
Technology and Health Care 32 (2024) S423–S435 S423
DOI 10.3233/THC-248037
IOS Press

Super-resolution of diffusion-weighted
images using space-customized learning
model

Xitong Zhao and Zhijie Wen∗

Department of Mathematics, College of Sciences, Shanghai University, Shanghai, China

Abstract.
BACKGROUND: Diffusion-weighted imaging (DWI) is a noninvasive method used for investigating the microstructural
properties of the brain. However, a tradeoff exists between resolution and scanning time in clinical practice. Super-resolution has
been employed to enhance spatial resolution in natural images, but its application on high-dimensional and non-Euclidean DWI
remains challenging.
OBJECTIVE: This study aimed to develop an end-to-end deep learning network for enhancing the spatial resolution of DWI
through post-processing.
METHODS: We proposed a space-customized deep learning approach that leveraged convolutional neural networks (CNNs)
for the grid structural domain (x-space) and graph CNNs (GCNNs) for the diffusion gradient domain (q-space). Moreover, we
represented the output of CNN as a graph using correlations defined by a Gaussian kernel in q-space to bridge the gap between
CNN and GCNN feature formats.
RESULTS: Our model was evaluated on the Human Connectome Project, demonstrating the effective improvement of DWI
quality using our proposed method. Extended experiments also highlighted its advantages in downstream tasks.
CONCLUSION: The hybrid convolutional neural network exhibited distinct advantages in enhancing the spatial resolution of
DWI scans for the feature learning of heterogeneous spatial data.
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1. Introduction

As the only noninvasive technique for in vivo examination of white matter tracts, diffusion-weighted
imaging (DWI) plays a pivotal role in brain research [1]. However, DWI often encounters challenges
in terms of quality due to the tradeoff between resolution, signal-to-noise ratio (SNR), and scanning
time [2,3]. For instance, acquiring higher-resolution DWI scans undesirably prolongs scanning time
and lowers SNR. Conversely, low-resolution (LR) DWI can result in significant partial-volume effects
and introduce bias into subsequent processing steps, such as diffusion tensor fitting, fiber tractography,
and brain connectome construction. The demand for higher imaging spatial and angular resolutions has
increased with the advancement of the model’s capability to depict tissue microstructure. The duration
of magnetic resonance imaging (MRI) scans varies depending on several factors and typically ranges
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from 10 min to more than an hour. DWI necessitates longer scan times due to the requirement for a larger
number of sequences. Patients must maintain a fixed posture and remain still during scanning to ensure
data acquisition quality, which can be particularly challenging for infants. Despite continuous progress in
DWI, it has consistently faced the predicament of limited promotion and application in clinical practice.
Hence, addressing the urgent technical issue of meeting both high-quality imaging and high-efficiency
requirements for the clinical implementation of diffusion MRI has become imperative. Super-resolution
(SR) techniques can be employed to enhance the spatial resolution of DWI scans. In fact, SR has been a
longstanding topic within the MRI community with various algorithms already developed for the SR of
MRI scans [4,5,6,7,8,9,10,11]. All of these methods aim to map LR images to their high-resolution (HR)
counterparts using voxel correlations within an image or between different slice orientations.

The process of image acquisition can be perceived as a form of degradation, which can be mathemati-
cally represented as Y = f (X) +N , where X represents the original HR image, Y is the observed LR
image, f denotes the down-sampling function, and N represents the noise. Recovering X from Y poses
a challenging inverse problem [12,13]. SR techniques can be categorized into multi-image-based SR
(MISR) and single-image-based SR (SISR) depending on the number of input images used. MISR uses
multiple LR images to reconstruct an HR image. For instance, Greenspan and Scherrer acquired several
LR DWI scans using anisotropic orthogonal scanning and then reconstructed the HR DWI scans based on
them after making necessary corrections [2,9]. Compared with MISR, SISR requires only a single LR
image to predict its corresponding HR counterpart, making it more practical for clinical applications [14].

The DWI scans exist within a combined 6D domain, encompassing both the x-space (spatial domain)
and q-space (diffusion wave-vector domain). Within the x-space, diffusion signals are structured as a
collection of volumes with a 3D grid arrangement. Tanno et al. assessed the uncertainty of CNNs for
Bayesian quality transfer of DWI scans to enhance their spatial resolution [15]. They introduced generative
adversarial networks to augment the spatial resolution of DWI scans. Additionally, attempts were made to
leverage joint features from both x-space and q-space, represented by a graph, to learn missing information
during longitudinal brain studies in infant [3]. Furthermore, efforts were made to optimize memory and
computation costs to reduce model parameter capacity while ensuring efficient operation for deeper image
quality transfer tasks [16]. Finally, SR generative adversarial network, enhanced deep SR network, and
bicubic interpolation were employed in conjunction with each other to generate HR DWI scans for breast
tumor detection [17,18].

The DWI signal is associated with both the three-dimensional (3D) Euclidean space (x-space) and
the diffusion gradient angle space (q-space). Its heterogeneous and high-dimensional characteristics
pose challenges for effective learning using convolutional neural networks (CNNs). Although significant
research progress has been made in DWI SR technology using deep learning (DL), existing methods
primarily focus on feature learning in x-space and do not fully exploit the correlation between diffusion
gradient directions in q-space. Existing models for image SR in DWI can be broadly classified into two
groups. The first group primarily focuses on increasing spatial resolution without considering the impact
of q-space, as demonstrated by Alexander et al. [11] and Tanno et al. [15]. The second group pays more
attention to a unified framework by integrating both x-space and q-space with compromises induced
by heterogeneous domain fusion, as proposed by Chen et al. [3]. For overcoming these limitations, we
proposed a two-stage domain-directed (TSDD) learning network that fully exploited correlations in both
x-space and q-space to enhance the spatial resolution of DWI scans. In this study, “Domain Directed”
refers to the guiding convolution type based on the structure inherent to each domain. Specifically,
we relied on CNNs for effective perception in x-space and on graph CNNs (GCNNs) for exploiting
correlations in q-space. We designed a cascaded hybrid neural network comprising CNNs and GCNNs to
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Fig. 1. Illustration of reference graph construction. The 3D patch represents the coarse SR prediction. The reference graph was
composed of a graph node set and an adjacency matrix. The graph node set consisted of all of the diffusion gradient directions.
The adjacency matrix could be induced from affinity, which was a symmetric matrix that denoted the connection weight between
any two diffusion gradient directions.

address the aforementioned drawbacks. First, a residual CNN sub-network predicted coarse SR in the
x-space. Subsequently, GCNN refined this coarse SR in q-space. Compared with the existing models
that operated solely within specific domains, our approach leveraged the strengths of both CNNs in
grid-structure domains and GCNNs in non-Euclidean domains. Furthermore, serving as a post-processing
method, the approach was independent of scanning protocols. We evaluated our method using data from
the Human Connectome Project (HCP), demonstrating satisfactory performance achieved by TSDD.

The structure of our manuscript is outlined as follows. Section 2 provides a comprehensive description
of our network architecture. In Section 3, we present the datasets and discuss the obtained results. Section
4 delves into insightful discussions. Finally, in Section 5, we conclude our work.

2. Materials and methods

Existing studies have demonstrated the exceptional learning performance of CNN in domains charac-
terized by a grid structure. However, the effectiveness of CNN is limited when applied to non-Euclidean
spaces [19]. We proposed an end-to-end heterogeneous deep neural network that combined both CNN and
GCNN in the case of DWI scans where 3D volumes were sampled from q-space (a non-Euclidean and
wave-vector domain). Our approach involved using CNN to initially predict HR DWI scans in x-space
for each volume, followed by refining these predictions using GCNN to exploit the correlations among
diffusion gradients in q-space. The application of GCNN followed ChebNet [19], which was based
on graph spectrum analysis [20]. The output of CNN needed to be formatted accordingly to meet the
requirements of GCNN. For this purpose, we predefined a fixed graph as the reference for graph learning
in this study. The construction details of the reference graph are visualized in Fig. 1 and discussed in
Section 2.1. Additionally, Section 2.2 provides an introduction to GCNN, whereas Section 2.3 presents a
summary and discussion of our network architecture depicted in Fig. 2. Finally, Section 2.4 outlines the
loss function employed for this task.
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2.1. Reference graph

In the first stage, a CNN-based sub-network was used to predict a coarse DWI SR in the x-space.
However, the coarse SR obtained could not be directly fed into the subsequent GCNN-based sub-network
due to the inconsistent data format. Graph-structured samples are essential for GCNN. Therefore, we
needed to bridge the format gap and make training feasible in our two-stage network with hybrid
convolutions. To achieve this goal, we constructed a reference graph in q-space to leverage correlations
among diffusions. This reference graph served as an indispensable component for graph convolution
operations in our experiments. The details of reference graph construction are illustrated in Fig. 1.

Wij = e
1−(−→gi·−→gj)

2

−σ (1)

where i, j ∈ [1, . . . ,N] are the indices of diffusion gradient directions, −→gi · −→gj is the dot product, and σ is
the bandwidth of the Gaussian kernel. As illustrated in Fig. 1, diffusion signals of each voxel in the coarse
SR 3D patch were arranged in order as the graph signal. Affinity matrix is a symmetric positive definite
matrix, andWij is the quantified correlation of any two diffusion gradient directions in the q-space. From
the affinity matrix, a weighted adjacency matrix could be easily induced by setting the main diagonal
elements with 0. The evaluation of our model is currently limited to single-shell DWI scans (b value =
1000) due to computational resource constraints. However, we plan to extend it to multi-shell DWI SR in
the future.

2.2. Graph CNN

In the last decade, DL has demonstrated exceptional performance across various applications. Par-
ticularly, CNNs and recurrent neural networks have achieved state-of-the-art results in computer vision
and speech recognition tasks. Generally, CNNs are employed for feature extraction from 2D or 3D grid-
structured data. However, they cannot be directly applied to high-dimensional or non-Euclidean datasets
such as citations and social networks. DWI data possess both high-dimensional and non-Euclidean
characteristics due to the dependence of their voxel values on spatial location and diffusion wave-vector.
Conventional CNN models also exhibit limited effectiveness when applied to DWI data.

Many approaches have been proposed for the application of DL to non-Euclidean data, including those
by Bronstein et al., Lee et al., and Li et al. [21,22,23]. Among these, GCNN stands out as a convolutional
model based on graph spectrum, which was initially introduced by Bruna et al. [20]. Compared with
CNNs, GCNNs offer a more versatile learning framework that leverages frequency domain multiplication
to define graph convolutions and allows for the definition of graph filters as follows:

y = gθ (L)x = gθ
(
UΛUT

)
x = Ugθ (Λ)UTx (2)

where L is the Laplacian matrix of the graph, U is graph Fourier transformation (GFT), and UT is inverse
GFT. gθ(Λ) is a nonparametric filter defined as follows:

gθ (Λ) = diag (θ) (3)

where θ ∈ Rn is a vector of Fourier coefficients. However, it is not a localized filter in space. Therefore,
it is localized using Kth order polynomials of the Laplacian Henaff et al. [24]. The localized graph filter
is defined as follows:

gθ (Λ) =
∑K−1

k=0
θkΛ

k (4)
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where θ ∈ Rk is a vector of polynomial coefficients. To accelerate graph filtering, Defferrard et al. [19]
and A et al. [25] introduced the use of the Chebyshev polynomial, leading to the following revision of the
graph filter:

gθ (Λ) =
∑K−1

k=0
θkTk

(
Λ̃
)

(5)

where Tk
(

Λ̃
)
∈ Rn×n is the Chebyshev polynomial of order k evaluated at Λ̃ = 2Λ/λmax − In,

Λ = Diag([λ0, . . . , λn−1]) ∈ Rn×n denotes the associated ordered real non-negative eigenvalues
{λl}n−1

l=0 , and λmax is the maximum eigenvalue of the graph Laplacian matrix, which is defined as
L = D −W ∈ Rn×n, where D ∈ Rn×n is the diagonal degree matrix with Dij =

∑
jWij . The

filtering operation is written as y = gθ (L)x =
∑K−1

k=0 θkTk

(
L̃
)
x, where Tk

(
L̃
)
x ∈ Rn×n is the

Chebyshev polynomial of order k evaluated at the scaled Laplacian. According to the recurrence relation
x̄k = 2L̃x̄k−1 − x̄k−2 with x̄k = Tk(L̃)x ∈ Rn, x̄0 and x̄1 = L̃x. The filtering operation is defined as
y = gθ (L)x = [x̄0, . . . , x̄k−1]θ.

GCNN has displayed outstanding performance in some studies. For instance, Kipf and Welling proposed
a semi-supervised learning network based on GCNN for citation network classification [26]. Ktena et
al. used GCNN to examine the difference between two functional brain networks [27]. The correlations
in q-space were fully exploited in this task based on GCNN to improve the performance of DWI SR.
Section 2.3 explains in detail how to build a hybrid neural network, and Section 2.4 describes how to
train a hybrid neural network in the DWI SR task.

2.3. TSDD neural network

As previously mentioned, DWI data exist in a 6D space, consisting of three dimensions for spatial
space and three dimensions for diffusion directions. Each diffusion direction has a DWI scan organized
as a volume with a 3D grid structure. Leveraging this prior structural information is advantageous for SR
performance. Given the significant advantages of CNNs in learning tasks involving 2D or 3D data, we
first employed them for coarse SR prediction. Additionally, we proposed using correlations in diffusion
gradients to enhance SR performance because the diffusion signal was influenced by not only spatial
position but also diffusion gradient direction.

We referred to our proposed SR method as the TSDD neural network. In the first stage, we developed a
3D version of dense convolutional networks (DenseNet [28]) to generate a coarse SR prediction solely
based on the 3D DWI scans. Subsequently, in the second stage, we transformed this coarse prediction into
a graph using the approach described in Section 2.1 and enhanced it through GCNN refinement. Thus, we
effectively leveraged the strengths of CNNs and GCNNs across distinct data domains for accomplishing
the DWI SR task.

As shown in Fig. 2, our network consisted of two sub-networks: dense CNN and graph CNN. The input
of our network was the LR DWI scans, whereas the target output was the SR DWI scans. The whole
pipeline could be formulated as follows:

IH = Fq (Fx (IL)) (6)

where IL is the LR DWI, IH is the HR DWI scan, Fx is the learning module in the x-space, and Fq is the
learning module in the q-space.

DenseNet has proven to be highly effective in image SR tasks because it promotes feature reuse
and alleviates the vanishing gradient problem that can plague deep networks [29,30,31]. The output of
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Fig. 2. Architecture of our proposed two-stage domain-directed network to reconstruct HR DWI scans. The first stage included
the coarse SR DWI scans (CSR) based on CNN in x-space. The second stage included the refinement using GCNN in q-space.

DenseNet is a coarse SR prediction, which is enhanced in the x-space with a 3D grid structure. The signals
of each voxel at all diffusion gradients were organized as a vector, as discussed in Section 2.1. Then,
leveraging the reference graph illustrated in Fig. 1, the CSR was represented as a graph and inputted into
the sub-network based on GCNN.

The input of GCNN consisted of two parts: graph signal and reference graph. The representation of the
graph signal and reference graph is shown in Fig. 1. The specific generation process has been described in
detail in Section 2.1. The graph CNN in this study was based on ChebNet [19]. The specific convolution
operation definition has been explained in Section 2.2. The graph convolutional layer primarily involved
two parameters: the order of the Chebyshev polynomial and the number of filters, also known as channels.
These parameters collectively determined the capacity of network parameters. The order of the Chebyshev
polynomial determined both the number of parameters in the graph convolution filter and its neighborhood
range within the graph. The experimental results demonstrated that an optimal outcome could be achieved
when setting the order to 2, with minimal impact on performance, by increasing it further. In this study, all
graph convolution filters in GCNN were set to order 2. For our experiments, we configured the number of
channels for each graph convolutional layer as follows: 1 channel for input graphs, 64 channels for middle
layers, and 1 channel for the final layer. Following this output graph stage, three additional convolutional
layers similar to those used at the inception of CNN were employed to strike a balance between smoothing
and sharpening.

2.4. Loss function

The DWI SR in this task was considered as a regression procedure from LR to HR. Similar to most
regression networks, the mean square error (MSE) was used as an objective function in both CNN- and
GCNN-based sub-networks. The details of the MSE loss was defined as follows:

Lossmse =

∑n
i=1

∑N
j=1

(
V̂ij − Vij

)2
n ∗N

(7)
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where n is the number of voxels in the 3D patch,N is the number of diffusion gradient directions, i is
the index of voxels, j is the index of diffusion gradient direction, V̂ij is the prediction of the voxel value
of the ith voxel in the 3D patch along jth diffusion gradient direction, and Vij is the ground truth.

According to the graph spectral theory, edge connections between nodes in a graph can be expressed
as a Laplacian matrix. To evaluate the similarity between the predicted and target graphs, we defined
Laplacian loss as follows:

Losslap =

∑n
i=1

(
L× V̂i − L× Vi

)2
n

(8)

where n is the number of voxels in the 3D patch, V̂i is the graph signal of ith voxel in the predicted
HR 3D patch, Vi is the graph signal of the corresponding voxel in the target HR 3D patch, and L is the
Laplacian matrix of the graph.L×V can be viewed as the second-derivative transformation on the graph,
representing the projection of voxel signal values onto the graph. Our training consisted of the following
two steps to ensure a stable error gradient backpropagation for updating parameters in two heterogeneous
convolution sub-networks (CNN and GCNN). In the first step, we just updated the parameters of CNN
sub-networks. The total loss was defined as follows:

Losstotal = Lossmse + λ ·
∑

ω̄2
ij (9)

where λ ·
∑
ω̄2
ij is a regular parameter with coefficient λ = 1e-8 and ω̄ij are parameters in the CNN

sub-network. In the second step, the parameters in the CNN component were fixed; only the parameters
in the GCNN sub-network were updated. The total loss was defined as follows:

Losstotal = α · Lossmse + β · Losslap + λ ·
∑

ω̄2
ij (10)

where α = 0.5 and β = 0.5 are weights for Lossmse and Losslap,
∑
ω̄2
ij is a regular parameter with

coefficient λ = 1e − 8, and ω̄ij are parameters in the GCNN sub-network.

3. Experiments

3.1. Data

The actual brain diffusion MRI data used in this study were acquired by Washington University in Saint
Louis and the University of Minnesota [32], and downloaded from the HCP. Scanning was performed on
a Siemens 3T Skyra scanner using a 2D spin-echo single-shot multi-band EPI sequence with a multi-band
factor of 3 and a monopolar gradient pulse. The spatial resolution was set to 1.25 mm isotropic, with TR
= 5500 ms, TE = 89.50 ms, and a b value of 1000 s/mm2. Besides the acquisition of 6 b0 images, 90
diffusion sampling directions were detected. The preprocessed data underwent correction for eddy current
and susceptibility artifacts as described by Andersson et al. and Sotiropoulos [33,34,35]. The DWI scans
were normalized to values between 0 and 1 by dividing them with the average b0 image intensity. LR
DWI scans were obtained through down-sampling using linear interpolation from real HR DWI scans
with a scale factor of two. We randomly selected 25 subjects from the HCP dataset, which were roughly
divided into training set (20 subjects), validation set (2 subjects), and test set (3 subjects) according to an
approximate ratio of 8:1:1, respectively. For each volume, we extracted 3D voxel patches with a fixed size
and an offset of four units along each dimension. We maintained a consistent offset value of two units
between adjacent patches within the scan volume of each subject. Each subject contributed approximately
30,000 non-background or non-zero-filled voxel patches, resulting in an estimated size for our training
dataset of about 600,000 samples.
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Fig. 3. Reconstructed HR DWI scans (first row) and the corresponding FA images (second row). The first column represents the
input low-resolution DWI scan.

3.2. Training setting

The Adam optimizer was employed to train our model, with an initial learning rate of 10-4 and a
decay frequency of once every 5000 iterations. Other training settings were as follows: a batch size of 20
and a maximum epoch set to 300. Additionally, we used a nonzero-ratio of 0.1 to discard voxel patches
containing excessive zeros. Our network implementation was based on the TensorFlow 1.9 framework.
The training process took approximately 12 h using a single GTX 2080Ti GPU.

3.3. Evaluation metrics

The computation of three quantitative metrics, such as MSE, peak signal-to-noise ratio (PSNR), and
structural similarity (SSIM), was conducted as proposed previously [36]. The mathematical definitions
for MSE, PSNR, and SSIM are presented in Eqs (11), (12), and (13), respectively. In this study, we solely
evaluated our model using single-shell data while reserving the evaluation on multi-shell data for future
investigation. MSE is defined as follows:

SE =
1

N ×H ×W ×D
∑N−1

g=0

∑H−1

x=0

∑W−1

y=0

∑D−1

z=0

(
V̂g,x,y,z − Vg,x,y,z

)2
(11)

where H , W , and D are the height, width, and depth of a 3D voxel patch, respectively, N is the number
of diffusion gradient directions, V̂g,x,y,z is the predicted signal value of the location (x, y, z) in the 3D
voxel patch along the diffusion gradient direction g, and Vg,x,y,z is the ground truth. PSNR is defined as
follows:

PSNR = 10× log10
Max2

MSE
(12)

where Max denotes the maximum diffusion value. In our experiment, DWI data were normalized to the
value range of (0 1); thus, Max was 1. SSIM is defined as follows:

SSIM =
(2µSµH + C1) (2σSH + C2)(

µ2S + µ2H + C1

) (
σ2S + σ2H + C2

) (13)

where µS and µH are the mean values of the predicted and ground-truth HR DWI scans, respectively,
whereas σx and Aσy are the standard deviation of the predicted and ground-truth HR DWI scans,
respectively, and σS and σH are the covariance. C1 and C2 are constants.
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Fig. 4. Comparison of error maps of the predicted HR DWI scans.

Fig. 5. Comparison of error maps of derived FA from reconstructed DWI scans.

Fig. 6. Comparison of the colored FA from the reconstructed HR DWI scans.

3.4. Results

Comparisons were made on bicubic interpolation citation: CNN-only neural network and GCNN-only
neural network with the same capacity of parameters. We also evaluated the quality of derived diffusion
features, including fractional anisotropy (FA), fiber orientation distribution functions (fODFs) and fiber
tracts. As shown in Fig. 3, the results of our proposed method were closer to the ground truth. We also
computed the error maps for DWI and FA values (Figs 4 and 5). These figures show that our proposed
method still achieved the best performance. The colored FA images are shown in Fig. 6. We zoomed in
on some local regions of DWI scans, as shown in Fig. 7. These results indicated that our model achieved
better performance with more structural details. fODFs are visualized in Fig. 8, indicating that the
proposed model had coherent and clean fiber distributions close to the ground truth. We further performed
tractography to evaluate our method. The fiber tracking results are visualized in Fig. 9, indicating that our
model yielded rich fiber tracts extremely similar to the ground truth. All of the source images and their
featured mappings were visualized using MRtrix3 [37].

The quantitative results are displayed in Table 1 As shown, the proposed method achieved the best
performance in terms of PSNR and SSIM.
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Table 1
Quantitative comparative analysis in terms of PSNR and SSIM

Model Linear NLM CNN GCNN TSDD
DWI 29.69 and 0.90 30.16 and 0.92 30.49 and 0.95 28.29 and 0.94 33.52 and 0.96
FA 30.11 and 0.92 31.24 and 0.93 32.46 and 0.96 30.35 and 0.93 34.32 and 0.98

Fig. 7. Detailed comparison of the reconstructed DWI scans.

Fig. 8. Comparison of the fiber orientation distribution function (fODF).

Fig. 9. Comparison of fiber tractography using different models.
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4. Discussion

In our experiments, the voxel value in DWI scans was normalized to [0–1], reducing the loss value.
So, a smaller regulation coefficient was a reasonable choice in training, for example, 5 × 10−6. The
nonzero rate was set to eliminate patches with too many zero voxels to crop the background and keep the
boundary consistent. In our study, the value of the nonzero rate was set as 0.6. Additionally, the filter size
in graph convolution is an extremely sensitive and time-consuming factor. Hence, a low-order polynomial
can effectively contribute to stable learning on the graph. In our experiments, the best performance was
achieved with a second-order Chebyshev polynomial.

5. Conclusions

In this study, we proposed a two-stage and domain-directed convolutional learning model for increasing
the spatial resolution of LR DWI scans. In our proposed network, we used CNN and GCNN to extract
spatial and angular information from grid structural and diffusion domains, respectively. Extensive
experiments using HCP data demonstrated the improved performance of our proposed method in both
qualitative and quantitative evaluations. Our model had the potential to be applied to other studies
requiring learning from heterogeneous data domains.
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