II (Pompe disease), type III (debrancher deficiency)
Peroxisomal disorders (Zellweger syndrome)
Small Molecule Diseases
Amino acid metabolism disorders (phenylketonuria, maple syrup urine disease, homocystinuria, tyrosinemia)
Ammonia metabolism disorders (ornithine transcarbamylase deficiency)
Organic acid metabolism disorders (methylmalonic acidemia, propionic acidemia, isovaleric acidemia)
Monosaccharides (galactosemia, hereditary fructose intolerance)
Pyruvic and lactic acid metabolism disorders (primary lactic acidosis, mitochondrial disorders)
Fatty acid metabolism disorders (medium-chain acyl-CoA dehydrogenase deficiency)
Purines and pyrimidine metabolism disorders (Lesch-Nyhan syndrome)
Vitamin and cofactor metabolism disorders (biotinidase deficiency)
Other Diseases
Metal metabolism disorders (Wilson and Menkes disease, hemochromatosis)
Lipoprotein metabolism disorders (Abetalipoproteinemia, familial hypercholesterolemia)
Porphyrin metabolism disorders (porphyria)
Membrane transport disorders (cystinuria, cystinosis)
Intestinal disaccharidases
Collagen and connective tissue disorders (Ehlers-Danlos disease, Marfan syndrome)
Congenital adrenal hyperplasia
Hyperinsulinism

presence of vacuolations of syncytiotrophoblasts, intermediate trophoblasts, and stromal Hofbauer cells. Suspected metabolic errors in the newborn are emergencies and require prompt identification and treatment. After obtaining the appropriate specimens for testing, emergency treatment must be instituted. If the patient dies, regardless of age, preparation should be made for a metabolic disease autopsy as discussed by Ernst et al. [27].

Pregnancy may occur in patients with metabolic diseases. Some of these conditions can be teratogenic. Many such pregnancies can be successfully managed with treatment. Treatment of these disorders is discussed in each chapter.

Examples of inborn errors of metabolism potentially occurring in high frequency among specific ethnic groups are listed in Table 5. However, it should be noted that some of these disorders are quite rare now in the era of prenatal diagnosis. For instance, the incidence of Tay Sachs disease in targeted Jewish populations is extremely low worldwide [28, 29].

The most common presentations of inborn errors are without gross physical anomalies and include disorders of amino acid, fatty acid, organic acid, and carbohydrate metabolism Table 6. Others present with dysmorphic features, neonatal deaths, self-mutilation, abnormal body or urine odor, hypotonia, deafness, or recurrent acidosis with or without ketosis. Failure to recognize and, when possible, treat these infants can result in irreversible neurologic damage.

Diagnostic strategy consists of meticulous attention to history and physical examination followed by appropriate screening tests, including biochemistry, radiology, or other modalities, and specific enzyme, protein, or gene analysis. Special educational services for children with inborn errors of metabolism may be available and therefore accuracy of diagnosis is essential as discussed by Powell et al. [30].

Table 3 Clinical findings associated with specific metabolic diseases

Abdomen

Hepatomegaly Galactosemia Glycogen storage disease, type 1 Hereditary fructose intolerance Fructose-1,6-diphosphatase deficiency Methylmalonic acidemia Propionic acidemia Glutaric acidemia, type II Very-long-chain acyl-CoA deficiency Medium-chain acyl-CoA deficiency Short-chain acyl-CoA deficiency Long-chain 3-OH acyl-CoA, dehydrogenase deficiency Carnitine transporter defect Carnitine palmityl transferase I o II deficiency Acylcarnitine translocase deficiency 3-hydroxy-3-methylglutaryl-CoA lyase deficiency Phosphoenolpyruvate carboxykinase deficiency Mitochondrial respiratory/electron transport chain defects Hereditary tyrosinemia, type I Argininosuccinicaciduria α_1 -Antitrypsin deficiency Smith-Lemli-Opitz syndrome Zellweger syndrome Neonatal adrenoleukodystrophy Nieman-Pick disease, type C Hepatosplenomegaly GM₁ gangliosidosis I-cell disease Gaucher disease, type I Niemann-Pick disease, type A, C Galactosialidosis Sialidosis Mucopolysaccharidosis, type VII Wolman disease Pancreatitis Glycogen storage disease, type I Lipoprotein lipase deficiency Homocystinuria Hydroxymethylgiutaryl-CoA lyase deficiency Methylmalonic acidemia Propionic acidemia Pearson syndrome

Chest

Cardiomyopathy Glycogen storage disease, type I Glycogen storage disease, type II Glycogen storage disease, type III Electron transport chain abnormalities Disorders of fatty acid oxidation Mucopolysaccharidoses <u>Myocardial infarction</u> Familial Hypocholesterolemia Fabry disease Homocystinuria Menkes disease

Diarrhea

Lysinuric protein intolerance Shwachman syndrome Johansson Blizzard syndrome Pearson syndrome Congenital chloride diarrhea Glucose galactose malabsorption Lactase deficiency Sucrase deficiency Abetalipoproteinemia <u>Wolman disease</u> Diarrhea (Persistent) Sucrase isomaltase deficiency Acrodermatitis enteropathica Congenital folate malabsorption

Dysmorphic Features

Glutaric aciduria, type II Glomerulopathy Renal cystic dysplasia Cerebral dysgenesis Facial dysmorphism Congenital heart disease Genital anomalies Pyruvate dehydrogenase deficiency Microcephaly "Fetal alcohol" facies Agenesis of corpus callosum Peroxisomal Disorders Zellweger Syndrome Renal microcysts Epiphyseal calcification Facial dysmorphism Congenital heart disease Cerebral dysgenesis Hepatopathy Infantile Refsum disease Facial dysmorphism Hepatopathy Rhizomelic chondrodysplasia punctata E. Gilbert-Barness and P.M. Farrell / Approach to diagnosis of metabolic diseases

(Contri	
Facial dysmorphism	Mucolipidosis III
Rhizomelic limb shortening	Galactosialidosis
GM ₁ gangliosidosis	Maroteaux-Lamy disease
Frontal bossing, low-set ears	Sly disease
Congenital adrenal hyperplasia	Multiple sulfatase deficiency
Ambiguous genitalia	Osteoporosis and/or fractures
Sialidosis	Propionic acidemia
Coarse facial features, stippled epiphyses	Methylmalonic acidemia
Mucolipidosis II	Glycogen storage disease, type I
Coarse facial features	Homocystinuria
Mucopolysaccharidoses	Adenosine deaminase deficiency
Coarse facial features	Lysinuric protein intolerance
Infantile sialic acid storage disease	Menkes disease
Coarse facial features	Infantile Refsum disease
β-Hydroxyisobutyryl-CoA deacylase deficiency	Gaucher disease
Congenital heart defects	I-cell disease
Agenesis of corpus callosum	
Dysmorphic facies	Eyes
Gaucher-like storage disease	Cataract
Arthrogryposis	Galactosemia
Muscle phosphorylase deficiency	Lowe syndrome
Arthrogryposis	Mitochondrial respiratory electron transport chain defects
Smith-Lemli-Opitz syndrome	Zellweger syndrome
Genital and digital abnormalities	Rhizomelic chondrodysplasia punctata
	Mevalonic aciduria
Ears	Corneal Clouding
Otic atrophy	I-cell disease
Pyruvate dehydrogenase com plex deficiency	Steroid sulfatase deficiency
Leigh disease	Dislocated lens
Zellweger syndrome	Methionine synthetase deficiency
	Sulfite oxidase deficiency
Extremities	Macular cherry-red spot
Arthritis	GM ₁ gangliosidosis
Alkaptonuria	Galactosialidosis
Gaucher disease, type I	Niemann-Pick Disease, type A
Lesch-Nyhan disease	Tay-Sachs disease (GM ₂ gangliosidosis)
Farber disease	Retinitis pigmentosa
I-cell disease	Mitochondrial respiratory electron transport chain defects
Mucolipidosis III	Methylmalonic acidemia/Homocystinuria
Homocystinuria	Sjögren-Larsson syndrome
Mucopolysaccharidosis IS, HS	Zellweger syndrome
Bone or limb deformity	Neonatal adrenoleukodystrophy
Dyostosis Multiplex	Infantile Refsum disease
Hurler, Hurler-Scheie disease	Abetalipoproteinemia
Hunter disease	Long-chain 3-OH acyl-CoA dehydrogenase deficiency
Sanfilippo disease	
GM1 gangliosidosis	Head
Mucolipidosis II, I-cell disease	Alopecia
Mucopolysaccharidosis IS, HS Bone or limb deformity Dyostosis Multiplex Hurler, Hurler-Scheie disease Hunter disease Sanfilippo disease GM1 gangliosidosis	Zellweger syndrome Neonatal adrenoleukodystrophy Infantile Refsum disease Abetalipoproteinemia Long-chain 3-OH acyl-CoA dehydrogenase deficiency Head

Table 3 (*Continued*)

Table 3	
(Continued)	

(Continued)	
Multiple carboxylase deficiency	Orotic aciduria
Cerebral calcification	Mevalonic aciduria
Adrenoleukodystrophy	Pearson syndrome
Abnormalities of folate metabolism	Abnormalities of folate metabolism
L-2-Hydroxyglutaric aciduria	Shwachman syndrome
Biopterin abnormalities	Johansson Blizzard syndrome
Coarse facial features	
GM ₁ gangliosidosis	Hydrops fetalis
I-cell disease	Gaucher disease
Mucopolysaccharidosis, type VII	GM ₁ gangliosidosis
Sialidosis	Salla disease
Galactosialidosis	Sialidosis
Macrocephaly	Wolman disease
4-Hydroxybutyric aciduria	β-Glucuronidase deficiency
Glutaric aciduria, type I	Congenital disorders of protein
L-2-Hydroxyglutaric aciduria	glycosylation
Neonatal adrenoleukodystrophy	Deficiencies of red cell
Tay-Sachs disease	glycolytic/pentose phosphate
Hurler disease	pathway enzymes (eg,
Krabbe disease	G6PDH deficiency, private
Multiple sulfatase deficiency	kinase deficiency)
Canavan disease	Farber disease
Mannosidosis	Fumarase deficiency
3-Hydroxy-3-methylglutaric aciduria	GSD IV
Pyruvate carboxylase deficiency	MPS VII (Sly disease)
Multiple acyl-CoA dehydrogenase deficiency	MPS IVA (Morquio type A)
Microcephaly	Mucolipidosis I (Sialidosis)
Short-chain Acyl-CoA dehydrogenase deficiency	Mucolipidosis II (I-cell
Mitochondrial respiratory electron transport chain defects	disease)
Leigh disease	Neonatal hemochromatosis
Steely hair	Niemann-Pick C
Menkes disease	Primary carnitine deficiency
Wenkes disease	Respiratory chain disorders
Hematology	Sialic acid storage disease
Hematologic abnormalities	Morquio syndrome
Leukopenia with or without thrombopenia and anemia	
	Neuraminidase deficiency
Methylmalonic acidemia	Myotonic dystrophy
Propionic acidemia	Perinatal iron storage syndrome
Isovaleric acidemia	Carnitine deficiency
3-Oxothiolase deficiency	Niemann-Pick type C
Abnormalities of folate metabolism	I-cell disease
Transcobalamin II deficiency	Farber disease
Shwachman syndrome	Mucopolysaccharidosis type VII
Pearson syndrome	Carbohydrate-deficient glycoprotein storag
Johansson Blizzard syndrome	disease
Megaloblastosis	
Cobalamin metabolic errors:	Mouth and throat
Methylmalonic acidemia	Macroglossia
Homocystinuria	GM ₁ gangliosidosis
Transcobalamin II deficiency	Macroglossia

E. Gilbert-Barness and P.M. Farrell / Approach to diagnosis of metabolic diseases

Table 3
(Continued)

Neurological MLD, Niemann-Pick A and B, and Gaucher, type III Gaucher disease, type II Glutaric acidemia, type I Krabbe disease Crigler-Najjar syndrome Phenylketonuria caused by a biopterin defect Stroke-like episodes Carbamoyl phosphate synthetase MELAS Carbohydrate deficient glycoprotein storage disease Ethylmalonic aciduria Fabry disease Glutaric aciduria, type I Homocystinuria Isovaleric acidemia Menkes disease 3-MTHF reductase deficiency Methylmalonic acidemia Ornithine transcarbamylase deficiency Propionic acidemia Purine nucleoside phosphorylase deficiency

Odor

Sweaty feet, strong Glutaric aciduria (type II) Isovaleric acidemia Mousy or musty Phenylketonuria Maple syrup Maple syrup urine disease Tomcat urine β-Methylcrotonylglycinuria Cabbage Methionine malabsorption Rotting fish Trimethylaminuria Rancid fishy or cabbage Tyrosinemia Hoplike Oasthouse disease Swimming pool Hawkinsinuria

Psychiatric

Sanfilippo syndrome (MPS III)

X-linked ALD Late-onset MLD Late-onset GM2 gangliosidosis Lesch-Nyhan syndrome Porphyria Wilson disease Cerebrotendinous xanthomatosis UCED Homocystinuria due to MTHF reductase deficiency Adult-onset NCL Skin Angiokeratoma Fabry disease GM₁ gangliosidosis

Hunter syndrome (MPS II)

Fucosidosis Galactosialidosis Sialidosis Desquamating, eczematous, or vesiculobullous lesions Acrodermatitis enteropathica Multiple carboxylase deficiency Methylmalonic acidemia Propionic acidemia Hepatoerythropoietic porphyria Congenital erythropoietic porphyria Ichthyosis Multiple sulfatase deficiency X-linked ichthyosis (steroid sulfatase deficiency) Gaucher disease Krabbe disease Refsum disease Sjögren-Larsson syndrome Nodules Farber disease (Ceramidase deficiency) Thick skin I-cell disease GM₂ gangliosidosis Mucopolysaccharidosis, type VII Sialidosis Galactosialidosis Xanthomas Familial hypercholesterolemia Lipoprotein lipase deficiency Niemann-pick disease

ALD, adrenoleukodystrophy; MLD, metachromatic leukodystrophy; UCED, urea cycle enzyme defects; MTHF, methylenetetrahydrofolate; NCL, neuronal ceroid lipofuscinosis; MELAS, myoclonic epilepsy, lactic acidosis, and stroke.

	MS/MS			
Acylcarnitines		Amino acids		
9 Organic Acidemia Disorders	5 Fatty Acid Oxidation Defects	6 Aminoacidopathies	3 Hemoglobinopathies	7 Other Genetic Disorders
		Core panel		
Isovaleric academia	Medium-chain acyl-COA dehydrogenase deficiency	Phenlketonuria	Sickle cell anemia (hemoglobin SS disease)*	Congenital Hypothyroidism
Glutaric acidemia type I 3-hydroxy-3-methyl glutaric aciduria (HMG) Multiple carboxylase deficiency Methylmalonic acidemia (mutase deficiency)*	Very long-chain acyl-CoA dehydrogenase deficiency Long-chain L-3-hydroxy acyl-CoA dehydrogenase deficiency	Maple syrup disease Homocystinuria* (due to cystathionine beta synthase deficiency) Citrullinemia	Hemoglobin S/β-thalassemia* Hemoglobin S/C disease*	Biotinidase deficiency Congenital adrenal hyperplasia* (21-hydroxylase deficiency) Classical galactosemia
3-Methylcrotonyl-CoA carboxylase deficiency*	Trifunctional protein deficiency	Argininosuccinic academia Tyrosinemia type I*		Hearing loss Cystic fibrosis
Methylmalonic acidemia (cobalamin disorders A & B)* Propionic acidemia B-Ketothiolase deficiency	Carnitine uptake defect			Severe combined immunodeficiency
		Secondary targets		
6 More Organic Acidemia Disorders	8 More Fatty Acid Oxidation Defects	8 More Aminioacidopathies	Other Hemoglobinopathies	2 Other Hereditary Metabolic Disorders
Methylmalonic academia* (cobalamin disorders C & D) Malonic academia	Short-chain acyl-CoA dehydrogenase deficiency Glutaric acidemia type II Medium/short-chain L-3-hydroxy acyl-CoA	Benign hyperphenylalaninemia Tyrosinemia type II Defects of biopterin cofactor biosynthesis	Variant hemoglobinopathies* (including hemoglobin E)	Galactokinase deficiency* Galactose epimerase deficiency

dehydrogenase deficiency

 Table 4

 Newborn screening panel: Core panel and secondary targets*

(Continued)

		Table 4(Continued)		
		Secondary targets		
6 More Organic Acidemia Disorders	8 More Fatty Acid Oxidation Defects	8 More Aminioacidopathies	Other Hemoglobinopathies	2 Other Hereditary Metabolic Disorders
Isobutyryl-CoA dehydrogenase deficiency	Medium-chain ketoacyl-CoA thiolase deficiency	Argininemia		
2-Methyl 3-hydroxy butyric aciduria	Carnitine palmitoyltransferase II deficiency	Tyrosinemia type III		
2-Methylbutyryl-CoA dehydrogenase deficiency	Carnitine: acylcarnitine translocase deficiency	Defects of biopterin cofactor regeneration		
3-Methylglutaconic aciduria	Carnitine palmitoyltransferase I deficiency (liver)	Hypermethioninemia		
	Dienoyl-CoA reductase deficiency	Citrullinemia type II		

*From *Newborn Screening: Toward a Uniform Screening Panel and System, Maternal and Child Health Bureau* [Federal Register: March 8, 2005 (Volume 70, Number 44)]. [http://mchb.hrsa.gov/screening/].

Inborn Error	Ethnic Group	Estimated Incidence (per 100000 births)
Hepatorenal tyrosinemia	French-Canadians (Saguenay-Lac Saint-Jean region)	54 (before the introduction of preventive prenatal diagnosis)
Tay-Sachs disease	Canavan disease Ashkenazi Jews	33 (before the introduction of preventive prenatal diagnosis)
Gaucher disease, type 1	Canavan disease Ashkenazi Jews	100
Phenylketonuria (PKU)	Canavan disease Ashkenazi Jews	5
	Yemenite Jews	19
	Turkish	38.5
Porphyria variegata	South African (white)	300
Congenital adrenal hyperplasia	Yupik Eskimos	200
Glutaric aciduria, type 1	Ojibway Indians (Canada)	>50
Maple syrup urine disease	Mennonites (Pennsylvania)	568

 Table 5

 Ethnic group incidence of inborn errors of metabolism

From: Clarke JTR, (Ed.): A Clinical Guide to Inherited Metabolic Diseases - 3rd ed., Cambridge University Press, 2006.

Clinical investigation is augmented by a large number of common blood and urine tests (blood, sugar, urine pH, anion gap, cytopenia, liver function tests, sweat test, electroencephalogram, and radiography of bones). Radiologic examination may include X-rays, CT scans, and MR imaging. MRI scans should be substituted for CT scans whenever possible to avoid radiation exposure. Ophthalmologic and neurophysiologic investigations are often important. Laboratory findings in inborn errors of metabolism are listed in Table 7. Abnormal metabolites are shown in Table 8.

Abnormalities in serum electrolytes can be caused by vomiting or diarrhea. Inclusion of bicarbonate and pH assessment may indicate a large anion gap due to the presence of organic acids. Electrolytes, however, may be normal with organic acidemias.

Neutropenia or pancytopenia suggests the presence of one of the organic acidemias. A urinalysis may indicate the presence of reducing substances and the presence or absence of ketones. Ketonuria is not found in normal newborns. Urine pH above 5.0 in an acidotic infant may suggest renal tubular acidosis. Absence of ketones in association with hypoglycemia may indicate an error in fatty acid metabolism. It is helpful to save a small amount of frozen urine and plasma for later evaluation of keto acids, carnitine, and organic acids.

Elevated serum ammonia levels are found in patients with liver disease and in those with errors of the urea cycle and several of the organic acidemias. Transient hyperammonemia occurs in some newborns, and this is reversible when treatment is prompt. Urea cycle errors are frequently associated with very low blood urea levels. Some metabolic disorders cause liver cirrhosis in infants and children and some liver disorders progress to stupor and coma.

Liver function tests commonly indicate primary liver diseases. However, abnormal liver function test findings result from many of the metabolic diseases, including disorders of organic and amino acid metabolism, and many of the storage diseases.

Elevated serum lactate is usually due to hypoxemia or poor perfusion and occurs with sepsis. It may be due, however, to improper technique in drawing blood without good blood flow. Lactic acid is produced in the anaerobic metabolism of glucose through pyruvate, which is then converted in the liver to glucose. Deficiency of pyruvate dehydrogenase complex is the most common error of metabolism that causes lactic acidosis.

Laboratory findings in some inborn errors of metabolism			
Lactic acidosis \pm	Hyperammonemia	Fructose-1,6-diphosphatase	
Increased anion gap	Ornithine transcarbamylase	deficiency	
Methylmalonic acidemia	deficiency	Hypoglycemia	
Propionic acidemia	Carbamoyl phosphate	Hyperinsulinism	
Isovaleric acidemia	synthetase deficiency	Glycogen storage disease, type I	
Multiple carboxylase deficiency	Argininosuccini-	Hereditary fructose intolerance	
Maple syrup urine disease	caciduria	Fructose-1,6-diphosphatase	
Glutaric acidemia, type I	Citrullinemia	deficiency	
Glutaric acidemia, type II	Methylmalonic acidemia	Glutaric acidemia, type I	
Short-chain acyl-CoA	Propionic acidemia	Glutaric acidemia, type II	
dehydrogenase deficiency	Isovaleric acidemia	Very-long-chain acyl-CoA	
Long-chain 3-OH acyl-CoA	Multiple carboxylase deficiency	dehydrogenase deficiency	
dehydrogenase deficiency	Glutaric acidemia, type II	Medium-chain acyl-CoA	
Ketothiolase deficiency	Very-long-chain acyl-CoA	dehydrogenase deficiency	
Acetoacetate CoA ligase deficiency	dehydrogenase deficiency	Short-chain acyl-CoA	
3-hydroxy-3-methylglutaryl	Medium-chain acyl-CoA	dehydrogenase deficiency	
CoA Iyase deficiency	dehydrogenase deficiency	Long-chain 3-OH acyl-CoA	
Pyruvate dehydrogenase	Short-chain acyl-CoA dehydrogenase	dehydrogenase deficiency	
complex deficiency	deficiency	Carnitine transporter defect	
Pyruvate carboxylase	Acylcarnitine translocase	Carnitine palmitoyl transferase I	
deficiency	deficiency	deficiency	
Phosphoenolpyruvate	Ketosis	Carnitine palmitoyl transferase II	
carboxykinase deficiency	Methylmalonic acidemia	deficiency	
Mitochondrial respiratory/electron	Propionic acidemia	Acylcarnitine translocase deficiency	
transport chain defects	Isovaleric acidemia	Ketothiolase deficiency	
Leigh disease	Multiple carboxylase deficiency	Acetoacetate-CoA ligase deficiency	
Hereditary galactosemia	Maple syrup urine disease	3-hydroxy-3-methylglutaryl-CoA	
Glycogen storage disease,	Glutaric acidemia, type II	Iyase deficiency	
type I	Short-chain acyl-CoA dehydrogenase	Hereditary galactosemia	
Hereditary fructose intolerance	deficiency	Neonatal hemochromatosis	
Fructose-1,6-diphosphatase	Ketothiolase deficiency	Mitochondrial respiratory/electron	
deficiency	Acetoacetate-CoA ligase	transport chain defects	
Hereditary tyrosinemia,	deficiency	Lipemia	
type I	Pyruvate carboxylase deficiency	Glycogen storage disease, type I	
Respiratory alkalosis	Glycogen storage disease, type I		
Omithine transcarbamylase			
deficiency			
Carbamoyl phosphate synthetase			
deficiency			
Argininosuccinicaciduria			
Citrullinemia			

 Table 6

 Laboratory findings in some inborn errors of metabolism

Myopathy can be caused by a few of the glycogen storage diseases or mitochondrial disorders. Muscle biopsy or fibroblast cultures may be diagnostic. Myoglobinuria may be present, and serum free carnitine may be decreased.

Peroxisomal action is responsible for β -oxidation of fatty acids, and deficiency results in developmental retardation. Peroxisomal disorders with such manifestations include Zellweger syndrome,

1	5
I	э

Ta	ble	e 7

Laboratory evaluation for suspected inborn errors of metabolism

	Comments
Initial Evaluation*	
Blood tests	
CBC with differential	
Blood glucose	
Electrolytes, BUN, creatinine, uric acid	
Arterial blood gas	
Serum ammonia	Should be obtained from artery or vein without a tourniquet; the tube should be placed on ice for transport to the laboratory and analyzed immediately. If the plasma ammonia concentration is >100 micromol/L (1.7 mcg/mL), the measurement should be repeated immediately
AST, ALT, bilirubin, PT	If the patient has signs or symptoms of myopathy
LDH, aldolase, creatine, kinase	
Urine Tests	
Color, odor	
Urinalysis	
Reducing substances	
Myoglobin	If the patient has signs or symptoms of myopathy
Specialized Tests	
Blood tests	
Quantitative plasma amino acids	Plasma amino acid analysis must be performed quantitatively rather than qualitatively
Lactate and pyruvate	Lactate and pyruvate should be measured in arterial blood that is, transported on ice
Acylcarnitine profile	Analysis of acylcarnitine conjugates is performed by tandem mass spectrometry and can be measured in a plasma sample or a filter-paper bloodspot; serum is preferred because of inherent problems in quantitating compounds from a filter-paper blood spot
Urine Tests	
Qualitative urine organic acids	Minimum of 2 to 5 mL in sterile container without preservative

CBC: complete blood count; ALT: alanine aminotransferase; BUN: blood urea nitrogen; PT: prothrombin time; AST: aspartate aminotransferase; LDH: lactate dehydrogenase. *If possible, blood and urine samples should be obtained for both the initial and specialized tests at the time of presentation. Samples for specialized tests should be processed and stored appropriately for further testing if indicated.

adrenoleukodystrophy, and oxalosis [31]. Very-long-chain fatty acids are elevated in the serum with most forms of peroxisomal disorders.

Many chemical screening programs such as determination of organic and amino acids, oligosaccharides, and glycosaminoglycans in blood and urine are available for diagnostic workup of suspected progressive degenerative metabolic diseases. Distinguishing biochemical findings of inborn errors of metabolism are shown in Table 9.

Some inherited metabolic diseases significantly increase the risk of intercurrent illness. For example, recurrent treatment-resistant otitis media is a common problem in children with mucopolysaccharide storage diseases because distortion of the Eustachian tube and production of particularly tenacious

Disorder	Abnormal Metabolite (s)*			
Organic Acidemias				
Methylmalonic academia	Methylmalonic and methylcitric acids			
Propionic academia	3-Hydroxpropionic acid propionylglycine, methylcitric acid			
Isovaleric academia	Isovalerylglycine			
Glutaric academia type I	Glutaric and 3-hydroxyglutaric acids			
3-Methylglutaconic aciduria	3-Methylglutaconic acid			
2-Hydroxy-3-methylbutyryl-CoA dehydrogenase	2-Hydroxy-3-methylblutyric acid, tiglyglycine,			
deficiency	2-methyl-3-hydroxyacetoacetic acid			
2-Hydroxyglutaric aciduria	2-Hydroxyglutaric acid			
Disorders of Ketogenesis				
Medium chain acyl-CoA dehydrogenase (MCAD) deficiency	Hexanoylglycine and suberylglycine			
3-ketothiolase deficiency	2-hydroxy-3-methylbutyric acid, tiglyglycine,			
	2-methyl-3-hydroxyacetoacetic acid			
3-Hydroxy-3-methylglutaryl (HMG)-CoA lyase	3-Hydroxy-3-methylglutaric, 3-methylglutaric and			
deficiency	3-methylglutaconic acids			
Other Disorders				
Canavan disease	N-acetylaspartic acid			
Glutaric academia type II (multiple acyl-CoA dehydrogenase deficiency)	Glutaric and 2-hydroxyglutaric acids			
Mevalonate kinase deficiency	Mevalonic acid			
Maple syrup urine disease	2-Hydroxyisovaleric and 2-hydroxy-3-methylvaleric			
Phenylketonuria	Phenylpyruvic and phenyllactic acids			
Fumarase deficiency	Fumaric acid			
Glutathione synthetase deificneyc	5-Oxoproline (pyroglutamic acid)			
Biotinidase deficiency*	3-Hydroxyisovaleric acid, methylcitric acid,			
-	3-methylcrotonlglycine, propionylglycine			
Holocarboxylase synthetase deficiency*	3-Hydroxyisovaleric acid, methylcitric acid,			
	3-methylcrotonylglycine, propionylglycine			
Glycerol kinase deficiency	Glycerol			
Ethylmalonic encephalopathy	Ethylmalonic and methylsuccinic acids			
Disorders of Uncertain Consequence				
3-methylcrotonyl-CoA carboxlase deficiency	3-methylcrotonylglycine			
Short chain acyl-CoA dehydrogenase deficiency	Ethylmalonic acid, butyrylglycine			

Table 8 Abnormal metabolites in metabolic disorders

*Other abnormal metabolites may be seen in these disorders but those listed are the most characteristic for the diagnosis.

mucus combine to create a favorable environment for bacterial colonization of the middle ear. The neutropenia that is a prominent feature of glycogen storage disease type Ib, and some of the organic acidopathies, predisposes to pyogenic infections. Classic galactosemia predisposes infants to neonatal *Escherichia coli* sepsis [32].

Major congenital malformations, such as meningomyelocele, complex congenital heart disease, and major congenital limb deformities, are not generally considered signs of an underlying inherited metabolic disease; however, some inherited metabolic conditions occur with dysmorphism so characteristic that a strong presumptive diagnosis can be made on physical examination alone [32]. A large

Distriguishing biochemical multips of moon errors of metabolishi								
Findings	MSUD	OA	UCD	DCM	FAO	MD	PD	LSD
Metabolic acidosis	±	++	_	±	±	±	_	_
Respiratory alkalosis	_	_	+	_	-	-	-	-
Hyperammonemia	±	+	++	_	±	-	_	_
Hypoglyclemia	±	\pm	_	+	+	±	_	_
Ketones	A/H	Н	А	A/H	A/L	A/H	А	А
Lactic acidosis	±	±	-	+	±	++	-	-

 Table 9

 Distinguishing biochemical findings of inborn errors of metabolism

MSUD: maple syrup urine disease; OA: organic acidemias' UCD: urea cycle disorders; DCM: disorders of carbohydrate metabolism; FAO: fatty acid oxidation disorders; MD: mitochondrial disorders; PD: peroxisomal disorders; LSD: lysosomal storage disorder. –: usually absent; ±: sometimes present; +: usually present; ++: always present. A: appropriate; H: inappropriately high; L: inappropriately low. Adapted from: Weiner DL, Metabolic Emergencies. In: Textbook of Pediatric Emergency Medicine, 5th ed. Fleisher GR, Ludwig S, Henretig FM (Eds). Lippincott, Williams & Wilkins, Philadelphia, 2006.

number of metabolic diseases present with gross abnormalities of appearance Table 10A and 10B. Many of these have lysosomal defects, and most will have hepatosplenomegaly. These include such diseases as mucopolysaccharidoses, sphingolipidoses, and other lysosomal storage diseases. These diseases are not acutely life-threatening. Children with these conditions commonly have developmental delay. Many appear normal at birth and progressively deteriorate Table 3.

An important step between the clinical findings and the biochemical findings is the anatomic pathology, including histology, histochemistry, immunochemistry, and electron microscopy (EM). For example, screening peripheral blood for cytoplasmic vacuoles in the lymphocytes as shown in Fig. 1 may be the first indication of a storage disorder.

Some metabolic disorders present as acute encephalopathy. The earliest signs of encephalopathy may be no more obvious than excessive drowsiness, unusual behavior, or some unsteadiness of gait. Acute or intermittent ataxia is a common sign of acute encephalopathy in older children with inborn errors of metabolism. A history of recurrent attacks of unsteadiness of gait or ataxia, especially when associated with vomiting or deterioration of consciousness, should stimulate investigation of a possible inherited metabolic disease Table 11 [25].

In addition to the biochemical tests of blood and urine, solid tissues and cell cultures may be needed for biochemical assays. A biopsy specimen should be divided for biochemical analysis and morphologic investigation. This is particularly important in liver, muscle, and intestinal biopsies and in skin biopsies made for the fibroblast cultures.

Hypoglycemia occurs with starvation in young infants but also may indicate an error in gluconeogenesis, errors in fat metabolism and defects in hormone metabolism. A rapid response to glucose, especially in the presence of hepatomegaly, may suggest glycogen storage disease or fructose-1,6diphosphatase deficiency. An approach to diagnosis when a patient presents with hypoglycemia is shown in Fig. 2. This algorithm will guide clinicians toward a proper sequence of diagnostic tests.

Even after death, some of the techniques used in the living can be helpful in detecting inborn errors of metabolism. For example, even small amounts of urine may remain in the bladder and should be aspirated and saved. Tissues and body fluids should be obtained and maintained in a state suitable for the tests desired. New diseases and diagnostic tests are identified at a surprisingly rapid rate. Very few laboratories perform all the tests.

Finding	Potential Inborn Error
General	
Tall, long-limbed body habitus Head	Homocysturia
Coarse facial features (eg, hirsuitism prominent brow ridge, and gingival hypertrophy)	Oligosaccharidoses, mucopolysaccharidoses, mucolipidoses
Microcephaly	Untreated phenylketonuria (PKU), maternal PKU syndrome, congenital disorders of protein glycosylation, leukodystrophies (late, organic acidemias, urea cycle disorders, maple syrup urine disease
Macrocephaly	Canavan disease, glutaric academia type I, oligosaccharidoses, mucopolysaccharidoses, mucolipidoses, Tay-Sachs (early)
Hair	Biotinidase deficiency, vitamin D resistant rickets
Alopecia Sparse	Biotinidase deficiency, Menkes disease
Kinky, brittle	Argininosuccinic aciduria and citrullinemia (due to arginine deficiency), Menkes disease, mucopolysaccharidoses
Eyes	
Cataracts	Oligosaccharidoses, Fabry diseiase, neuronal ceroid lipofuscinosis, galactosemia, Smith-Lemli-Opitz syndrome peroxisome bioigenesis defects, rhizomelic chondrodysplasia punctata, Wilson disease, errors of mitochondrial oxidative phosphorylation
Cherry red spot	Tay-Sachs disease, Sandhoff disease, Sialidosis type I and type II, GM1-gangliosidosis, Niemann-Pick disease type A, Gaucher disease type 2, metachromatic leukodystrophy, galactosialidosis
Corneal clouding	Oligosaccharidoses, mucopolysaccharidoses, mucolipidoses, Tangier, sialidosis
Corneal opacity	Oligosaccharidoses, Fabry disease, steroid sulfatase deficiency (X-linked ichthyosis), Tangier, molybdenum cofactor deficiency, sulfite oxidase deficiency
Dislocated lens	Homocystinuria, sulfite oxidase deficiency
Kayser-Fleischer rings	Wilson disease
Retitinitis pigmentosa	Abetalipoproteinemia, peroxisome biogenesis disorders of protein glycosylation, fatty acid oxidation defects, mitochondrial defects, mucopolysaccharidoses, Krabbe disease, Menkes disease, disorders of cobalamin (vitamin B12) transport and synthesis, ornithine aminotransferase deficiency

Table 10A Physical examination findings as clues to inborn errors of Metabolism

Adapted from Wappner Rs, Hainline BE. Inborn errors of metabolism. In: Oski's Pediatrics, Principles and Practice, 3rd ed., McMillan JA, DeAngelis CD, Feigin RD, Warshaw JB (Eds), Lippincott, Williams and Wilkins, Philadelphia, 1999. Saudubray JM, Chappentier C. Clinical phenotypes: Diagnosis/algorithms. In: Metabolic and Molecular Bases of Inherited Disease, 8th ed, Scriver CR, Beaudet AL, Sly WS, Valle D (Eds), McGrall-Hill, New York, 2001.Lindor NM, Karnes PS. Initial assessment of infants and children with suspected inborn errors of metabolism. Mayo Clin Proc 70:987, 1995. Cleary MA, Green A. Developmental delay: when to suspect and how to investigate for an inborn error of metabolism, Arch Dis Child 90:1128, 2005.

Finding	Potential Inborn Error
Hearing loss	Peroxisomal disorders, mitochondrial disorders, lysosomal storage disorders, mucopolysaccharidoses
Mouth	
Gingival hyperplasia Chest	Oligosaccharidoses, mucopolysaccharidoses, mucolipidoses
Inverted nipples	Congenital disorders of protein glycosylation
Abdomen	
Hepatosplenomegaly	Lysosomal storage disease
Hepatomegaly	Glycogen storage diseases, carnitine palmitoyltransferase II deficiency (infantile form), peroxisomal disorders, mitochondrial DNA depletion disorders, tyrosinemia type I (hepatorenal), mucolipidoses, congenital disorders of protein glycosylation, longer chain fatty acid oxidation disorders
Musculoskeletal	
Arthritis	Farber disease, purine metabolism disorders
Neurologic	
Dystonia	Glutaric acidemia I, organic acidemias, Wilson disease, mitochondrial disorders
Myopathy	Fatty acid oxidation defects, mitochondrial disorders, Pompe disease and other glycogen storage diseases
Paresthesia	Fabry disease, sialidosis
Peripheral neuropathy	Congenital disorders of protein glycosylation, leukodystrophies, peroxisomal disorders, Tangier disease
Psychoses	Adult MLD Tay-Sachs, homocystinuria, porphyrias, purine metabolism disorders
Skin	
Hypopigmentation or absent pigment	Cystinosis, Menkes disease, phenylketonuria, sialidosis
Angiokeratoma	Fabry, fucosidosis, galactosialidosis, beta-mannosidosis, sialidosis
Dermatitis	Biotinidase deficiency, Hartup disease, phenylketonuria, prolidase deficiency
Edema	GM1 gangliosidosis, prolidase deficiency
Hirsutism	Oligosaccharidoses, mucopolysaccharidoses, mucolipidoses
Ichthyosis	Multiple sulfatase deficiency, isolated steroid sulfatase deficiency
Photosentization	Porphyrias
Xanthomas	Hyperlipoproteinemias and other disorders of lipoproteins

 Table 10B

 Physical examination findings as clues to inborn errors of Metabolism

Adapted from Wappner Rs, Hainline BE. Inborn errors of metabolism. In: Oski's Pediatrics, Principles and Practice, 3rd ed., McMillan JA, DeAngelis CD, Feigin RD, Warshaw JB (Eds), Lippincott, Williams and Wilkins, Philadelphia, 1999. Saudubray JM, Chappentier C. Clinical phenotypes: Diagnosis/algorithms. In: Metabolic and Molecular Bases of Inherited Disease, 8th ed, Scriver CR, Beaudet AL, Sly WS, Valle D (Eds), McGrall-Hill, New York, 2001.Lindor NM, Karnes PS. Initial assessment of infants and children with suspected inborn errors of metabolism. Mayo Clin Proc 70:987, 1995. Cleary MA, Green A. Developmental delay: when to suspect and how to investigate for an inborn error of metabolism, Arch Dis Child 90:1128, 2005.

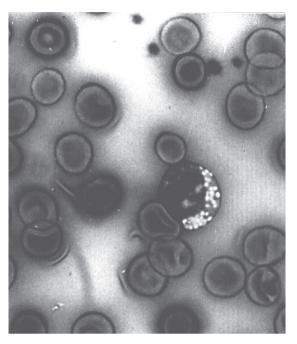


Fig. 1. Vacuolated lymphocyte in the peripheral blood of a patient with mannosidosis.

	UCED	MSUD	OAuria	FAOD	ETC Defects	
Metabolic acidosis	0	±	+++	±	++	
Plasma glucose	Ν	N or \downarrow	$\downarrow\downarrow$	$\downarrow\downarrow\downarrow\downarrow$	Ν	
Urinary ketones	Ν	$\uparrow\uparrow$	$\uparrow\uparrow$	0	0	
Plasma ammonia	$\uparrow\uparrow\uparrow$	Ν	$\uparrow\uparrow$	\uparrow	Ν	
Plasma lactate	Ν	Ν	↑	±	$\uparrow\uparrow\uparrow$	
Liver function	$\pm N$	Ν	Ν	$\uparrow\uparrow$	Ν	
Plasma carnitine	Ν	Ν	$\downarrow\downarrow\downarrow\downarrow$	$\downarrow\downarrow$	Ν	
Plasma amino acids	Abnormal	↑ BCAA	↑ glycine	±	↑ alanine	
Urinary organic acids	Ν	Abnormal	Abnormal	Abnormal	Ν	

Table 11 Differential diagnosis of acute encephalopathy in metabolic diseases

UCED, urea cycle enzyme defect; MSUD, maple syrup urine disease; OAuria, organic aciduria; FAOD, fatty acid oxidation defect; ETC, mitochondrial electron transport chain; BCAA, branched-chain amino acids; \uparrow , elevated; \downarrow decreased;+, present; \pm , variably present; N, normal; O, not present. From: Clarke JTR, (Ed.): A Clinical Guide to Inherited Metabolic Diseases – 3rd ed., Cambridge University Press, 2006.

3. Further development of prenatal and neonatal screening

As techniques such as next generation sequencing [17, 18] and whole genome sequencing are developed further for routine use, there will be many more commercial laboratories offering comprehensive testing as has already proved helpful for newborn intensive care units [19, 20]. However, reporting and ethical issues need to be resolved before whole genome sequencing can be used widely [33].

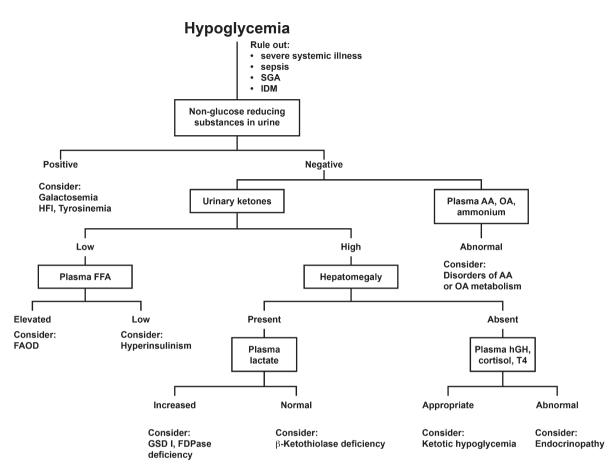


Fig. 2. Approach to the differential diagnosis of hypoglycemia. Abbreviations: SGA, small for gestational age; IDM, infant of diabetic mother; HFI, hereditary fructose intolerance; AA, amino acids; OA, organic acids; FFA, free fatty acids; FAOD, fatty acid oxidation defect; hGH, human growth hormone; T4, thyroxine; GSD, glycogen storage disease; FDPase, fructose-6-diphosphatase. Clarke JTR, (Ed.): A Clinical Guide to Inherited Metabolic Diseases – 3rd ed., Cambridge University Press, 2006.

References

- [1] A.E. Garrod, Inborn errors of metabolism (Croonian Lectures), Lancet 2 (1908), 1.
- [2] A.E. Garrod, Inborn Errors of Metabolism, London, 1909, Oxford University Press.
- [3] A.E. Garrod, Inborn Errors of Metabolism, London, 1923, Oxford University Press.
- [4] A.G. Bearn and E.D. Miller, Archibald Garrod and the development of the concept of inborn errors of metabolism. Bull Hist Med 53 (1979), 315–325.
- [5] C.R. Scriver, A.L. Beaudet, W.S. Sly and D. Valle, editors: The Metabolic and Molecular Bases of Inherited Disease, 7th ed, New York, 1995, McGraw-Hill.
- [6] V.A. McKusick, Mendelian Inheritance in Man, 11th ed, Baltimore, 1994, The Johns Hopkins University Press.
- [7] E. Gilbert-Barness, L. Barness and P. Farrell (Eds.), Metabolic Diseases: Foundations of Clinical Management, Genetics, and Pathology. IOS Press, Amsterdam, In press.
- [8] M.O. Champion, An approach to the diagnosis of inherited metabolic disease. Arch Dis Child Educ Pract Ed 95 (2010), 40-46.
- [9] G.W. Beadle, Biochemical genetics. Chem Rev 37 (1945), 15.
- [10] G.W. Beadle and E.L. Tatum, Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci USA 27 (1941), 499-506.
- [11] E.L. Tatum, A case history of biological research. Science 129 (1959), 1711-1715.

- [12] L. Pauling, H.A. Itano, S.J. Singer and I.C. Wells, Sickle cell anemia: A molecular disease. *Science* 110 (1949), 543-548.
- [13] V.M. Ingram, A specific chemical difference between the globins of normal human and sickle cell anaemia haemoglobin. *Nature* 178 (1956), 792-794.
- [14] N.J. Krogan, S. Lippman, D.A. Agard, A. Ashworth and T. Ideker, The cancer cell map initiative: Defining the hallmark networks of cancer. *Mol Cell* 58 (2015), 690-698.
- [15] J.V. Leonard and A.A. Morris, Diagnosis and early management of inborn errors of metabolism presenting around the time of birth. Acta Paediatr 95 (2006), 6-14.
- [16] M.A. Cleary and A. Green, Developmental delay: When to suspect and how to investigate for an inborn error of metabolism. Arch Dis Child 90 (2005), 1128-1132.
- [17] L. Francescatto and N. Katsanis. Newborn screening and the era of medical genomics. *Semin Perinatol* **39** (2015), 617-622.
- [18] M.W. Baker, A.E. Atkins, S.K. Cordovado, M. Hendrix, M.C. Earley and P.M. Farrell, Improving newborn screening for cystic fibrosis using next-generation sequencing technology: A technical feasibility study. *Genet Med* 18(3) (2016), 231-238.
- [19] C.J. Saunders, N.A. Miller, S.E. Soden, D.L. Dinwiddie, A. Noll, N.A. Alnadi, N. Andraws, M.L. Patterson, L.A. Krivohlavek, J. Fellis, S. Humphray, P. Saffrey, Z. Kingsbury J.C. Weir, J. Betley, R.J. Grocock, E.H. Margulies, E.G. Farrow, M. Artman, N.P. Safina, J.E. Petrikin, K.P. Hall and S.F. Kingsmore. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. *Sci Transl Med* 4 (2012), 154ra135.
- [20] E.A. Worthey, A.N. Mayer, G.D. Syverson, D. Helbling, B.B. Bonacci, B. Decker, J.M. Serpe, T. Dasu, M.R. Tschannen, R.L. Veith, M.J. Basehore, U. Broeckel, A. Tomita-Mitchell, M.J. Arca, J.T. Casper, D.A. Margolis, D.P. Bick, M.J. Hessner, J.M. Routes, J.W. Verbsky, H.J. Jacob and D.P. Dimmock, Making a definitive diagnosis: Successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. *Genet Med* 13 (2011), 255-262.
- [21] M.D. Amaral, Novel personalized therapies for cystic fibrosis: Treating the basic defect in all patients. J Int Med 277 (2015), 155-166.
- [22] S.J. Kolb and J.T. Kissel, Spinal muscular atrophy. Neurol Clin 33 (2015), 831-846.
- [23] M.S. Falzarano, C. Scotton, C. Passarelli and A. Ferlini, Duchenne muscular dystrophy: From diagnosis to therapy. *Molecules* 20 (2015), 18168-18184.
- [24] R. Guthrie and A. Susi. A simple phenylalanine method for detecting PKU in large populations of newborn infants. *Pediatrics* 32 (1963), 338-343.
- [25] R. Ziadeh, E.P. Hoffman, D.N. Finegold, et al., Medium chain acyl-CoA dehydrogenase deficiency in Pennsylvania: Neonatal screening shows high incidence and unexpected mutation frequencies. *Pediatr Res* 37 (1995), 675-678.
- [26] D.S. Millington, N. Kodo, D.L. Norwood and C.R. Roc, Tandem mass spectrometry: A new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. *J Inherit Metab Dis* 13 (1990), 321-324.
- [27] L.M. Ernst, N. Sondheimer, M.A. Deardorff, et al., The value of the metabolic autopsy in the pediatric hospital setting. J Pediatr 148 (2006), 779-783.
- [28] M. Kaback, J. Lim-Steele, D. Dabholkar, D. Brown, N. Levy and K. Zeiger, Tay-Sachs disease-carrier screening, prenatal diagnosis, and the molecular era. An international perspective, 1970 to 1993. The International TSD Data Collection Network. JAMA 270 (1993), 2307-2315.
- [29] R.M. Lew, L. Burnett, A.L. Proos, K. Barlow-Stewart, M.B. Delatycki, A. Bankier, H. Aizenberg, M.J. Field, Y. Berman, R. Fleischer and M. Fietz, Ashkenazi Jewish population screening for Tay-Sachs disease: The international and Australian experience. *J Paediatr Child Health* **51** (2015), 271-279.
- [30] K. Powell, Van Naarden, K. Braun and R. Singh, et al., Prevalence of developmental disabilities and receipt of special education services among children with an inborn error of metabolism. *J Pediatr* **156** (2010), 420-426.
- [31] N.E. Braverman, M.D. D'Agostino and G.E. Maclean. Peroxisome biogenesis disorders: Biological, clinical and pathophysiological perspectives. *Dev Disabil Res Rev* 17 (2013), 187-196.
- [32] J.T.R. Clarke, (Ed.), A Clinical Guide to Inherited Metabolic Diseases 3rd ed., Cambridge University Press, 2006.
- [33] M.J. Deem, Whole-Genome Sequencing and Disability in the NICU: Exploring Practical and Ethical Challenges. *Pediatrics* **137**(Suppl 1) (2016), S47-S55.