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Abstract.
BACKGROUND: Drug repositioning (DR) refers to a method used to find new targets for existing drugs. This method can
effectively reduce the development cost of drugs, save time on drug development, and reduce the risks of drug design. The
traditional experimental methods related to DR are time-consuming, expensive, and have a high failure rate. Several computational
methods have been developed with the increase in data volume and computing power. In the last decade, matrix factorization
(MF) methods have been widely used in DR issues. However, these methods still have some challenges. (1) The model easily
falls into a bad local optimal solution due to the high noise and high missing rate in the data. (2) Single similarity information
makes the learning power of the model insufficient in terms of identifying the potential associations accurately.
OBJECTIVE: We proposed self-paced learning with dual similarity information and MF (SPLDMF), which introduced the
self-paced learning method and more information related to drugs and targets into the model to improve prediction performance.
METHODS: Combining self-paced learning first can effectively alleviate the model prone to fall into a bad local optimal
solution because of the high noise and high data missing rate. Then, we incorporated more data into the model to improve the
model’s capacity for learning.
RESULTS: Our model achieved the best results on each dataset tested. For example, the area under the receiver operating
characteristic curve and the precision-recall curve of SPLDMF was 0.982 and 0.815, respectively, outperforming the state-of-
the-art methods.
CONCLUSION: The experimental results on five benchmark datasets and two extended datasets demonstrated the effectiveness
of our approach in predicting drug-target interactions.

Keywords: Drug repositioning, drug-target interaction prediction, self-paced learning, matrix factorization, multi-view similarity
information

1. Introduction

Predicting drug-target interaction (DTI) is a crucial phase in drug discovery (DD) [1] and drug
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repositioning (DR) [2] for discovering novel targets of existing drugs [3,4,5]. The traditional methods for
new DD are time-consuming and have a high failure rate; therefore, traditional new drug development
is not a good choice [3,6]. Various computer prediction methods have been proposed in recent years to
improve the efficiency of new drug research and discovery, thus increasing the development efficiency
and reducing expenditure to a certain extent. According to previous works [7,8,9], the current methods are
mainly categorized into three groups [10,11,12,13,14,15,16,17]: (1) molecular docking (MD) methods,
(2) ligand-based methods, and (3) chemical genomics methods.

The MD methods involve simulation experiments based on the 3D structure drug and protein [11,
18]. However, the simulation of the 3D structure of massive ligands and targets, as well as their massive
simulation calculation using MD-based methods, requires a lot of time and computing equipment [19,20].
The ligand-based methods assume that drugs with similar functions have similar functional properties and
may also have corresponding targets. They predict the drug target using ligand similarity. However, this
approach suffers from unpredictable targets without known ligands. On the contrary, errors in chemical
structure and physiological effects beyond structural relationships (e.g., the metabolites may be active
molecules) may limit its use in drug repurposing. The chemical method facilitates rapid and large-scale
DTI predictions to generate drug candidates and targets, making it the most efficient method in drug
research [21,22]. Adopting this method for DTI prediction has become a prominent research issue with
the continuous increase in drug-related data and the launch of a large number of databases, such as
DrugBank [23], KEGG [24], PubChem [25], BRENDA [26], and SuperTarget [27].

Recently, chemical genomics-based computational approaches for DTI prediction have advanced
rapidly. They are mainly categorized into three groups: classification-based methods, network diffusion
(network propagation), and matrix factorization (MF). The classification-based methods treat a DR
prediction task as a binary classification task that whether has an association between drug and target.
These methods are not yet proof with wet experimental. In 2008, Yamanishi et al. [28] established a
bipartite network technique to predict DTIs for four target classes: G protein-coupled receptors, by
combining chemical and genomic spaces (GPCRs), nuclear receptor (NR), ion channel (IC), and enzyme
(E). Yamanishi’s dataset [28] is regarded as the gold standard by many researchers; several newly
developed algorithms based on it have displayed better performance. Based on this benchmark dataset,
Bleakley et al. [29] suggested a novel supervised inference method for predicting unknown DTIs based
on benchmark datasets, namely, a kernel-based support vector machine (KN-SVM) model.

In recent years, the MF methods are widely used in many DR prediction works, which combines two
low-rank matrices to factorize the matrix. Liu et al. [30] proposed a neighborhood regularized logistic MF
model. Hao et al. [31] designed a logistic MF based on a dual network (DNILMF) approach to predict
DTIs. Yang et al. [32] performed the nonlinear MF technique and the negative sampling technique for DR
prediction. SPLCMF, a collaborative MF method combined with self-paced learning (SPL), is an efficient
DTI prediction method proposed by Xia et al. [33]. Yang et al. [34] developed an MF method based
on multi-similarities bilinear MF for DR prediction. Ding et al. [35] developed a multiple kernel-based
triple collaborative MF method to predict DTIs. Wang et al. [36] used a neighborhood regularized logistic
MF method based on extracted features from a neural tangent kernel to predict DTIs. These previous
studies showed the feasibility of MF used in DR prediction tasks, but it still had two challenges. (1) The
model easily fell into a bad local optimal solution due to the high noise and high missing rate in the
data. (2) Single similarity information makes the learning power of the model insufficient in terms of
identifying the potential associations accurately.

To cope with the aforementioned challenges, we propose a model named Self-Paced Learning with
Dual similarity information and Matrix Factorization (SPLDMF), which combines the self-paced learning
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Table 1
Summary of four benchmark and two expanded datasets

Dataset No of drugs No of targets No of interactions Sparsity
E 445 664 2,926 0.010
IC 210 204 1,476 0.034
GPCR 223 95 635 0.030
NR 54 26 90 0.064
Kuang 786 809 3681 0.006
Hao 829 733 3688 0.006

method into MF. Furthermore, more similarity information related to drugs and targets is integrated into
the model to improve the prediction performance. First, many previous works demonstrate that SPL has
the superiority of relieving the problem of bad local optimum, especially when data is sparse [37,38].
Inspired by the human learning process, the core idea of SPL is to automatically include more samples
from simple to complex for training in a purely self-paced manner. Thus, we make improvement of
MF based on the SPL mechanism to adapt for the data with high noise and high missing rate. Then,
the SPLDMF method also incorporates more data into our model to improve its capacity for learning,
which can predict the potential relationship more accurately. Experimental results on five benchmark
datasets and two extend datasets demonstrate the effectiveness of our approach in predicting drug-target
interactions. Our model obtains the best results on each dataset we tested, such as AUC and AUPR of
SPLDMF achieve 0.982 and 0.815, outperforming state-of-the-art models among similar methods to our
knowledge

2. Materials

Yamanishi [28], Kuang [39], and Hao [31] datasets are three critical databases used for validating the
proposed DTI-related algorithm. The Yamanishi dataset is called a benchmark database, which contains
drug-target relationships from databases such as KEGG BRITE [40], BRENDA [41], SuperTarget [27],
and DrugBank [23], target protein sequence from KEGG Gene Database [40], and drug compounds from
KEGG Drug and Compound Database [40]. Moreover, the Yamanishi database is categorized into four
datasets: NR, GPCR, IC, and E. It contained 445 drugs and 664 targets in E, 210 drugs and 204 targets in
IC, 223 drugs and 95 targets in GPCR, and 54 drugs and 26 targets in NR. The details of the dataset are
depicted in Table 1. The Kuang dataset had 3681 known interaction pairs [39], including 786 drugs and
809 targets (Table 1). The Hao dataset comprised 829 drugs, 733 targets, and 3688 identified interaction
pairs [31] (Table 1).

For targeted analysis and prediction, we ensured that each drug contained at least one FDA-approved
ATC code in the dataset.

3. Methods

This study introduced a novel DTI prediction model, self-paced learning with dual similarity information
and MF method (SPLDMF), to predict unknown DTIs.

3.1. Task description

Five matrices St, Sd, Pt, Pd, and Y represented target similarity, drug similarity, drug topological



S52 C. Ling et al. / Predicting DTI using MF with self-paced learning and dual similarity information

Fig. 1. Four scenarios of DTI predictions. The pair with orange background represents (a) known drug-known target; (b) known
drug-new target; (c) new drug-known target; and (d) new drug-new target.

Fig. 2. Process of our proposed model.

feature similarity, target topological feature similarity, and known DTI, respectively. The task was to
explore how to use known information to predict unknown DTIs. Then, four scenarios based on DTI
were created to more comprehensively display the performance of the model (Fig. 1). To describe these
four scenarios, we utilized five drugs (i.e., D1 to D5) and four targets (i.e., T1 to T4) as an example.
Then, the D1–T1 interaction pair on the orange background can represent four scenarios depending on
the conditions: (1) known drug-known target (scenario 1 in Fig. 1a); (2) known drug-new target (scenario
2 in Fig. 1b); (3) new drug-known target (scenario 3 in Fig. 1c); and (4) new drug-new target (scenario 4
in Fig. 1d)
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In the protocol, definitions reference to a “known drug” means that the experimental drug has at least
one interaction with the targets (e.g., D1 in Figs 1a and 2b, respectively). Similarly, “known target” means
that the experimental target has at least one interaction with drugs. In contrast, “new drug” denotes that
the experimental drug has no known interactions with the targets (e.g., D1 in Fig. 1c and d). Similarly,
“new target” means that the experimental target has no existing interaction with drugs. The focus of this
study is to use the SPLDMF method to improve the DTI prediction ability of the model. Specifically, the
algorithm assigns scores to drug-target pairs to estimate the likelihood of their interaction, and the higher
the score is, the more likely the drug and target will interact.

Suppose Nd known drugs are represented by a matrix D), then D = {d1, d2, . . . , dNd
}. Assuming

Nt known targets, a set of known targets T can be represented as T = {t1, t2, . . . , tNt
}. Let {SdPd}

represent similarity matrices related to drugs, and the dimension of Sd and Pd is Nd ×Nd. Similarly, if
{StPt} are the similarity matrices involving targets, then the dimension of St and Pt is Nt ×Nt. Let Y
be an Nd ×Nt adjacency matrix, which can be expressed as the DTI. When Yij = 1, the drug di interacts
with the target tj ; when Yij = 0, no interaction between drug di and the target tj is observed. Our goal
was to reconstruct F , which was an Nd ×Nt score matrix. When the score Fij of F is higher, it meant
that the drug di more likely interacted with the target tj .

3.2. Network topology feature calculation

In this study, the attributive and topological properties of the drug and the target were used. The drug and
target attributive features referred to the drug structure and the amino acid sequence of the target protein,
respectively. Yamanishi et al. [28] also collected a dataset including the attributive feature similarity of
the drug and the target. The structural data of all network nodes were referred to as topological features.
Drug-drug topological feature similarity and target-target topological feature similarity were measured
using the Node2vec method and the cosine similarity method, respectively, to extract the topological
features of drugs and targets from the DTI network [43].

The DTI matrix Y ∈ RNd×Nt was obtained from the dataset. Then, a weightless and undirected network
graph G = (V,E) was constructed based on the DTI matrix Y , where V denotes the set of nodes, |V | =
Nd +Nt, where |V | denotes the number of nodes. E denotes the set of edges, |E| =

∑
i∈Nd

∑
j∈Nt

Yij ,
where |E| denotes the number of edges. When Y (i, j) = 1, an edge exists such that Vi and Vj are
connected; when Y (i, j) = 0, no edge exists, and Vi and Vj are not connected. Then, a second-order
random walk was performed on the network graph G using the Node2vec method to obtain the topological
features of drugs and targets. Moreover, we obtained the d-dimensional topological features of the drug
and target using the Node2vec method. Next, we calculated the drug-drug and target-target topological
feature similarity. We used the cosine similarity to calculate the topological feature similarity, and the
cosine similarity between drugs represented the similarity of two drug vectors in the topological feature
space. Likewise, the cosine similarity of target-target topological features was predicted as the similarity
of two target vectors in the topological feature space. The topological feature vectors of two drugs di and
dj are denoted as xi and xj , both of which are d-dimensional topological features. Finally, the drug-drug
topological feature similarity was measured with the help of cosine similarity using the sampling vertex
sequence:

Simdtp =
xix

T
j

||xi|| · ||xj ||
(1)

For ease of description, the drug-drug topological feature similarity matrix can be represented as
Pd ∈ RNd×Nd , where Pd(i, j) denotes the topological feature similarity between the i-th and the
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j-th drugs. Correspondingly, the target-target topological feature similarity matrix is represented by
Pt ∈ RNt×Nt , where Pt(i, j) denotes the topological feature similarity between the i-th and the j-th
targets.

3.3. SPLDMF

The goal of MF was to factorize the identified DTI matrix Y into two low-rank matrices A and B.
The dimensionality of A and B are matrices of Nd × r and Nt × r, respectively, where r denotes the
dimensionality of the feature space, A denotes the potential feature representation of the drug, and B
denotes the potential feature representation of the target. As the DTI matrix Y can be factorized into A
and B, the inner product of A and B is approximately equal to the DTI score, and Y is represented as:

Y ≈ ABT (2)

First, A and B were calculated to obtain Y . Subsequently, the squared error of Eq. (2) was minimized
to obtain:

argminA,B||Y −ABT ||2F (3)

where || · ||2F is the Frobenius norm.
Solving for Eq. (3) might directly lead to overfitting during training. Therefore, the L2 regularization

term was added to solve the aforementioned problem. Then, Eq. (3) was rewritten as:

argminA,B||W � (Y −ABT )||2F + λl(||A||2F + ||B||2F ) (4)

where λl represents the regularization parameter.
Based on the idea that drugs with a higher degree of similarity tend to act on a similar set of targets, and

vice versa, we integrated drug-related similarity matrices Sd and Pd and target-related similarity matrices
St and Pt into the model to more accurately discover potential DTIs. Based on a previous study [33], the
inner product of the corresponding two drug feature vectors and two target feature vectors was used to
approximate the drug similarity and target similarity matrices, respectively. The detailed decomposition
process was as follows:

Sd ≈ AAT St ≈ BBT Pd ≈ AAT Pt ≈ BBT (5)

Therefore, we added the drug similarity matrix Sd, the target similarity matrix St, the drug topological
feature matrix Pd, and the target topological feature Pt into Eq. (5). The new equation was as follows:

argminA,B||W � (Y −ABT )||2F + λl(||A||2F + ||B||2F ) + λd||Sd −AAT ||2F
(6)

+ λt||St −BBT ||2F + λm||Pd −AAT ||2F + λn||Pt −BB||2F
where λd, λt, λm, and λn are the regularization parameters.

The objective function of the most recent MF-based approaches for DTI prediction is nonconvex. As a
result, the optimized objective function can be easily trapped in local minima, particularly when dealing
with enhanced noise and a large amount of missing data. Many studies showed that SPL could alleviate
the model falling into a bad local optimal solution because of its training strategy of selecting samples
from easy to complex [44,45]. Thus, we integrated the SPL algorithm into the MF model to improve its
strength. Consequently, Eq. (6) could be modified as:

argminA,B||
√
W � (Y −ABT )||2F + λ1(||A||2F + ||B||2F ) + λd||Sd −AAT ||2F

(7)
+ λt||St −BBT ||2F + λm||Pd −AAT ||2F + λn||Pt −BBT ||2F +

γ2

W + γk
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where k and λ denote the model age and the weights assigned to the selected samples, respectively.
According to Zhao et al. [44], the optimal W ∗i,j was calculated using Eq. (8) when A and B were fixed.

W ∗ij =


1 if lij 6 1

(k+1/γ)2

0 if lij > 1
k2

γ

(
1√
lij
− k
)

otherwise
(8)

where lij = [(Y −ABT )ij ]
2. When lij 6 1/(k + 1/γ)2, the corresponding weight was 1, implying that

the sample was taken as a simple sample and selected by the model during the training; when lij > 1
k2 ,

the sample was considered a difficult sample and was temporarily not selected by the model; in other
cases, the sample was assigned a non-zero weight and was considered an easy sample.

The alternative search strategy (ASS) was used to calculate A and B to overcome the problem of
the potential feature vectors of the drug and the target to not easily solved as they tended to couple
together. The potential feature vector of the drug was represented by ai, which is a row vector of matrix
A. Furthermore, the potential feature vector of the target was represented by bj , which is a row vector of
matrix B. The objective function was transformed as in Eq. (9) to implement the ASS algorithm.

L=

Nd∑
i=1

Nt∑
j=1

Wij(Yij − aibTj )2 + λl

 Nd∑
i=1

||ai||2 +
Nt∑
j=1

||bj ||2


+ λd

Nd∑
i=1

Nd∑
p=1

(Sd(di, dp)− aiaTp )2 + λt

Nt∑
j=1

Nt∑
q=1

(St(tj , tq)− bjbTq )2 (9)

λm

Nd∑
i=1

Nd∑
p=1

(Pd(di, dp)− aiaTp )2 + λn

Nt∑
j=1

Nt∑
q=1

(Pt(tj , tq)− bjbTq )2

We fixed B and computed the partial derivative of L with respect to ai to minimize L. Afterward,
A was updated by ∂L

∂ai
= 0. The updated equation obtained after derivation was as enumerated by the

equation:

ai =

∑Nt

j=1WijYijbj + λd
∑Nd

p=1 Sd(di, dp)ap + λm
∑Nd

p=1 Pd(di, dp)ap∑Nt

j=1WijbTj bj + λlIk + λd
∑Nd

p=1 a
T
p ap + λm

∑Nd

p1
aTp ap

(10)

Similarly, we fixed A and computed the partial derivative of L with respect to bj . Then, B was updated
using ∂L

∂bi
= 0. The updated equation obtained after derivation was as enumerated by the equation:

bj =

∑Nd

i=1WijYijai + λt
∑Nt

q=1 St(tj , tq)bq + λn
∑Nt

q=1 Pt(tj , tq)bq∑Nd

i=1WijaTi ai + λlIk + λt
∑Nt

q=1 b
T
q bq + λn

∑Nt

q=1 b
T
q bq

(11)

where lk in Eqs (10) and (11) is the identity matrix.
Algorithms 1 and 2 explain the process of assessing individual parameters. The potential drug char-

acteristic representation A and the potential target characteristic representation B were obtained after
several iterations using Eqs (10) and (11). We obtained the DTI prediction matrix F by reconstructing the
DTI matrix Y , and the calculation procedure was as enumerated by the equation:

F = ABT (12)

The drugs (compounds) and targets (small molecules) could be determined based on the prediction
result, that is, the scoring and ranking of matrix F . The workflow of the whole method is shown in Fig. 2.
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Algorithm 1: Pseudocode of parameter estimation for MF
Input:
Y : true drug-target interaction matrix; W : weight matrix; Sd, St: drug and target similarity matrices;
Pd, Pt: drug and target topological feature matrix; r: feature space; λl, λd, λt, λm, λn: regularization parameters

Ouput:
drug potential representation A, target potential representation B and score matrix F

1: initial A and B randomly;
2: repeat
3: Update A using Eq. (10);
4: Update B using Eq. (11);
5: Update F using Eq. (12);
6: until

Algorithm 2: Pseudocode of parameter estimation for SPLDMF
Input:
Y : true drug-target interaction matrix; Sd, St: drug and target similarity matrices;
Pd, Pt: drug and target topological feature matrix; r: feature space; λl, λd, λt, λm, λn: regularization parameters;
µ > 1: step size; k0; kend

Ouput:
score matrix F

1: initial solve the MF problem with all the observation equally weighted to obtain A0 and B0, calculate t← 0, k ← kend

2: while k > kend do
3: Update W using Eq. (8);
4: Update A and B using Algorithm 1;
5: Update F using Eq. (12);
6: Compute currentd lij(Y − F );
7: t← t+ 1, k ← k/µ;
8: end while

4. Results

Compared with other methods, the performance of the proposed model was assessed by simulating
experiments under different missing rates and noise ratios. Then, compared with the performance
of the advanced model, the performance was tested using four application scenarios. Further, two
realistic and challenging extended datasets were selected for experimental comparison. We used four
matrices such as root-mean-squared error (RMSE), mean absolute error (MAE), area under the receiver
operating characteristic curve (AUC), and precision-recall curve (AUPR) to evaluate the effectiveness of
SPLDMF.

4.1. Simulation data experiment

Simulation experiments were carried out to test the robustness of the model under different missing
rates and noise ratios. We compared the proposed SPLDMF with two popular DTI prediction methods:
MF and SVD. According to the studies by Xia et al. [33], Zheng et al. [46], and Zhao et al. [44], a matrix
Y ′ following Gaussian distributionN(0, 1) was developed randomly using n = 300,m = 200, and r = 3.
We set three missing ratios (50%, 50%, and 90%) and five noise ratios (5%, 10%, 20%, 25%, and 40%) to
verify the validity and robustness of the models. We determined that the noise property of Y ′ was uniform
noise in the range [−20, 20]. Based on a previous study [47], the conversion between matrices Y ′ and Y
was possible, and Y ′ with a well-fitting effect could help explore new DTIs. RMSE and MAE criteria
were used for evaluating the performance of the three methods, where RMSE = 1√

mn
||Y ′ − ABT ||F ,
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Table 2
Performance comparison of MF, SVD, and SPLDMF on synthetic data in terms of MAE and RMSE

Missing_ratio
(%)

Noise_ratio
(%) MAE RMSE

CMF SVD SPLDMF CMF SVD SPLDMF
10 5 0.497 (0.040) 0.755 (0.048) 0.218 (0.005) 1.340 (0.040) 1.804 (0.048) 0.743 (0.029)

10 0.667 (0.026) 0.935 (0.034) 0.296 (0.009) 1.472 (0.038) 1.970 (0.034) 0.886 (0.031)
20 0.864 (0.023) 1.159 (0.048) 0.432 (0.016) 1.635 (0.038) 2.164 (0.048) 1.078 (0.042)
25 0.930 (0.022) 1.426 (0.045) 0.514 (0.020) 1.694 (0.026) 2.230 (0.045) 1.189 (0.043)
40 1.113 (0.025) 1.481 (0.049) 0.872 (0.032) 1.833 (0.036) 2.411 (0.049) 1.710 (0.060)

50 5 0.681 (0.039) 0.795 (0.045) 0.259 (0.008) 1.776 (0.047) 2.153 (0.045) 0.889 (0.047)
10 0.911 (0.033) 1.018 (0.038) 0.351 (0.013) 1.970 (0.052) 2.346 (0.038) 1.075 (0.053)
20 1.151 (0.022) 1.297 (0.031) 0.552 (0.022) 2.231 (0.037) 2.565 (0.031) 1.393 (0.063)
25 1.228 (0.032) 1.411 (0.038) 0.659 (0.032) 2.289 (0.051) 2.650 (0.038) 1.554 (0.085)
40 1.462 (0.026) 1.734 (0.042) 1.094 (0.037) 2.469 (0.042) 2.889 (0.042) 2.157 (0.078)

90 5 0.656 (0.027) 0.775 (0.078) 0.402 (0.019) 2.453 (0.072) 2.571 (0.078) 0.996 (0.059)
10 1.247 (0.035) 1.138 (0.034) 0.497 (0.017) 3.315 (0.080) 2.881 (0.034) 1.337 (0.072)
20 2.027 (0.037) 1.514 (0.032) 0.890 (0.042) 4.262 (0.064) 3.186 (0.032) 2.171 (0.120)
25 2.307 (0.036) 1.683 (0.037) 1.110 (0.045) 4.559 (0.083) 3.322 (0.037) 2.520 (0.128)
40 2.940 (0.052) 2.138 (0.044) 1.846 (0.079) 5.129 (0.085) 3.649 (0.044) 3.540 (0.148)

MAE = 1
mn ||Y

′ − ABT ||1, and m, n are the rows and columns of the matrix Y , respectively. We
performed 30 replicate experiments for each method, and the performance of each method was qualified
based on the average of the experimental results (Table 2). SPLDMF achieved the best RMSE and
MAE performance in each case by comparing the three methods with three missing ratio levels and
five noise ratio levels. For instance, when missing ratio = 10% and noise ratio = 10%, the RMSE and
MAE of SPLDMF reached 0.886 and 0.296, respectively, which were much better compared with the
values of MF (1.472 and 0.667, respectively) and SVD (1.970 and 0.935, respectively). The predictive
performance of the models decreased as the deletion rate increased. The proposed SPLDMF imposed
more regularization constraints on the self-similarity of drugs and targets, allowing more similar DTIs to
be accurately predicted. Table 2 demonstrates that the best performance of our method could be obtained
at all three data missing ratios. Additionally, the prediction error of all models increased with the increase
in the noise ratio. However, the proposed SPLDMF was capable of adaptively weighting both clean and
noisy samples due to the introduction of the SPL strategy. This learning strategy enabled the model to
avoid falling into bad local optima and had better robustness to mitigate the effects of noise. Overall, the
results of the simulation experiments revealed that the SPLDMF outperformed the MF and SVD methods
under noise and missing data conditions.

4.2. Benchmark data experiment

We used the same dataset and cross-validation technique to compare our method with state-of-the-art
methods (i.e., 5-time-10-fold cross-validation using Yamanishi’s benchmark dataset in four different
applications scenarios) to validate the performance of the model. Three cross-validation settings were used
to better evaluate the model in these four scenarios: (1) CVP, which was based on the cross-validation of
drug-target pairs; (2) CVR, which was based on cross-validation on rows; (3) CVC, which was based on
cross-validation on columns; and (4) CV4S, which was based on random cross-validation. Table 3 depicts
the application scenario as well as the optimal potential feature dimensionality settings in our experiments.
We employed the CVP settings to predict known drug-known target interactions (i.e., scenario 1, named
CVPS). Figure 3 illustrates the model’s AUPR and AUC values for several potential features. The findings
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Table 3
Application scenarios and dataset settings and optimal feature dimensionality

CVPS CVCS CVRS CV4S
Dataset settings CVP CVC CVR CVP/CVC/CVR
Best feature dimension 80 100 100 100

Fig. 3. Performance comparison of SPLDMF and other advanced models, and the influence and change of r on AUC and AUPR
in different scenarios. (a) Changes in AUC and AUPR under different feature dimensions under CVPS. (b) Changes in AUC and
AUPR under different feature dimensions under CVRS. (c) Variation in AUC and AUPR under different feature dimensions
under CVCS. (d) Performance comparison of SPLDMF and other advanced models under the GPCR dataset in four scenarios.

revealed that a higher potential feature dimensionality was more consistent AUPR and AUC values. In the
CVP scenario, the GPCR dataset also reached the optimal feature dimensionality at r = 80 (Fig. 3a). We
used the CVR settings (i.e., scenario 3, named CVRS) for predicting a new drug-known target interaction.
The model’s AUPR and AUC values were calculated for various potential features.
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Table 4
Comparison of the matrices from the major algorithms in
CVPS, CVRS, CVCS, and CV4S scenarios based on the
GPCR dataset

Scenario Method AUC AUPR
CVPS NRLMF 0.969 ± 0.004 0.749 ± 0.015

DNILMF 0.975 ± 0.003 0.812 ± 0.009
SPLCMF 0.976 ± 0.012 0.779 ± 0.015
SPLDMF 0.982 ± 0.004 0.815 ± 0.015

CVRS NRLMF 0.895 ± 0.011 0.364 ± 0.023
DNILMF 0.967 ± 0.006 0.781 ± 0.050
SPLCMF 0.967 ± 0.002 0.784 ± 0.023
SPLDMF 0.971 ± 0.012 0.792 ± 0.050

CVCS NRLMF 0.930 ± 0.012 0.556 ± 0.038
DNILMF 0.933 ± 0.009 0.684 ± 0.036
SPLCMF 0.931 ± 0.010 0.675 ± 0.015
SPLDMF 0.941 ± 0.023 0.710 ± 0.050

CV4S NRLMF 0.706 ± 0.008 0.385 ± 0.006
DNILMF 0.897 ± 0.004 0.633 ± 0.025
SPLCMF 0.856 ± 0.008 0.645 ± 0.025
SPLDMF 0.910 ± 0.012 0.651 ± 0.050

The values are the average findings of 30 runs. The best results are shown in bold, and the values in
parentheses are standard deviations.

The value was found to be the highest at r = 100. In the CVR scenario, the GPCR dataset also achieved
the optimal feature dimensionality at r = 100 (Fig. 3c).

The CVC configuration was applied (i.e., scenario 2, named CVCS) for predicting new target-known
drug interactions. Figure 3c illustrates the model’s AUPR and AUC values for several potential feature
dimensionalities. The experimental findings revealed that the AUC curves in the CVC scenario differed
significantly from those in the CVP and CVR scenarios, particularly with the possible feature dimension-
ality r = 70 (a variation amplitude of more than 0.2). In the CVC scenario, the GPCR dataset also had
the best feature dimensionality at r = 100.

The fourth of the four scenarios (CV4S, new drug-new target) was the most difficult for DTI prediction.
Since this sort of cross-validation was random and the training datasets and test datasets were also
generated randomly, the test dataset might contain samples of fresh medications and fresh targets to aid in
the inclusion of drug-target combinations in the new drug-new target category (D1–T1 pairs in Fig. 1d).
In the CVP situation, we performed 50 times of 5-time-10-fold cross-validation tests based on GPCR
data. The optimal AUPR and AUC results were 0.651 ± 0.050 and 0.910 ± 0.012, respectively. The
detailed calculation procedure was demonstrated in the code.

We conducted sufficient comparative experiments for the aforementioned four scenarios to verify the
effectiveness of the proposed method. Specifically, we compared SPLDMF with three other state-of-the-
art methods, and the results are depicted in Table 4. The results indicated that the AUC and AUPR of
SPLDMF were currently the best among the comparison methods. Our method could deal with noisy
data more robustly due to the introduction of the SPL strategy, thus achieving better performance. The
result showed that SPLDMF under all scenarios outperformed NRLMF and DNILMF in AUC and AUPR,
suggesting that the proposed SPLDMF was more robust when using ligand-based methods to anticipate
the interactions between ligands and target proteins. Our method outperformed in all scenarios compared
with SPLCMF, which also used SPL strategy. An insightful explanation was that we leveraged more
drug-drug and target-target similarities to improve predictive capacity for unknown outcomes. The result
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Table 5
Top 10 drug-target relationship prediction scores and their validation

Rank Drug name Target name Score Databases Literature
1 Verapamil SCN4A 0.983 C, D, K [49,50]
2 Clozapine DD5R 0.978 D [51]
3 Mirtazapine 5HR1A 0.902 D [52]
4 Diethylstilbestrol ESR1 0.896 C, D, K [53,54]
5 Norehindrone ESR1 0.894 – –
6 Methysergide 5HR1D 0.893 C, D, K [55]
7 Flunitrazepam GARSA1 0.891 C, K [56]
8 Clozapine ADRA1A 0.886 C, D [57,58]
9 Loxapine 5HR2B 0.879 C, D, K [59]

10 Isoflurane GABRA1 0.876 D [60]

Table 6
Comparison of the matrices from DNILMF, SPLCMF, and SPLDMF algorithms in four scenarios
based on the Kuang and Hao datasets

Dataset Scenario AUC AUPR

DNILMF SPLCMF SPLDMF DNILMF SPLCMF SPLDMF
Kuang CVP 0.941 0.933 0.949 0.649 0.733 0.842

CVR 0.803 0.831 0.840 0.602 0.491 0.710
CVC 0.862 0.886 0.888 0.643 0.456 0.731
CV4S 0.897 0.826 0.903 0.633 0.435 0.742

Hao CVP 0.943 0.935 0.943 0.748 0.721 0.816
CVR 0.811 0.792 0.843 0.736 0.740 0.741
CVC 0.852 0.868 0.881 0.683 0.710 0.726
CV4S 0.901 0.816 0.912 0.621 0.593 0.735

also demonstrated that SPLDMF had an improvement of 0.054 and 0.006 in AUC and AUPR, respectively,
in the most difficult scenario CV4S, compared with SPLCMF.

The prediction matrix was scored using Eq. (12). We took the top 10 DTI pairs with the prediction scores
after synthesizing the DTI prediction scores of NR, GPCR, IC, and E. Data validation was performed
using ChEMBL, DrugBank, and KEGG databases, labeled C, D, and K, respectively. We validated the
partial prediction results based on previous studies. The fifth and sixth columns of Table 5 list the database
used for data validation and the studies referred to for the validation method, respectively. Table 5 lists
the top 10 predicted DTIs. The most anticipated interaction was between DB00661 (verapamil) and
P35499 (SCN4A) with a predicted high score of 0.983. This predicted relationship was found in the
three databases C, D, and K. Furthermore, they were also reported in previous studies (Shafi et al.,
2022; Stee et al., 2020). Except for the fifth item, other predictions were found in relevant reports in the
database and literature, which verified these predictions to a certain extent. The fifth pair, the relationship
between norethindrone (DB00717) and ESR1 (P03372), had no relevant reports in the current database
and literature.

According to the FDA, the drug norethindrone (DB00717), similar to the drug diethylstilbestrol
(DB00255), is a progestin used for contraception, the prevention of endometrial hyperplasia in hormone
replacement therapy, and the treatment of other hormone-mediated diseases such as endometriosis.
Diethylstilbestrol is also used to treat diseases such as breast and prostate cancer, but it is listed as a
known carcinogen. The predicted results indicated that norethindrone has the same target (ESR1) as
diethylstilbestrol. Besides its proven contraceptive use, norethindrone may also be used to treat breast
cancer, prostate cancer, and other diseases based on the target principle. We verified our speculation
through the KEGG pathway analysis experiment.
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4.3. Expanded data experiment

Besides simulated data and common benchmark datasets, the proposed SPLDMF was also tested with
additional expanded datasets (prepared by Kuang [39] and Hao [31]) to fully verify the effectiveness of
the suggested model on various datasets. A total of 3681 known interactions, 786 drugs, and 809 targets
were detected in the Kuang dataset. Moreover, 3688 known interactions, 829 drugs, and 733 targets
were detected in the Hao dataset. Table 6 depicts the performance comparison of SPLDMF and other
methods on the expanded dataset, indicating that SPLDMF achieved the best prediction performance
on both augmented datasets. This was mainly attributed to the fact that the SPL strategy improved the
generalization performance of the model, enabling it to perform more robustly on noisy data. Meanwhile,
the use of more feature similarity also enhanced the prediction accuracy, which was conducive to the
discovery of potential DTIs.

5. Discussion and conclusion

Several computational-based methods, including similarity-based methods, standard machine learning
methods, and MF-based methods, have been developed in recent years to achieve efficient and accurate
DTI prediction. A recent study by Shi et al. [48] revealed that MF-based methods had the best prediction
accuracy. Existing MF-based methods, however, might easily fall into bad local minima due to noise and
missing data, as well as the nonconvex pattern of MF models. Meanwhile, the lack of prior information
made it challenging for the model to accurately predict more potential associations. Therefore, we
proposed a DTI prediction model based on an SPL strategy and incorporated more similarity information.
The novelty of SPLDMF might be attributed to a combination of several factors. First, introducing the
SPL strategy enabled the model to avoid falling into a bad local optimum solution and thus had stronger
robustness. The proposed SPLDMF had better prediction performance when the data were affected
by noise. Moreover, we employed more prior similarity information to improve the feature extraction
capability of the model, thus enabling the model to observe more potential DTIs accurately.

Extensive experiments on synthetic data and four benchmark datasets were performed to assess
the validity of the proposed SPLDMF method, which was then compared with three state-of-the-art
DTI prediction methods. Two extended datasets were also used to verify the validity of each method.
Comprehensive analysis results demonstrated that our proposed SPLDMF outperformed other state-of-
the-art approaches. SPLDMF, for example, was more robust for noisy and missing data based on synthetic
data. Furthermore, it outperformed all four scenarios and two expanded datasets in terms of common
machine learning evaluation matrices. The prediction results revealed that 9 of the top 10 DTI pairs were
found in the database and literature, and they were proven or considered effective. An unproven DTI pair
(DB00717-P03372) was also preliminarily proven using pathway enrichment experiments. These results
suggested that SPLDMF might provide a useful tool for predicting new DTIs and redirecting the use of
existing drugs.
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