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Abstract.
BACKGROUND: Brain tumor is a highly destructive, aggressive, and fatal disease. The presence of brain tumors can disrupt
the brain’s ability to control body movements, consciousness, sensations, thoughts, speech, and memory. Brain tumors are often
accompanied by symptoms like epilepsy, headaches, and sensory loss, leading to varying degrees of cognitive impairment in
affected patients.
OBJECTIVE: The study goal is to develop an effective method to detect and segment brain tumor with high accurancy.
METHODS: This paper proposes a novel U-Net++ network using EfficientNet as the encoder to segment brain tumors based
on MRI images. We adjust the original U-Net++ model by removing the dense skip connections between sub-networks to
simplify computational complexity and improve model efficiency, while the connections of feature maps at the same resolution
level are retained to bridge the semantic gap.
RESULTS: The proposed segmentation model is trained and tested on Kaggle’s LGG brain tumor dataset, which obtains a
satisfying performance with a Dice coefficient of 0.9180.
CONCLUSION: This paper conducts research on brain tumor segmentation, using the U-Net++ network with EfficientNet as
an encoder to segment brain tumors based on MRI images. We adjust the original U-Net++ model to simplify calculations
and maintains rich semantic spatial features at the same time. Multiple loss functions are compared in this study and their
effectiveness are discussed. The experimental results shows the model achieves a high segmention result with Dice coefficient of
0.9180.
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1. Introduction

Brain tumors are formed by the growth of abnormal cells in the brain. Accurate and reliable segmenta-
tion of brain tumors is crucial for diagnosis, treatment planning, and monitoring of tumor progression.
However, due to the widespread use of MRI equipment in brain examination, a large amount of brain
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MRI images will be generated in the clinic, which is impossible for doctors to manually annotate and
segment. Furthermore, due to the intricate neural structures within the brain, segmenting brain tumors
can be particularly challenging. Patients may experience severe symptoms such as epilepsy, aphasia, de-
mentia, and cognitive impairment after the surgery, resulting in irreversible damage. Cleanly segmenting
tumor tissue and avoiding damage to normal nerve tissue can significantly drop the probability of the
above-mentioned surgical sequelae and reduce tumor recurrence rate, which is crucial for mitigating the
suffering of patients and prolonging the survival time.

Automatic segmentation networks have the ability to analyze a large amount of medical data to
detect and segment tumors, usually getting segmentation results in a short time and achieving higher
accuracy than manual diagnosis. This paper aims to separate tumor tissue and surrounding normal nerve
tissue accurately with the help of deep learning algorithms. We propose a novel U-Net++ brain tumor
segmentation model using EfficientNet as the encoder. In this paper, the dense skip connections between
the sub-networks of original U-Net++ network are removed, and the feature maps on the same resolution
layer are connected to generate new feature maps. We then continue to recover details by upsampling
these new feature maps. This method significantly reduces the amount of calculation and improves the
efficiency of the model. At the same time, we combine the advantages of the cross-entropy loss function
and the Dice loss function, making the two work together in the model training process to develop a stable
model. According to the results, the proposed U-Net++ segmentation model obtains a Dice coefficient
of 0.918.

2. Literature review

Some traditional machine learning algorithms such as support vector machine (SVM), conditional
random field (CRF), and random forest (RF) are widely used in brain tumor segmentation tasks in the past
few decades. Juan-Albarracín et al. [1] evaluated different unsupervised segmentation methods including
K-means, Fuzzy K-means, GMM, GHMRF, which prove unsupervised segmentation algorithms are
effective and competitive in brain tumor segmentation. Wu et al. [2] proposed a color-based K-means
clustering segmentation method, which combines color transformation, K-means clustering and histogram
clustering. This model provided good segmentation performance that helps doctors accurately detect the
size and area of the tumor.

Later, with the innovation of hardware and other technologies, computing power is promoted. The
development of deep learning is booming and shows vast advantages in the medical field. Mittal et al. [3]
applied a model combining Stationary Wavelet Transform (SWT) and Growing Convolutional Neural
Network (GCNN). SWT was used for feature extraction, and it has better results than Fourier transform on
discontinuous data. After feature extraction, a random forest classifier was applied for segmentation and
the GCNN network was used to train the model, which improved the brain tumor segmentation accuracy.
Nema et al. [4] proposed a novel RescueNet network. The architecture consists of an encoding path (from
256 × 256 to 32 × 32) and a symmetric decoding path (from 64 × 64 to 256 × 256) that can segment
the tumor. This model only requires a small amount of training data to produce good segmentation
results. The authors designed the DownBlock and UpBlock structure, and utilized residual blocks to avoid
gradient disappearance during backpropagation. The DICE coefficient of this RescueNet model on the
BRATS 2015 and BRATS 2017 datasets reached 94.01% and 94.63%, respectively.

Researchers also found the encoder-decoder structure greatly improves the accuracy of image seg-
mentation tasks. Ghosh et al. [5] used an improved U-Net framework to segment tumors, applying
dense convolutional blocks during the downsampling process to enhance feature reusability. Meanwhile,
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VGG-16 architecture was used for the decoder. To improve model stability and performance, they added
batchnormalization (BN) layers in the dense blocks. After performing a 5-fold cross-validation method on
the TCGA-LGG dataset, this model got a Dice coefficient of 0.9099 and a Jaccard coefficient of 0.8189.
The U-Net architecture has an encoder and decoder structure that preserves rich semantic features and
provides excellent performance in image segmentation tasks.

Most current research efforts seek methods to obtain automated brain tumor segmentation results that
provide objective, reproducible, and scalable methods for the quantitative assessment of brain tumors [6].
While the encoder-decoder architecture has been widely applied for brain tumor segmentation, choosing
the optimal architecture remains a significant challenge. For example, many variants of U-Net exist,
such as Residual U-Net [7], Dense U-Net [8], etc. Choosing an optimal U-Net architecture for more
satisfactory performance and accuracy remains an important task.

3. Materials and methods

This paper proposes a U-Net++ model with EfficientNet as the encoder for tumor segmentation in
MRI images. The decoder module is adjusted by removing the skip connections of the sub-networks of
original U-Net++. We connect the upsampling result of the deep feature map with the corresponding
feature maps of the same layer to maintain rich semantic features and spatial information. In addition,
the cross-entropy and Dice loss function are combined, working together for model optimization. Our
EfficientNet encoder uses ImageNet initialization weight to improve training speed and avoid model
overfitting caused by training the network from scratch.

We apply image augmentation techniques, and the training data after augmentation is fed into the
EfficientNet encoder for feature extraction, and then into the U-Net++ decoder module for training.
After that, the test data is input into the fully trained model to obtain segmentation results. Then, we
visualize the segmentation results and evaluate them with the Dice coefficient. The process can be seen in
Fig. 1.

3.1. Data collection

The dataset selected in this paper is the LGG Segmentation Dataset available on Kaggle, which is a
reliable and widely used dataset in the brain tumor segmentation field. The dataset includes images from
The Cancer Imaging Archive (TCIA) and data from 110 patients in the lower-grade glioma collection of
The Cancer Genome Atlas (TCGA). Overall, the dataset contains 3929 sets of brain MRI images and
corresponding manual segmentation masks. Specifically, it includes 2556 sets of normal morphological
data without tumors and 1373 sets of abnormal MRI images with tumors. Figure 2 provides an illustrative
example of the images present in the database, where (a) represents the brain MRI image and (b) depicts
the corresponding manual segmentation mask.

3.2. Image augmentations

Deep learning models rely heavily on a large amount of training data to achieve high accuracy.
Insufficient data often cause overfitting problems and influences the performance of the model. However,
in most computer vision tasks, the training data is very limited. Data augmentation techniques are helpful
in this situation. Image augmentation makes a series of random changes like rotation, shifts, and flips to
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Fig. 1. The flowchart of proposed segmentation model.

Fig. 2. Details of dataset. (a) Brain MRI image. (b) Manual Segmentation mask.

develop new training examples from the existing ones, efficiently reducing the model’s dependence on
certain attributes.

In this research, we apply the Albumentations library for image augmentation. Albumentations [9] is a
powerful data augmentation tool that contains lots of data augmentation methods such as image resizing,
scale, rotation, transpose, flipping, etc. Meanwhile, the Albumentations package can simultaneously
change the original images and corresponding mask images and provide high-speed processing speed,
which is suitable and popular in segmentation tasks. In this paper, we set up the following augmentation
methods using the Albumentations package:

(1) Set random HorizontalFlip by the ratio of 0.5;
(2) Set contrast limited adaptive histogram equalization (CLAHE) by a ratio of 0.5;
(3) Randomly select a transform in RandomGamma transform and RandomBrightness transform for

the MRI images by the ratio of 0.3;
(4) Randomly select a transform in ElasticTransform and GridDistortion for the MRI images by the

ratio of 0.3;
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3.3. EfficientNet encoder

EfficientNet [10] is a novel convolutional neural network architecture proposed by the Google team. It
provides a family of models (EfficientNetB0 to EfficientNetB7) which can extract features efficiently
and is considered the most state-of-the-art computer vision network nowadays. A convolutional neural
network has three crucial dimensions: depth, width, and resolution. The depth of the network corresponds
to the number of layers of the network, width corresponds to the number of neurons in the layer, and
resolution is related to the height and width of the image. Usually, these three dimensions can be scaled
to improve the learning effect of the model. Although choosing one among the three dimensions to scale
can work out to improve the performance, when the dimension is scaled to a certain extent, the model’s
accuracy will fall into a bottleneck and tend to be saturated. If we deepen the network depth, the model
can learn more complex features but encounters the bottleneck of gradient disappearance. In this case, the
network’s width and resolution should be changed to match the depth; Similarly, if the resolution is scaled,
the network’s depth and width should also be increased to have a larger receptive field and capture more
features. Through the cooperation of the three dimensions, the model can be scaled uniformly to achieve
the best model effect and slow down the saturation speed of single-dimensional scaling. Compared with
other models that only scale in one dimension, EfficientNet balances the three dimensions of depth, width,
and resolution to avoid model saturation caused by scaling a single dimension.

To obtain the best combination of the three variables of width, depth, and resolution more efficiently,
EfficientNet uses the following compound scaling method:

depth : d = αθ (1)

width : w = βθ (2)

resolution : r = γθ (3)

s.t.α · β2 · γ2 ≈ 2(α > 1, β > 1, γ > 1)

Where the value of α, β, and γ are determined by a small grid search on the original small model. θ
determines the size of the available computing resources of the system, usually a user-defined parameter.

The EfficientNet family of models provides a set of scalable and efficient deep neural network ar-
chitectures that can be customized to fit a wide range of computational and accuracy requirements.
EfficientNet-B0 can be seen as the baseline network. EfficientNetB1-B7 are progressively larger and
more complex. The best parameters of EfficientNet-B0 can be achieved by doing a small grid search
over α, β, γ. Then, the above method fixes α, β, γ as constants, and the EfficientNetB1∼EfficientNetB7
networks can be obtained by scaling the baseline model of EfficientNetB0 by changing θ. The core block
of the EfficientNet models is the mobile inverted bottleneck (MBConv), where the squeeze and excitation
(SE) module is added to give weights to each channel, achieving compression and excitation operations.
EfficientNetB1∼EfficientNetB7 corresponds to different numbers of MBConv blocks respectively. For
example, EfficientNetB4 consists of 7 blocks, reducing the image size from the input size of 256 × 256
to 7 × 7. SE module adds parameters to each channel of the convolutional block so that the network can
adaptively adjust the weights of each feature map. It first compresses the feature of each channel into a
single value through an average pooling operation to obtain the global features. Then, the SE module
performs the excitation operation according to the activation ratio R, uses 1x1 convolution kernels to
learn the relationship between each channel, and obtains each channel’s weight through the Sigmoid
activation function. Then, these weighted feature maps can be fed into the next layer of the network.
The SE module makes the model concentrate on the most informative channel while suppressing those
unimportant features.
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At the same time, the EfficientNet model uses the Swish activation function. It is a product of linear and
Sigmoid functions. The value of Swish activation function can be slightly negative around zero, resulting
in a smoother gradient space and making the network easier to learn the data distribution. Compared with
ReLU, the Swish activation function is more suitable for deeper networks. Equations (4) and (5) state the
Swish activation function method:

Swish(x) = x ∗ Sigmoid(βx) (4)

Sigmoid(y) =
1

1 + e−y
(5)

In addition, EfficientNet can represent information with fewer channels. Hence, as the computational
complexity of the decoder grows, EfficientNet can build a more computationally efficient system. When
using a complex decoder like U-Net++, which needs to perform a lot of operations on the extracted
features, EfficientNet has a more significant advantage over other encoders [11]. Furthermore, to avoid
the difficulty of finding suitable regularization parameters when training from scratch, we initialize the
EfficientNet network with ImageNet weights to train the model faster and more accurately. ImageNet
pre-trained weights are able to capture a wide range of visual features and are often used as a starting
point for training deep neural networks on computer vision tasks. These pre-trained weights can speed up
training and improve the performance of deep learning models.

3.4. U-Net++ network

Traditional convolutional neural networks obtain deep features of the original images by reducing the
resolution of images. However, such low-resolution feature maps usually lose useful spatial information
that affects the segmentation accuracy. Models with an encoder-decoder structure, such as the U-Net
network [12], are helpful in this condition. U-Net consists of a contracting path and an expanding path,
which can restore spatial information and realize accurate segmentation. The network directly combines
low-resolution but semantically-rich deep feature maps with high-resolution, fine-grained shallow feature
maps by skip connections to recover details in target regions. However, directly combining the shallow
feature map with the upsampling deep feature map obtained in the expansion path may have a large
semantic gap, affecting the model’s effectiveness [13].

Compared with the U-Net network, U-Net++ [14] is a more powerful medical image segmentation
model, which retains the symmetrical U-shaped down-sampling and up-sampling structure. U-Net++
consists of sub-U-Net networks of different depths. It redesigns the skip connections of the U-Net network
to compose a more powerful network. In this way, U-Net++ forms multiple upsampling paths from
different depths, integrates U-Net with various receptive fields and contains richer semantic information,
which can obtain a better performance than traditional U-Net network. Therefore, this paper adopts the
U-Net++ structure for brain tumor segmentation.

U-Net++ redesigns the skip connections path, making it densely connect the sub-networks. The dense
skip connection fuses the output of the previous convolutional layer with the corresponding upsampling
output of the lower dense block. Through this, the previous feature map is accumulated to the current
node. This process can be expressed as follows:

xi,j =

{
H(xi−1,j), j = 0

H([[xi,j ]j−1
k=0, u(x

i+1,j−1)]), j > 0
(6)

Where H() is the convolution operation, u() represents the upsampling layer, and [ ] is the connection
layer.
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Fig. 3. The structure of the proposed U-Net++ segmentation model with EfficientNet encoder.

We extracted four feature maps of different sizes from the EfficientNet network as the input of the
U-Net++. At the same time, to reduce the amount of computation, we avoid the dense connections
between sub-networks of the original U-Net++. Instead, we connect the upsampling results of the same
layer to form a new feature block, and then continue to upsampling the new feature block to recover
details. Figure 3 details the proposed U-Net++ model with the EfficientNet Encoder.

Compared with the original U-Net++ network, this approach is cost-friendly. The original U-Net++
network introduces a nested architecture that includes multiple sub-networks. They are densely connected,
and each layer of the encoding path is connected to all layers of the corresponding decoding path. While
this connectivity pattern enables the network to capture high-level semantic features and achieve high
performance, it also leads to high computational costs. As shown in Fig. 3, our proposed network
addresses this issue by removing the dense connections between sub-networks and instead connecting
only the upsampling results of the same layer. By retaining and connecting the feature maps at the same
resolution level, the network can capture deep semantic features and bridge the semantic gap. This method
significantly reduces the number of parameters and balances the computational cost.

3.5. Loss function

Our segmentation model combines the cross-entropy loss function and the Dice loss function to take
advantage of them. The model can be optimized under the control of both loss functions simultaneously.
The calculation process of the cross-entropy loss function can be seen in Eq. (7).

L == − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (7)

In Eq. (7), N is the number of classes, y represents labels, and p(y) is the probability of belonging to
the y label.

It predicts the category of each pixel and averages all the pixels. Therefore, when the pixel categories
on the picture are unbalanced, mainstream pixels can easily dominate the training process, reducing
the capability of extracting the weak pixel categories. The dice coefficient is a metric function used to
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measure the similarity of sets. It is usually used to calculate the pixel similarity between two samples,
suitable for semantic segmentation tasks. The Dice loss function formula is shown below:

Dice Loss = 1− 2|X ∩ Y |
|X|+ |Y |

= 1− 2TP

2TP + FN + FP
(8)

Where |X ∩Y | is the intersection between X and Y , and |X| and |Y | represents the number of samples
of X and Y . For segmentation tasks, X is the ground truth, and Y is the predicted value. And TP is the
true positive, FP is the false positive, TN is the true negative, FN is the false negative.

In this paper, we combine the binary cross-entropy loss function and the dice loss function. The sum of
the two loss functions is used as a measure of model loss. The Dice loss function calculates the proportion
of overlap between the predicted segmentation results and the ground truth, which reduces the impact
of imbalanced data on model optimization and alleviates the problem caused by the imbalance between
foreground and background [15]. However, it may make the training process unstable. When the target
area is small, the prediction error of some pixels will cause a huge fluctuation in the loss value. Both
the cross-entropy loss function and the Dice loss function have their shortcomings, so we combine the
cross-entropy with the Dice loss function to help improve the stability of the model.

4. Results and discussion

In our experiment, the Adam optimizer was selected, which is a stochastic gradient-based optimization.
The Adam optimizer is computationally efficient, requires little memory, and only requires first-order
gradients [16]. Besides, ImageNet pre-trained weights are used to initialize the EfficientNet model, which
provides a reasonable initial weight of the encoder and avoids overfitting problems. We divide the dataset
into training set, validation set, and test set at a ratio of 8:1:1. There are 100 epochs in the training process,
and the learning rate is dynamically adjusted during the process with an initial learning rate of 0.001. We
utilize the cosine annealing [17] to adjust the learning rate, which can prevent the training from falling
into a local optimal value.

We adopt the Dice coefficient to evaluate the segmentation results in this experiment, which can
calculate the similarity of two samples and is effective in segmentation tasks. Equation (9) shows the
computing process of Dice coefficient. To ensure the reliability of the results, we experiment 10 times
and take the average value as the final result.

Dice Coefficient =
2|X ∩ Y |
|X|+ |Y |

=
2TP

2TP + FN + FP
(9)

In Eq. (9), X is the ground truth, and Y is the predicted value. |X ∩ Y | is the intersection between X
and Y , |X| and |Y | represents the number of samples of X and Y . TP is the true positive, FP is the
false positive, TN is the true negative, FN is the false negative.

In our experiment, the EfficientNetB4 encoder is applied. The encoder is initialized by ImageNet weight
to avoid model overfitting. The encoder output layers with shapes of 16 × 16, 32 × 32, 64 × 64, and 128
× 128 are inputted to the proposed U-Net++ network. The combination of binary cross-entropy loss and
dice loss is used to measure model loss. It shows that our network achieves a dice coefficient of 0.9180,
proving the proposed segmentation model has good performance on the brain tumor segmentation task.
Figure 4 visualizes the predicted segmentation result. To facilitate a more comprehensive comparison of
the results, Fig. 5 depicts the ground truth brain tumor mask. By comparing Figs 4 and 5, it is evident that
our segmentation model is capable of accurately identifying the location and shape of brain tumors.
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Table 1
Results of different EfficientNet encoder

Model Dice coefficient
EfficientNetB0 0.9177
EfficientNetB4 0.9180

Fig. 4. Segmentation model results.

To compare the effect of different EfficientNet encoders, we apply EfficientNetB0 and EfficientNetB4
from the EfficientNet family as the encoder, respectively. Both EfficientNetB0 and EfficientNetB4 are
initialized with ImageNet pre-trained weights. The Dice coefficient results are demonstrated in Table 1.

Table 1 shows the segmentation model with EfficientNetB0 as the encoder obtains a Dice coefficient
of 0.9177. The EfficientNetB4 encoder has more channels and model parameters, and therefore has the
ability to learn more feature information, performing slightly better than EfficientNetB0.

Additionally, to compare the impact of the loss function on the proposed segmentation model, we
conduct experiments using four different loss functions. All the loss functions are experimented with
the EfficientNetB4 encoder to control variables. We compare the Dice loss function, cross-entropy loss
function, Focal loss function [18], and loss function combining cross-entropy and Dice loss. The focal
loss function is an extension of the cross-entropy loss function. Equation (10) shows the calculation
process of it. Compared with the Dice loss function, the Focal loss function focuses on balancing hard
and easy samples. It allows the model to focus on hard, misclassified examples by assigning weights,
avoiding easy-to-classify data dominating the overall loss value.

Focal Loss = −αt(1− pt)γ ∗ log(pt) (10)
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Table 2
Results of different loss functions
Loss function Dice coefficient

Dice Loss 0.9163
Cross-entropy Loss 0.9130
Focal Loss 0.9088
Cross-entropy+Dice Loss 0.9180

Fig. 5. Ground truth brain tumor mask.

Where αt is a weighted term, γ is an adjustable positive parameter, and pt is the predicted results.
Table 2 details specific experimental results of different loss functions. Results in Table 2 show that

the loss function combining the cross-entropy and Dice loss has the best performance. The model’s
optimization effect using the cross-entropy loss function or the Dice loss function alone is not as good as
the combined effect of the two on the model. The focal loss function is expected to have good performance
since it extends the cross-entropy loss function and avoids the domination of easy-to-classify samples.
However, results show that the Focal loss function performs the worst on this dataset among the four
loss functions. The reason may be attributed to the large number of learnable samples we have provided
through data augmentation technology. This approach increased the diversity of the dataset and provided
the model with more examples to learn from. As a result, the advantage of the Focal loss function in
addressing class imbalance was diminished.

In addition, to verify the effectiveness of the network, this paper compares the performance of this
U-Net++ model with other segmentation models proposed by other researchers. Tamer et al. [19] test
the results of brain tumor segmentation on the LGG dataset using the original U-Net model. Finally,
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Table 3
Comparison of other segmentation models

Authors Models Dice coefficient
Tamer A19 U-Net 89.02%
Sourodip Ghosh5 U-Net+VGG-16 90.99%
Liping Yi20 SU-Net 78.5%
Rai H M21 Vanilla U-Net 82.06%
\ Proposed model 91.80%

they obtained a Dice coefficient of 89.02%, indicating that the U-Net++ model proposed in this paper
performs better than the original U-Net model. Ghosh et al. [5] apply an improved U-Net framework
to segment tumors, where VGG-16 architecture is used for the decoder. Finally, this improved model
achieves a Dice coefficient of 90.99%. Yi et al. [20], and Rai et al. [21] proposed other models for
segmentation. The detailed comparison results can be clearly seen in Table 3, which proves that the
U-Net++ segmentation model with the EfficientNet encoder proposed in this paper reaches satisfying
performance, surpassing other models in segmentation accuracy.

5. Conclusions

Precise segmentation of brain tumors provides important support for neuropathological analysis,
diagnostic report generation, surgical plan design, and treatment plan formulation. The complex anatomy
of brain tumors makes manually segmentation time-consuming and easily affected by subjective factors.
Therefore, establishing efficient algorithms to segment brain tumors automatically have great clinical
significance.

In recent years, the development of medical imaging technology and deep learning algorithms has
promoted the progress of related work. This paper conducts research on brain tumor segmentation, using
the U-Net++ network with EfficientNet as an encoder to segment brain tumors based on MRI images.
The data is augmented using the Albumentations package. EfficientNet is a powerful feature extraction
network, especially beneficial when the decoder needs to perform lots of complex calculations. We
adjust the original U-Net++ model by deleting the dense skip connections between sub-networks and
connecting the upsampling results with the feature maps of the same layer, which simplifies calculations
and maintains rich semantic features and spatial information at the same time. Besides, we combine
the cross-entropy and Dice loss functions to make them work together for model optimization. In the
experiments, four different loss functions are tested to compare the impact of the loss function. Finally,
the proposed model is compared with other models such as U-Net and SU-Net to verify the model’s
validity. The experimental results show that a high-accuracy segmentation model for brain tumors based
on MRI images is realized. Our model achieves a satisfactory segmentation performance, obtaining a
Dice coefficient of 0.9180.

The proposed U-Net++ network focuses on brain tumor segmentation with 2D MRI images. However,
2D slices may not capture the full spatial information of the brain, leading to potential inaccuracies in the
segmentation process. Compared with 2D slices, 3D MRI images provide comprehensive information by
capturing the brain’s volume with various flow directions. Therefore, future work is expected to extend
our segmentation model to 3D space, which can potentially improve the accuracy and robustness of the
model. Moreover, we will continue to search methods to expand the dataset and try to adjust our model
by adding dropout layers or BatchNormalization layers to prevent overfitting and improve the stability
and speed during the training process.
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