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Abstract.
BACKGROUND: Cardiovascular diseases are the top cause of death in China. Manual segmentation of cardiovascular images,
prone to errors, demands an automated, rapid, and precise solution for clinical diagnosis.
OBJECTIVE: The paper highlights deep learning in automatic cardiovascular image segmentation, efficiently identifying pixel
regions of interest for auxiliary diagnosis and research in cardiovascular diseases.
METHODS: In our study, we introduce innovative Region Weighted Fusion (RWF) and Shape Feature Refinement (SFR)
modules, utilizing polarized self-attention for significant performance improvement in multiscale feature integration and shape
fine-tuning. The RWF module includes reshaping, weight computation, and feature fusion, enhancing high-resolution attention
computation and reducing information loss. Model optimization through loss functions offers a more reliable solution for
cardiovascular medical image processing.
RESULTS: Our method excels in segmentation accuracy, emphasizing the vital role of the RWF module. It demonstrates
outstanding performance in cardiovascular image segmentation, potentially raising clinical practice standards.
CONCLUSIONS: Our method ensures reliable medical image processing, guiding cardiovascular segmentation for future
advancements in practical healthcare and contributing scientifically to enhanced disease diagnosis and treatment.
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1. Introduction

Cardiovascular diseases encompass heart and vascular conditions, including coronary heart disease,
cerebrovascular diseases, arterial diseases, and venous thrombosis. The global incidence of cardiovascular
diseases has been steadily increasing in recent years, posing a significant public health challenge. In
China, with economic development and accelerated aging, the prevalence of cardiovascular diseases is
becoming more pronounced. Therefore, it is crucial to enhance prevention and treatment strategies for
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cardiovascular diseases. Despite advancements in medical imaging technology, manual segmentation
by experts is time-consuming and labor-intensive. The complexity of cardiovascular structures leads to
subjective interpretations and significant impacts on optimal treatment strategy decisions. Therefore,
there is an urgent need for the development of automatic segmentation techniques [1].

In recent years, deep learning-based medical image analysis has become a research hotspot due to
its ability to rapidly and accurately process massive data, aiding physicians in improving diagnostic
efficiency. Deep neural networks, especially in medical image segmentation, have shown outstanding
performance, influencing modern cardiovascular disease diagnosis and treatment models. However, the
heterogeneity, complex structures, and contrast variations present in medical imaging data, especially in
cardiovascular contexts [2], require large amounts of high-quality annotations for model training.

To enhance model accuracy, we propose the integration of effective feature extraction methods [3],
attention mechanisms [4], and multi-scale fusion strategies [5]. Additionally, we introduce a novel polar-
ized self-attention strategy to further improve spatial and channel features, enhancing the segmentation
model’s performance. Automatic segmentation of cardiovascular images can significantly reduce the
workload of physicians, save diagnostic time, predict cardiovascular diseases in patients in advance, and
facilitate timely treatment, effectively reducing the mortality rate and mitigating the threat of cardiovas-
cular diseases to human life and health. This research holds substantial significance for the diagnosis and
treatment of cardiovascular diseases.

2. Literature review

Medical image segmentation for cardiovascular disease research has gained attention, historically
relying on traditional methods like thresholding [6], edge detection [7], and region-growing algorithms [8].
While artificial intelligence has entered the field, deep learning applications in cardiovascular diagnosis
from large-scale datasets are limited. Current deep learning focuses on convolutional neural networks,
lacking efficiency exploration. Challenges include significant feature variations across medical image
locations. Medical image segmentation can improve efficiency, but the shortage of high-quality annotated
data prompts exploration of traditional supervised learning methods, like machine learning and attention
mechanisms.

2.1. Evolution of machine learning in segmentation

Compared to traditional methods, deep learning iteratively improves segmentation accuracy through
continuous training, especially with uniform characteristic images. Deep learning offers faster computation
and adaptability for batch processing. U-Net’s [9] paired encoder-decoder structures with skip connections
address limitations and enhance pixel-level and semantic information for better segmentation. Wu et
al. [10] introduced multiple supervised pathways for richer scale features. Angio-Net [11] enables
continuous preprocessing modification, while SD-Net [12] simplifies the network for efficiency. CE-
Net [13] captures advanced semantic information with a multiscale context encoding module. Despite
successes, challenges persist due to cardiovascular image heterogeneity. Researchers explore multiscale
features, attention mechanisms, and novel architectures [14] to address these challenges.

2.2. Attention mechanisms in segmentation

Inspired by human visual attention, attention mechanisms crucially enhance segmentation accuracy.
The self-attention mechanism proposed by Vaswani et al. [15] allows focusing on relevant image regions,
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Fig. 1. The flowchart of proposed segmentation model.

while polarized self-attention [16] selectively retains essential features. These innovations aim to provide
adaptive and robust segmentation models, vital for clinical practice. The effectiveness of attention
mechanisms has garnered attention, with many attention mechanisms proposed and proven effective
in improving network performance and reducing computational costs, among which the most widely
used is CBAM (Convolutional Block Attention Module) [17] and its variants. Gou et al. [18] introduced
SA-UNet based on SD-UNet, using dropblock instead of dropout and adding a spatial attention module.
The improved network can better extract small vessels and reduce noise. ESA-UNet [19] introduced
an enhanced spatial attention module (ESA), which can better adaptively redistribute features based on
spatial context content, enabling the network model to understand more contextual information about the
image. Automated segmentation methods contribute to increased efficiency, reducing the time burden on
clinical practitioners for timely interventions. Overall, the transition from traditional to advanced machine
learning technologies in cardiovascular image segmentation emphasizes addressing image heterogeneity
and complex anatomical structures, aiming for better healthcare outcomes.

3. Materials and methods

3.1. Animal experiments to measure ABR

The suggested network architecture, shown in Fig. 1, adopts a novel method to represent the links
between inter-class homogeneity to concentrate on cardiovascular image segmentation. Using an encoder
to extract important features from cardiovascular pictures, the method generates segmentation masks for
each kind of tissue by accurately separating cardiovascular tissues from the backdrop using a decoder.
The method ensures adaptability by adjusting the feature map sizes to fit the feature map dimensions of
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the input cardiovascular image. By improving the precision and effectiveness of cardiovascular picture
segmentation, this method seeks to offer a more dependable clinical medical image processing solution.

HRNetV1 is selected as the spine for feature extraction during the encoding step of the cardiovascular
image segmentation procedure. There are two main benefits that this backbone has. First off, the network
structure as a whole maintains high-resolution characteristics, which helps identify small tissue blocks in
the images with accuracy. Second, HRNetV1 ensures efficient use of information contained in each reso-
lution’s feature map by combining feature maps of various resolutions, facilitating effective information
interchange. Each input image yields four feature maps from the backbone.

During the decoding process, a Region Weighted Fusion (RWF) module is employed for multi-scale
feature fusion. Subsequently, the fused feature maps are input into the Shape Feature Refinement (SFR)
module to fine-tune learning of shape features, enabling interaction and influence among features. Finally,
a classifier with 1 × 1 convolutions is used to adjust the channel numbers of the input image to match
the desired classes, and the results are down sampled to the input image’s size, yielding the semantic
segmentation results for cardiovascular pathological images.

Introducing and integrating a Self-Attention module into the suggested RWF module is a creative
departure from traditional feature fusion techniques. This module, which is based on the polarized
self-attention mechanism, correlates channel features and learns the significance of spatial information at
various scales. It then adaptively and selectively keeps important features while removing unnecessary
ones. The model performs much better in cardiovascular image segmentation tasks thanks to its innovative
design. For a thorough schematic of the RWF structure, see Fig. 2.

Three phases make up the RWF module in cardiovascular picture segmentation: feature fusion, weight
computation, and reshaping. The first stage involves adjusting the feature map sizes (t ∈ {1, 2, 3, 4})
to yield (E′O) by using nearest-neighbor interpolation. Then, a 3 × 3 convolution (U3) yields enhanced
feature information, which becomes U3 (E′O). The weights of U3 (E′O) are determined by introducing
a self-attention mechanism in the second stage. Subsequently, the four weighted feature maps undergo
1 × 1 convolutions to modify their channel numbers, yielding the output weighted feature map At
(t ∈ {1, 2, 3, 4}). In the third and final stage, the feature map with modified weights is obtained by
multiplying U3 (E′O) and At pixel-by-pixel. The final feature map is created by concatenating these fused
feature maps.

Inspired by the properties of polarizing lenses, a polarized self-attention mechanism is utilized in
the second step of the RWF module. This mechanism, allows filtering of light in random directions,
orthogonal to the horizontally passing light. In the attention calculation, a polarized filtering mechanism
is established, maintaining high-resolution attention computation dimensions and reducing information
loss. This innovative design enhances the model’s performance in cardiovascular image segmentation
tasks.

Equaattion (1) is used to calculate the feature tensor of a sample for cardiovascular image segmentation.
This feature tensor is represented as EO

t ∈ Rh×w×c, where h,w, and c stand for the feature tensor’s
height, width, and channel number, respectively. The channel attention weight AC (X) plus the spatial
attention weight AS (X) add up to the attention weight H(·) that the attention mechanism outputs.

H (·) = AC (X) +AS (X) (1)

More specifically, Eq. (2) is used to determine the channel attention weight AC (X):

AC (X) = FSi (Y (U3 (B (U1 (X))× FSo (B2 (U2 (X)))))) (2)

And the weight of spatial attention Eq. (2). Equation (3) is utilized to calculate AS (X):

AS (X) = FSi (B3 (FSo (B1 (G (U2 (X))))×B2 (U1 (X)))) (3)
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Fig. 2. Schematic diagram of the structure of the RWF module. It mainly includes three steps of remodeling, weight calculation
and feature fusion.



S408 S. Liao et al. / Optimizing cardiovascular image segmentation through integrated hierarchical features

The softmax operation, which increases the dynamic range of attention by normalizing, is represented
by Fso in the functions above. The sigmoid operation is represented by Fsi, and the probability distribution
function that makes use of the high-resolution data kept in the attention branch is the softmax-sigmoid
combination. G stands for global average pooling, X is the cross product, Bi is tensor reshaping, Ui is
the i× i convolution operation, and Y is layer normalization.

The weights from each feature map are concatenated and fused in the third stage, known as “Feature
Fusion,” in order to preserve the weights of particular features within a single feature map as well as
the significance of weights from separate feature maps. By removing unnecessary characteristics, this
procedure helps to retain important feature information for tissue segmentation in an adaptable and
selective manner.

3.2. Loss function

For comprehensive training, an effective loss function is crucial in image segmentation tasks. The Dice
Loss is commonly used, defined as the sum of predicted and ground truth binary values divided by the
total number of pixels. For multi-class segmentation, adding Cross-Entropy Loss is beneficial. To prevent
overfitting, an L2 norm term for the network’s parameters can be introduced. The final weighted loss
function combines these components, ensuring efficient training and generalization of the cardiovascular
image segmentation model. Adjusting weights allows fine-tuning based on the significance of each loss
component for specific segmentation tasks.

DiceLoss = 1−
2×

∑n
i (pi × gi)∑n

i p
2
i +

∑n
i g

2
i

(4)

Cross − EntropyLoss = −
∑n

i
(gi × log (pi)) (5)

L2Regularization = λ×
∑N

i
||Wi||2 (6)

TotalLoss = wDice × DiceLoss + wCE × Cross− EntropyLoss + wL2 × L2Regularization (7)

Where pi and gi are the predicted and ground truth binary values for each pixel, respectively, and n is
the total number of pixels. Wi denotes the network’s parameters, N is the total number of parameters,
and λ is the regularization strength. The weights wDice, wCE, and wL2 are modifiable to equalize the
contributions of each loss component.

4. Experiments

4.1. Datasets

Our dataset for coronary computed tomography (CCTA) includes the proximal descending aorta (DA),
inferior vena cava (IVC), coronary sinus (CS), right ventricular wall (RVW) and left atrial wall (LAW).
These annotations were created and validated by board-certified cardiologists and were used as “ground
truth” for the deep learning model.

We used standard segmentation evaluation metrics, including Hausdorff Distance (HD), Intersection
over Union (IoU), and Dice Coefficient (Dice), to quantify the performance of our method and baseline



S. Liao et al. / Optimizing cardiovascular image segmentation through integrated hierarchical features S409

Table 1
Comparative performance of segmentation methods

Methods Dice IoU HD
Proposed method 0.85 0.78 12.3
U-Net 0.78 0.69 15.2
DeepLab 0.79 0.72 14.5
Attention U-Net 0.81 0.75 13.8

Table 2
Deconstructing the impact of RWF module components

Model Dice coefficient IoU
Baseline Model (BM) 0.85 0.78
No Self-Attention (NSA) 0.82 0.75
No Polarized Self-Attention (NPSA) 0.83 0.76
No Feature Fusion (NFF) 0.81 0.74
No Reshaping (NR) 0.80 0.73

approaches. These metrics measure boundary dissimilarity, segmentation accuracy, and spatial overlap,
respectively.

Dice =
2 |A∩B|
|A|+ |B|

=
2TP

2TP + FP + FN
(8)

IoU =
|A∩B|
|A∪B|

=
TP

TP + FP + FN
(9)

HD (A,B) = max (supa ∈ A inf b ∈ B d (a, b) , sup b ∈ B inf a ∈ A d (a, b)) (10)

The distance between midpoints (d(a, b)) measures the dissimilarity between setsA andB, representing
two segmentation masks. TP, TN, FP, and FN denote true positives, true negatives, false positives, and
false negatives, respectively.

4.2. Results and comparative analysis

We evaluated our suggested approach’s performance by contrasting it with a number of cutting-edge
techniques for segmenting cardiovascular images, such as Attention U-Net [21], DeepLab [14], and
U-Net [9]. These techniques serve as the foundation for our comparison study and are the industry
standards as of right now. The suggested approach was trained using the same training parameters and in
the same experimental setup as the comparison model to guarantee the experiment’s fairness.

The experimental findings, which are shown in Table 1, demonstrate how successful our suggested
strategy is in comparison to baseline techniques. In every evaluation indicator, the suggested approach
surpassed the current ones with consistent results. The suggested approach outperformed U-Net by 0.08
and 0.09, respectively, and showed a notable increase in segmentation accuracy, obtaining a Dice of 0.85
and an IoU of 0.78. When compared to baseline approaches, this shows improved boundary alignment
and spatial overlap. Furthermore, the HD is 2.9% less than U-Net’s. The reduced HD provides more
evidence of our method’s effectiveness in precisely capturing anatomical details.

4.3. Qualitative analysis

A visual comparison of the segmentation findings for CS, DA, IVC, LAW, and RVW is presented
in Fig. 3. Red indicates the segmentation outcomes of various techniques, while green indicates the
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Fig. 3. Qualitative segmentation results.

ground truth in the segmentation findings. The suggested technique shows that it can correctly identify
cardiac components even under difficult conditions with fluctuating contrast and intricate anatomical
features. The unique incorporation of the polarized self-attention mechanism, which selectively preserves
relevant aspects while suppressing irrelevant information, is credited with our suggested method’s higher
performance. The robustness of this approach is further demonstrated by its capacity to adapt to various
imaging situations.

In these sampled regions, all models used for comparison returned some errors and missed detection
results. For the CS structure, both Attention U-Net and DeepLab failed to completely identify the CS
structure, and U-Net struggled to differentiate CS structure from other relevant matrix parts, resulting
in the segmentation of other relevant matrix parts as CS. In the DA structure, except for our proposed
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model, other comparative models failed to correctly segment the boundaries of the DA. For the IVC
structure, DeepLab and U-Net enlarged the segmented part of the IVC structure, significantly impacting
the segmentation results. In the LAW structure, although parts of the LAW structure are relatively small,
noticeable defects and distorted segmentation shapes are evident in the results of Attention U-Net,
DeepLab, and U-Net. Finally, in the RVW structure, our proposed method, along with Attention U-Net
and DeepLab, achieved segmentation results closely resembling the Ground Truth, while U-Net led to
incomplete segmentation structures.

The results show, in summary, that our suggested method outperforms existing methods in cardio-
vascular image segmentation. Experimental results demonstrate that the proposed improvement method
effectively enhances the segmentation outcomes of cardiovascular images. Comparative analysis with
other state-of-the-art segmentation methods indicates the superiority of the proposed segmentation
approach, showcasing excellent segmentation results.

4.4. Deconstructing the impact of RWF module components

To validate the effectiveness of our method, ablation experiments deconstructed the effect of RWF
module components on cardiovascular image segmentation. The experimental configuration includes
baseline model (BM), no self-retention (NSA), no polarization self-retention (NPSA), no feature fusion
(NFF), and no remodeling (NR) modules. Evaluation metrics such as Dice coefficient and IoU on the
validation set show that the results of the ablation experiments indicate that each element of the RWF
module contributes significantly to the segmentation performance of the model. The effective capture of
spatial features depends heavily on the self-attention mechanism, especially its polarized version. The
feature fusion stage also illustrates the importance of retaining important data for organizing segmentation.
Although the contribution of the remodeling stage was not significant, good results were achieved.

In conclusion, the accuracy and efficiency of the cardiovascular image segmentation model was
improved by the new components of the proposed RWF module. The thorough analysis makes it easier to
understand the different functions of each module and also provides suggestions for future iterations of
the model for greater improvement and refinement.

5. Conclusions and future work

5.1. Conclusions and future directions

Cardiovascular disease, a significant health threat, necessitates advanced segmentation methods. Our
study introduces an innovative cardiovascular image segmentation approach, optimizing segmentation
through hierarchical features and attention mechanisms. Utilizing a polarized self-attention strategy, the
method achieves refined segmentation, excelling in distinguishing cardiac structures. Key contributions
and conclusions include:

Improved Segmentation Accuracy: Experimental results show enhanced precision in metrics like
Intersection over Union (IoU) and Dice similarity coefficient.

Adaptability to Varied Imaging Conditions: The method exhibits high segmentation capabilities under
contrast, resolution, and anatomical structure variations.

Enhanced Understanding of Image Features: Integration of polarized attention improves the model’s
recognition and utilization of cardiovascular image features.
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5.2. Future work

Future research will explore:
Vascular Segmentation: Addressing cardiovascular vessel segmentation and extending the method to

other vascular segmentation tasks.
Data Challenges: Tackling segmentation challenges in cardiovascular image data with small samples or

limited annotations.
Enhanced Accuracy: Improving segmentation accuracy for tasks like organ size assessment through

more powerful feature extraction networks.
Clinical Integration: Exploring how segmentation outcomes can specifically contribute to clinical-

assisted diagnostic processes.
Integrated Approaches: Implementing an integrated approach involving multiple segmentation models

to establish a comprehensive diagnostic platform for cardiovascular diseases.
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