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Abstract.
BACKGROUND: Diaphragmatic electromyographic (EMGdi) is a helpful method to reflect the respiratory center’s activity
visually. However, the electrocardiogram (ECG) severely affected its weakness, limiting its use.
OBJECTIVE: To remove the ECG artifact from the EMGdi, we designed a Morphological ECG subtraction method (MES)
based on three steps: 1) ECG localization, 2) morphological tracking, and 3) ECG subtractor.
METHODS: We evaluated the MES method against the wavelet-based dual-threshold and stationary wavelet filters using visual
and frequency-domain characteristics (median frequency and power ratio).
RESULTS: The results show that the MES method can preserve the features of the original diaphragm signal for both surface
diaphragm signal (SEMGdi) and clinical collection of diaphragm signal (EMGdi_clinic), and it is more effective than the
wavelet-based dual-threshold and stationary wavelet filtering methods.
CONCLUSION: The MES method is more effective than other methods. This technique may improve respiratory monitoring
and assisted ventilation in patients with respiratory diseases.
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1. Introduction

Chronic respiratory diseases, such as asthma, chronic obstructive pulmonary dis-ease (COPD), oc-
cupational lung disease, and pulmonary hypertension, damage the airways and several lung structures
and are considered to be one of the major threats to human survival and development [1]. According to
the World Health Organization (WHO), over 3 million deaths every year are due to chronic respiratory
diseases [2]. Bioelectrical signals, such as the electrocardiogram (ECG) and electromyography (EMG),
can be recorded with devices, and signal processing techniques are used to ultimately obtain important
cardiopulmonary information. The measurement of diaphragmatic electromyography (EMGdi) can be
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used to assess the nerve respiratory drive (NRD) indirectly, thereby assessing the level and mode [3,4] of
muscle activation, which is essential for the treatment of respiratory diseases.

There are two main ways to collect EMGdi: esophageal diaphragm (ESD) and surface diaphragm
electromyography (SEMGdi) [5]. ESD detection is an invasive method of detection that receives signals
by feeding a collection tube into the esophagus. Although esophageal diaphragm detection can obtain a
relatively pure diaphragm signal, it is an invasive acquisition method, so it has some limitations. SEMGdi
has the same function as ESD and has the advantage of being noninvasive [6]. SEMGdi measures the
location of interest on the body surface by using electrodes. However, due to the acquisition on the body
surface, although it reduces the harm caused by the invasion, it also increases other muscle electrical
signals [7,8]. The SEMGdi decays through tissue and skin and becomes much smaller [9] than the ECG
signal, which means a better signal processing algorithm is required to obtain the required information.

EMGdi has spectral aliasing with ECG [10] (the main frequency band of ECG signal is 20–100 Hz,
in which P wave and T wave are below 20 hz, while the main frequency band of diaphragm EMG is
30–400 Hz), which makes it challenging to extract the EMGdi signal without ECG. To remove ECG
interference from EMGdi signals, re-searchers have proposed many solutions, including using gating [6],
template reduction [11,11–14], mathematical morphology [15], wavelet filter [5,16,17] and independent
variable analysis [17]. However, these methods either cannot remove ECG interference while retaining
most EMGdi information or are limited in clinical application due to computational complexity and the
need to add extra channels. To solve the problem of requiring redundant channels, Jonkman [12] and
Costa Junior [14] proposed that template subtractors that do not require separate ECG records would
work well in removing ECG interference from EMG and EMGdi. However, a single ECG template could
not consider the abrupt changes in ECG information, which would limit the effect.

In contrast, Wu et al. [17] proposed the combination of ICA decomposition and wavelet transformation
to remove ECG interference for EMGdi. According to the statistical characteristics of EMGdi and ECG,
it is divided into different sub-carriers. Then the sub-carriers are subjected to wavelet transformation to
remove ECG noise, and finally, all signals are inversely transformed into clean EMGdi. ICA and wavelet
transform methods achieve better performance by increasing the complexity. Lu [15] and others have
proposed a mathematical morphology method to remove ECG interference from EMGdi. This method is
simple and easy to implement, but they process all segments of EMGdi and eventually cause EMGdi to
decay. EMGdi fragments without ECG do not need to be processed. Mathematical morphology subtraction
removes the part of the EMGdi that is processed at low frequencies, so there is an attenuation of the
EMGdi. The above algorithms either process EMGdi collected from the esophagus alone or SEMGdi. No
algorithm can process both SEMGdi and ESD.

To solve the inability to obey the diaphragm EMG signal faithfully, the attenuation of the diaphragm
EMG as a whole, the vacancy in the simultaneous processing of SEMGdi and ESD, and the complexity
of the processing, we propose a mathematical morphology subtraction method based on ECG detection to
remove ECG artifacts from EMGdi.

2. Method

2.1. Subjects and signal acquisition

The data of 20 subjects were used in this experiment, and all data were processed offline by saving
them on a computer. All subjects were fully informed of any risk as-sociated with the study and provided
their written consent before participation. The data of 10 clinical patients (EMGdi_clinic) were obtained
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Fig. 1. Position of electrode for SEMGdi signal acquisition.

from the Guangzhou State Key Laboratory of Respiratory Diseases [18–20]. These subjects were all male,
with an average age of 66 years, a standard deviation of 10, a mean BMI of 21, and a standard check of
3.9. The underlying diseases were interstitial lung disease and chronic obstructive pulmonary disease.
The main components of the signal acquisition system are five-lead esophagus electrodes and Powerlab
medical, a physiological signal acquisition system from AD Instruments, Australia, with a sampling
frequency of 2000 Hz. The signal has undergone the following pre-processing during acquisition.

The SEMGdi data collected in the laboratory from 10 healthy adults were used in this study. Again,
these subjects were also male, with a mean age of 25 years, a stand-ard deviation of 1, and a mean BMI
of 23.7, with a standard deviation of 0.4. Physio-logical signals were recorded by two round disposable
Ag/AgCl electrodes (11 mm in diameter, pre-gel, foam) with a bipolar structure. A 24-bit high-precision
ADC (ADS1293, USA, TI Corp) was used for modular conversion. The differential input ends were
attached to the right lower chest, along the line between the anterior axillary line and the midline of
the clavicle [7], on the seventh and eighth rib spaces above the rib edge, and the two differential input
ends were placed 2–3 cm apart. As shown in Fig. 1, the reference electrodes are placed on the right
shoulder away from the input end. This area corresponds to the adhering area of the cost diaphragm. The
whole measurement process strictly follows SENIAM measurement recommendations [21]. All electrode
recording points are carefully prepared with abrasive cream (Heal Force, ShangHai, China) and cleaned
with medical alcohol to improve skin/electrode impedance. Participants were asked not to speak or move
during the test. They naturally placed their hands on both sides and lay flat in bed after 100 seconds of
silence.

2.2. Studies for comparison

After pre-processing, Li et al. [20] proposed a wavelet-based du-al-threshold filter to eliminate the
ECG artifact in the ESD. The basic principle is to decompose the wavelet into many sub-wavelets and
perform ECG positioning in the sub-wavelets with the most apparent ECG signal. During positioning,
each sub-wavelet uses threshold filtering. The segment is identified as an ECG segment when more
excellent than a certain threshold. Then, the distribution around the ECG segment is calculated, and the
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ECG segment is filled. Finally, the filled sub-wavelets are reconstructed to a diaphragmatic signal without
an ECG (EMGdi_DFT). It is worth noting that the threshold for ECG localization and the threshold
used for filling ECG segments are dynamically updated, and the algorithm shows promising results in
EMGdi_clinic.

In addition, Luo et al. [13] used a threshold filter based on a stationary wavelet to deal with the ECG
interference in the diaphragm signal (EMGdi_STAT), which has a good effect. Recently, Gu et al. [22]
demonstrated that the processed signal could extract breathing features.

2.3. Signal pre-processing

All signal processing work is done in Python. The preprocessing appointment can divide into two
steps: 1) The surface EMG signal is passed through an 8th-order Butterworth filter with a bandwidth
of 20–400 Hz and then passed through a notch filter with a center frequency of 50 Hz. The diaphragm
signal (EMGdi_raw). According to the literature [6], the above operation can reduce the SEMGdi_para to
remove most of the noise of the ECG signal. 2) After passing the signal through an 8th-order Butter-worth
bandpass filter with a bandwidth of 20–50, ECG_Chanel is obtained to prepare for the subsequent ECG
detection. This can preserve the ECG signal more thoroughly and remove the diaphragm muscle signal,
so as to prepare for the subsequent ECG detection.

2.4. Morphological ECG Subtraction Method Based on ECG Detection

We propose a Morphological ECG subtraction method (MES) to extract the diaphragm electromyo-
graphic components from the ECG signal. The algorithm consists of three steps: 1) ECG detection,
2) morphological tracking, and 3) ECG subtractor. The processing block diagram of the system is shown
in Fig. 2. The MES method uses the basic idea of mathematical morphology, obtains the peak and valley
information of ECG fragments by expanding and corrosion operation, integrates the peak and valley
information of ECG fragments by averaging function, obtains pieces with ECG morphology, and finally
obtains EMGdi without ECG by removing the ECG with subtractor.

2.4.1. ECG detection
ECG detection is the critical step of this algorithm, and the quality of ECG detection directly affects the

filtering effect. Since the ECG has its prominent morphological characteristics and the R point is obvious,
our ECG detection is mainly the detection of the R point. In this algorithm, the ECG_Chanel signal is
squared first. The square distinguishes the ECG signal from the diaphragmatic muscle signal to a greater
degree. Then find the maximum value for a while, and use this maximum value as the starting point of
the first ECG. At the same time, half of this maximum value is taken as the threshold value. Then, the
threshold value is updated each time a new ECG signal is detected. The threshold update rule is shown by
Eq. (1):

Td(n) =

{
1
2 max
0<m<length

f(m) n = 0

1
2 [k1 × Td(n− 1) + k2 × Rval(n)] n > 0

, (1)

Where f is the input signal, n is the number of ECG located, and Rval(n) is the R-value of the current
ECG segment. k1 and k2 is the scale factor that controls the contribution of Td(n− 1) and Rval(n) to
the current threshold.

ECG detection is achieved by taking the intersection of the threshold and the square signal. An input
signal to compare the threshold used for each, and the timing starts when the comparison is that the
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Fig. 2. Data analysis block diagram. MES: Morphological ECG subtraction.

current threshold is smaller than the current input signal. When a signal value below the threshold occurs
before the time count to N , the maximum value in that time is determined to be Rval(n), and the threshold
is updated. Otherwise, the current threshold considers too small, resulting in intersections in the EMGdi
rather than the ECG. Therefore, increasing k2 before restarting the detection of signals more considerable
than the threshold value is necessary. At the same time, the pseudo-periodicity of the ECG signal is used
to avoid the misjudgment of the ECG signal. The update rule for Rval(n) shows as Eq. (2):

Rval(n) = max

{
f(m) > TD(n) and

wait(N) f(m) < TD(n) endwait

}
, (2)

Note that the length of N is related to the duration of the ECG signal. The literature shows that, the
duration of a QRS cycle is 60–100 ms under normal circumstances, and some particular diseases will
prolong the QRS cycle. Properly extending N can be beneficial in detecting ECG signals in patients with
heart disease. Finally, combined with the characteristics of ECG signals [23], the position of Rval(n) is
added and delayed to obtain ECG segments.

2.4.2. Morphological tracing
Morphological tracing is developed based on rigorous mathematical topology. The mathematical

morphological method has two fundamental operations (expansion and corrosion) and two basic operations
(open and closed operations) [15,24]. Morphological tracing is to traverse the signal using shift and
extreme value by using the template function. The traversal result is closely related to the choice of
template, associate with the shape of the signal. The open operation is sensitive to the trough of the signal,
while the closed operation is sensitive to the signal’s peak. To better fit the peaks and troughs of the ECG
signal, the output signal is the average form of open operation and closed operation. Let f be the input
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signal, g is the template function, Md(m) is the output signal of morphological tracking, · and the open
operator and ◦ the closed operator.

Md(m) =
1

2
[(f · g)(m) + (f ◦ g)(m)], (3)

From the EMGdi_raw, we can see that the fluctuation of the ECG signal is more prominent and lower in
frequency than the diaphragm signal. Therefore, we can use a smaller template than the ECG fluctuation
and more significant than the diaphragmatic muscle fluctuation to realize the ECG fitting. The sampling
rate of EMGdi_clinic is 2000 Hz. According to experience, a linear template with all 0 s and a length of 5
is used. The SEMGdi sampling rate is 2560 Hz, using a straight template with all 0 s and a length of 7.

2.4.3. ECG subtractor
Pieces of literature pointed out [11,12] that the ECG signal and the diaphragm muscle signal are

signals from different sources and are relatively independent. The collected diaphragm muscle signal is
the superposition of the ECG signal and the diaphragm muscle signal. Therefore, to remove the ECG
interference of the EMGdi ECG segment, only the components of the ECG segment need to be extracted
and then subtracted from the original signal. This paper uses the mathematical morphology method to fit
the ECG signal in the ECG segment, and the final signal output rule is shown in Eq. (4).

EMGdi_od(m) =

{
EMGdi_raw(m) m = ECG segment
k[EMGdi_raw(m)− Md(m)]m = Non − ECG (4)

The diaphragm component EMGdi_od in the ECG segment can be obtained by subtracting EMGdi_raw
and Md in the ECG segment. Since many low-frequency components of EMGdi are also removed when
the method removes the ECG components, the subtraction signal needs to be amplified in the end. k is a
fixed value, generally 20–40 times the standard deviation of EMGdi_raw. In the non-ECG segment, there
is no interference in EMGdi_raw, so it is directly output. Ultimately, the output EMGdi_od is the EMGdi
without ECG interference.

2.5. Evaluation of performance

Verification of the effect of each filtering method in filtering out ECG is mainly carried out from
two aspects of frequency domain and time domain visual evaluation. Power spectral density (PSD) is
a quantitative method for describing EMG signals. We cannot get the actual diaphragm EMG signal
without ECG interference for the actual signal, so we cannot calculate the proper signal-to-noise ratio and
relative error. Power spectral analysis (PSD) of diaphragm signals, such as total power, median frequency,
and standard deviation, can measure the algorithm’s performance [5,6,22]. The median frequency is the
main index used to evaluate electromyographic fatigue [21,25].

Although the ECG signal and the diaphragm signal in EMGdi have spectral overlap, in the main
frequency band, the diaphragm signal is in the high-frequency band (30–400 Hz). The ECG signal is in
the low-frequency band (10–100 Hz), so the high and low power ratio can be approximated by Describing
the signal-to-noise ratio. In this paper, we use: 1) visual judgment in the time domain and frequency,
2) power spectral density analysis (high-low power ratio and median frequency) to quantify algorithm
performance, respectively.

Because the main bandwidth of ECG is 10–50 Hz, and the main bandwidth of diaphragm is around
30–150 Hz, according to [21,26], there is a high-low power spectral density ratio (PSDR) defined as:

PSDR =

[∑fH1

fL1
P (f)∑fH2

fL2
P (f)

]
, (5)
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Fig. 3. Time-domain and frequency-domain visual effects after EMG processing. (a) and (c) are the time-domain and frequency–
domain effects of the same EMGdi_clinic processing, corresponding to C1 subjects in Table 1; (b) and (d) are the time-domain
and frequency-domain effects after the same SEMGdi processing, corresponding to the s1 subjects in Table 2.

set fH1 = 150 Hz, fH2 = 50 Hz, fL1 = 50 Hz, fL2 = 20 Hz, the median frequency (MF) is defined as:
MDF∑
j=1

Pj =

L∑
j=MDF

Pj =
1

2

L∑
j=1

Pj , (6)

3. Results

3.1. Clinical data

Figures 3a and c show the visual differences in the time and frequency do-mains of the signals from
clinical subjects after processing by the morphological attenuator, wavelet-based dual-threshold filter
(DFT), and stationary wavelet filter (STAT), respectively. In the time domain, by comparing the processing
effects of each different algorithm with the EMGdi_raw comparison, it can be found that EMGdi_DTF
tends to attenuate the diaphragm amplitude. At the same time, the EMGdi_MES and EMGdi_STAT are
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Table 1
The median frequency and power ratios of EMGdi_raw, EMGdi_STAT,
EMGdi_DTF and EMGdi_MES of EMGdi_clinic. The median frequency and
power ratios of EMGdi_raw, EMGdi_STAT, EMGdi_DTF and EMGdi_MES
were statistically significant, and all pairwise comparisons were significant
(P < 0.01)

Median frequency
Subject EMGdi_raw EMGdi_STAT EMGdi_DTF EMGdi_MES
C1 33.976 53.635 44.792 74.629
C2 32.641 54.674 35.905 73.739
C3 26.558 40.801 38.872 59.644
C4 29.377 39.614 42.656 63.056
C5 30.861 38.427 39.466 58.012
C6 23.516 46.929 44.407 52.955
C7 22.997 48.997 36.516 56.380
C8 22.329 29.507 34.184 80.638
C9 24.407 54.748 48.576 76.157
C10 22.700 47.493 50.086 98.691
Mean 26.936 45.482 41.546 69.390

Power spectral density ratio
Subject EMGdi_raw EMGdi_STAT EMGdi_DTF EMGdi_MES
C1 0.253 0.929 0.737 1.744
C2 0.136 0.924 0.675 1.667
C3 0.115 0.700 0.655 1.105
C4 0.251 0.640 0.872 1.311
C5 0.306 0.603 0.658 1.025
C6 0.037 0.602 0.484 1.089
C7 0.024 0.817 0.420 1.373
C8 0.017 0.396 0.482 1.930
C9 0.229 0.898 0.743 1.526
C10 0.220 0.537 0.658 2.382
Mean 0.159 0.705 0.638 1.515

Abbreviations: EMGdi, diaphragm electromyogram; EMGdi_raw, processed
EMGdi; EMGdi_STAT, EMGdi as processed with the Stationary Wavelet
Filter; EMGdi_DTF, EMGdi as processed with the Dual Threshold Filter;
EMGdi_MES, EMGdi as filtered with the Morphological ECG subtraction
method.

better for EMGdi_raw amplitude retention than EMGdi_DTF. Also, based on comparing the spectral
density of each signal, it can be seen that in the ECG band (20–30 Hz), EMGdi_MES has the lowest
spectral density, followed by EMGdi_DTF, while EMGdi_STAT is the highest. Moreover, in the main
bandwidth of the diaphragm signal (30–150 Hz), EMGdi_STAT has a higher spectral density than
EMGdi_DTF and EMG_MES, and part of the spectrum has surpassed EMGdi_raw.

The median frequency and power ratios of EMGdi_raw, EMGdi_STAT, EMGdi_DTF, and EMGdi_MES
of EMGdi_clinic are described in Table 1. As can be seen from Table 1, the average median frequency
of the EMGdi_raw signal is 26.936 Hz, the average median frequency of EMGdi_STAT is 45.482 Hz,
the average median frequency of EMGdi_DTF is 41.546 Hz, and the average median frequency of
EMGdi_MES signal is 69.390 Hz. In terms of power ratio, the average value of the power ratio of the
EMGdi_raw signal is 0.159, the average value of the power ratio of the EMGdi_STAT signal is 0.705,
the average value of the power ratio of the EMGdi_DTF signal is 0.638, and the average value of the
power ratio of the EMGdi_MES signal is 1.515. Regardless of the visual or frequency domain features,
compared with the EMGdi_raw signal, the above three can well retain high-frequency components and
reduce low-frequency components.
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Table 2
The median frequency and power ratio of EMGdi_raw, EMGdi_STAT,
EMGdi_DTF and EMGdi_MES of SEMGdi_para. The median frequency
and power spectral density ratio of EMGdi_raw, EMGdi_STAT, EMGdi_DTF
and EMGdi_MES were statistically significant, and all pairwise comparisons
were significant (P < 0.01)

Median frequency
Subject EMGdi_raw EMGdi_STAT EMGdi_DTF EMGdi_MES
S1 29.108 34.972 35.218 42.802
S2 20.857 43.996 56.952 73.315
S3 21.454 42.872 48.279 70.997
S4 27.633 43.855 55.548 67.591
S5 18.469 40.836 43.504 49.579
S6 21.067 63.413 74.719 85.358
S7 19.031 41.713 47.472 67.381
S8 18.294 48.806 50.948 80.618
S9 21.313 33.743 34.902 43.504
S10 19.909 79.459 99.965 120.646
Mean 21.713 47.367 54.751 70.179

Power spectral density ratio
Subject EMGdi_raw EMGdi_STAT EMGdi_DTF EMGdi_MES
S1 0.273 0.404 0.417 0.626
S2 0.269 0.753 1.104 1.518
S3 0.315 0.748 0.953 1.529
S4 0.548 0.744 1.117 1.474
S5 0.127 0.652 0.8 0.984
S6 0.289 1.173 1.628 2.028
S7 0.228 0.683 0.922 1.362
S8 0.171 0.842 0.998 1.749
S9 0.172 0.592 0.695 0.867
S10 0.184 1.502 1.999 3.028
Mean 0.258 0.809 1.063 1.516

3.2. Surface EMG data

Ten surface diaphragm EMG signals (SEMGdi) were collected at the same time, and their visual and
frequency domain features are shown in Fig. 3b and d and shown in Table 2.

In Fig. 3b, the diaphragm amplitude of EMGdi_MES is closer to that of EMGdi_raw relative to
EMGdi_STAT and EMGdi_DTF. According to the PSD in Fig. 3d, the problems in EMGdi_clinic
processing (in the main frequency band of ECG signal, the spectral density of EMGdi_MES is the lowest.
In the frequency band of diaphragm muscle electromyography, the spectral density of EM From Table 2,
the average median frequency of EMGdi_raw is 21.713 Hz. After processing, the median frequencies of
EMGdi_STAT, EMGdi_DTF, and EMGdi_MES are all improved, respectively 47.367 Hz, 54.751 Hz and
70.179 Hz. The average value of the power ratio is 0.258 for EMGdi_raw, 0.809 for EMGdi_STAT, 1.516
for EMGdi_MES, and 1.063 for EMGdi_DTF after processing. It can be seen that STAT, DTF, and MES
methods all have good performance for EMGdi_clinic and SEMGdi_para.

Figure 4 shows the MF and PSDR trends for the data of all subjects under different processing
methods, respectively. In general, EMGdi_STAT, EMGdi_DTF, and EMGdi_MES can improve the
median frequency and power ratio of EMGdi_raw, and usually, EMGdi_MES improves more significantly
than EMGdi_DTF and EMGdi_STAT. The power ratios and median frequencies of EMGdi_STAT,
EMGdi_MES, and EMGdi_DTF during calm breathing were compared with those of EMGdi_raw, which
were statistically significant; both comparisons were significant (p < 0.01).



S342 L. Guo et al. / Morphological ECG subtraction method for removing ECG artifacts from diaphragm EMG

Fig. 4. Median frequency and power ratios for different subjects. Median frequency (MF) and power ratio (PSDR) of EMGdi_raw,
EMGdi_STAT, EMGdi_DTF, and EMGdi_MES with different data included. (a) and (b) are clinically collected data, (c) and (d)
are laboratory-collected data.

4. Discussion

We propose a method for removing ECG noise in EMGdi. We use the method proposed in this paper to
quantify the processing performance by comparing the visual and frequency domain features with the
wavelet-based dual-threshold filter [20] and the stationary wavelet filter [22]. The experimental results
show that this method is effective for the data of patients with dyspnea collected by the esophagus and
effective for the data of healthy people collected by SEMGdi.

Although the ECG signal in EMGdi_raw has spectral overlap with the diaphragm muscle signal, the
diaphragm muscle (EMGdi) signal is mainly in the high-frequency band (30–150 hz), and the ECG
signal is primarily in the low-frequency band (10–50 hz). The extent to which the algorithm removes
ECG interference can be illustrated by comparing the data’s power ratio and median frequency trend
before and after processing. Generally speaking, if these values increase after processing, it can indicate
that the signal in the EMGdi band has increased while the signal in the ECG band has decreased. Thus
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demonstrating the performance in removing ECG interference. In Tables 1 and 2, and Fig. 4, it can be
seen that relative to EMGdi_raw, the power ratio and median frequency of each signal have increased.
This shows that the STAT, MES, and DTF methods have specific effects on removing ECG signals.
Moreover, it can be seen in Tables 1 and 2, and Fig. 4 that EMGdi_MES has the highest power ratio and
median frequency, which also shows that EMGdi_MES has the best performance.

As seen in Fig. 3c and d, the spectral density of EMGdi_MES is lowest in the ECG-only band (20–
30 Hz). In the frequency band of EMGdi, the spectral density of EMGdi_STAT is closest to EMGdi_raw,
followed by EMGdi_MES. However, in some frequency bands, the spectral density of EMGdi_STAT
exceeds that of EMGdi_raw. This shows that the STAT method introduces a particular distortion when
processing the signal and finally makes the processed signal different from the original signal. After
processing, signal distortion should be avoided by signal processing algorithms. In Fig. 3a and b, visually,
EMGdi_STAT, EMGdi_DTF, and EMGdi_MES all have a good removal effect on ECG. Compared with
EMGdi_raw, EMGdi_DTF will make an inevitable reduction of non-ECG fragments. In connection with
the distribution and visual effects of PSD, it can well explain that the MES method can retain EMGdi
while removing ECG interference, while the STAT and DTF methods could be better.

Whether it is EMGdi_clinic or SEMGdi, EMGdi_DTF will make an inevitable re-duction in non-ECG
fragments. These two wavelet filters first locate the ECG, and then process the ECG segment. When
processing the ECG segment, fills the ECG segment with the average energy before and after the ECG.
The effect of this algorithm depends on the ECG location and the thresholds before and after filling.
Although this filling can make the filled ECG segment more in line with the actual breathing situation to a
certain extent, it also increases unnecessary time delay and calculation amount, so this method has certain
limitations for engineering applications. The MES method pro-posed also locates the ECG segment
first and then traverses the ECG segment through a template with ECG characteristics. (This process is
essentially a low-pass filter, which is consistent with the spectral distribution of the ECG signal and the
EMGdi.). Finally, the result of the traversal is used as an ECG segment. This method does not require
the additional power calculation before and after the ECG segment and fills the ECG segment, reducing
unnecessary delay. At the same time, since the frequency domain of EMGdi is more concentrated in the
high-frequency part (30–400Hz), after the template traverses the ECG segment, the information of EMGdi
can be retained, and the sudden change of ECG can be filtered out. Finally, this study first extracted the
ECG signal through a 20–50 Hz band-pass filter. Then the extracted ECG signal was squared to widen
the gap between the ECG signal and the residual diaphragm signal, making it more convenient to use
the threshold value. The electrocardiographic signal is located, and the accuracy of ECG location can be
improved.

In Fig. 3a, the EMGdi_MES signal in the central electrical segment during the expiratory phase has
more protrusions in the same area than the EMGdi_DFT and EMGdi_STAT. The template’s width cannot
keep up with the speed of data change when the template is selected, leaving inherent ECG residues. In
the next step of re-search, it is necessary to study how to adapt the template function to the shape of the
ECG so that the algorithm can be better and more general.

5. Conclusions

In conclusion, we propose a morphological ECG subtraction method, which can effectively remove
ECG interference from EMGdi signals. At the same time, the morphological ECG subtraction method
can deal with the EMGdi of the esophagus and the SEMGdi, which has better generality. Compared with
the wavelet-based dual-threshold filter, the morphological ECG subtraction method is more effective in
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removing ECG signals. It is more helpful to improve the monitoring of respiratory drive and respiratory
control in clinical practice.
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