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Abstract.
BACKGROUND: Despite the advancement of new screening strategies and the advances in pharmacological therapies, the
cancerization rates of familial adenomatous polyposis (FAP) are stable and even increased in the last years. Therefore, it
necessitates additional research to characterize and understand the underlying mechanisms of FAP.
OBJECTIVE: To determine the genes that drive the pathogenesis of familial adenomatous polyposis (FAP).
METHODS: We performed on a cohort (GSE111156) gene profile, which consist of four group of gene expressions (the gene
expressions of cancer, adenoma and normal tissue of duodenal cancer from patients with FAP were defined as Case N, Case A
and Case C respectively, while that of adenoma tissue from patients with FAP who did not have duodenal cancer was Ctrl A).
Tracking Tumor Immunophenotype (TIP) website was applied to reveal immune infiltration profile and signature genes of FAP.
We merged the genes of key module (pink and midnight module) with signature genes to obtained the biomarkers related with
FAP pathogenesis. The expression of these five biomarkers in FAP intratumoral region (IT) and tumor rim (TR) was detected
with Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR).
RESULTS: In total, 220, 23 and 63 DEGs were determined in Cases C, A and N, in comparison to Ctrl A. In total, 196 and
10 DEGs were determined in Cases C and A, separately, as compared to Case N. A total of four biomarkers including CCL5,
CD3G, CD2 and TLR3 were finally identified associated with pink module, while only one biomarker (KLF2) associated with
midnight module was identified. All biomarkers were evidently raised in FAP IT tissues utilizing qRT-PCR.
CONCLUSION: We identified five potential biomarkers for pathogenesis of FAP to understand the fundamental mechanisms of
FAP progression and revealed some probable targets for the diagnosis or treatment of FAP.
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1. Introduction

Familial adenomatous polyposis (FAP) is an autosomal dominant disorder resulting from mutations in
the adenomatous polyposis coli (APC) gene [1,2]. FAP is the most common intestinal polyposis [3], and
the most prominent feature is multiple adenomatous polyposis of the digestive tract which frequently
leads to obstruction, gastrointestinal bleeding as well as other complications [4]. Polyposis can also
develop into colorectal cancer and directly endanger human life and health [5]. Despite the advancement
of new screening strategies and the advances in pharmacological therapies, the cancerization rates of FAP
are stable and even increased in the last years. Therefore, it necessitates additional research to characterize
and understand the underlying mechanisms of FAP.

Over 1500 mutations have been detected in the attenuated and classical families of FAP. Well over 60%
of the proteins with these mutations are mapped to a region known as the mutation cluster region (MCR)
that is situated in exon 15 [6,7]. At present, there is no radical cure method for polyp, and surgical removal
of polyp is still the main method. Surgery is the main treatment for FAP patients and is designed to
reduce cancer risk while achieving good functional outcomes. Total abdominal colectomy plus ileorectal
anastomosis (IRA) and total colorectal resection plus IPAA are the two currently selected sphincter-
preserving methods. IRA is a less technically difficult procedure that is linked to better functional
results and improved quality of life [8]. The preservation of the rectal reservoir improves its function. A
limitation of IRA is the cancer risk of the preserved rectum. The ileal pouch-anal anastomosis (IPAA) is a
procedure that is more technically demanding, that can lead to more nighttime defecation, nighttime fecal
contamination, and potential sexual dysfunction and/or infertility [9,10]. IPAA also carries a higher risk
of permanent ileostomy if there are complications of anastomotic leakage or poor bag function [11].

The typical phenotype of FAP disease is marked by hundreds to thousands of colorectal adenomas and
is not difficult to identify. In contrast, clinical management of FAP may present difficulties in treatment
and monitoring due to the high penetrance of APC mutations, the large spectrum of possible extra-colonic
manifestations, and the form of genetic transmission. The FAP biomarkers were mainly identified in
the presence of adenoma and the detection of APC or MUTYH (one of base excision repair genes)
germline mutations. Although the clinical characteristics of adenomas such as number and histology
have a direct impact on diagnosis and treatment, APC or MUTYH mutations are primarily selected in
high-risk subjects to respond to specific and intensive surveillance programs. However, in special cases,
genetic testing can also have a big impact on treatment. Estrogen Receptor β has been reported as a
prognostic marker for colorectal cancer tumor progression in sporadic polyps and FAP [4,12]. Delker
et al. presented a decrease in the size and number of duodenal polyps, together with suppression of
PGE2, EGFR and WNT signaling and a rise in interferon-γ (IFNγ) signaling, offering significant insights
into the regressive mechanisms of duodenal polyps in patients suffering from FAP who were treated by
sulindac-erlotinib [13]. Agatea L is the first to define a particular set of peptides for the monitoring of
FAP patients that can be advantageously applied for the monitoring and prediction of the pathological
evolution of the adenocarcinoma malignancy.

Nevertheless, polyps frequently regenerate, at times in greater numbers, and can transform into CRC
if left unrecognized or untreated. The 5-year OS rate for colorectal cancer transformed by FAP was
estimated to be 54.4% [14]. This requires us to analyze and study more cancer-related genes of FAP as
markers for treatment and diagnosis.

Nowadays, as high-throughput microarray technology has been advanced, the gene expression profile
has been employed for determining the genes related to the oncogenesis and progress of FAP. The
mechanism was partly explained via gene ontology (GO) analysis [15]. The metabolic differences
between carcinoma and adenoma mean that the re-programming of metabolism, in particular carbohydrate
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metabolism, may act as an essential player in tumorigenesis and progress from adenoma to carcinoma [16].
The growing application of correlation networks in applications of bioinformatics benefits the network-
based genetic screening approaches that could be applied for determining therapeutic targets or candidate
biomarkers [17]. For instance, weighted gene co-expression network analysis (WGCNA) is a systems
biology approach to characterize the patterns of correlation between genes in the microarray samples.
WGCNA has strengths over differential expression analysis in finding highly related gene clusters
(modules), recognizing hub genes within modules and linking modules to traits in external samples.
Several researches have employed this approach to investigate the associations between clinical traits
and gene clusters [18,19]. Nevertheless, prior WGCNA researches have not been implemented for the
analysis of the FAP differentially expressed gene expression. In this study, DEGs and immune infiltration
signature genes were identified based on GEO dataset, and WGCNA was subsequently performed to
screen the key module and hub gene. A total of five biomarkers were finally obtained, which may be
related to the development of FAP, which laid a theoretical foundation for further research of new FAP
target biomarkers.

2. Materials and methods

2.1. Gene expression datasets and clinical pathological data

GSE111156, a microarray-based dataset, consists of 48 samples (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE111156). In GSE111156 research, a genome-wide transcriptional analysis of the
duodenal samples from patients with FAP was conducted to characterize the alterations that occur in
the duodenal adenoma-carcinoma sequence in FAP. Duodenal samples from 12 patients with FAP who
did not have duodenal cancer (controls) and 12 patients with FAP who were diagnosed with duodenal
cancer from 1988 to 2014 (cases) were analyzed for gene expression. Extraction of RNA from archived
cancer, adenoma as well as normal tissue from cases and from archived adenoma tissue from controls.
Profiling and analysis of gene expression applying the Affymetrix Human Transcriptome Array 2.0. Three
pairwise comparisons were implemented to characterize the adenoma-carcinoma sequence: normal-cancer
(No-Ca), adenoma-cancer (Ad-Ca), and normal-adenoma (No-Ad). A total of 48 samples were evaluated,
12 from controls (adenoma) and 36 from cases (cancer, adenoma, normal).

2.2. Identification of DEGs

DEGs was determined utilizing open-source software R language (Version 3.3.3, https://www.r-
project.org/) together with R package of Bioconductor (http://www.bioconductor.org/) limma package [34,
35]. Screened DEGs at p < 0.05 and logFC = 1.

2.3. Construction of WGCNA

Co-expression networks of filtered genes were constructed through the usage of “WGCNA” R pack-
age [36,37]. After assessment of the expression matrix assessed via the average method with the “hclust”
function, the clustered genes of gene chips comprising GSM3024204, GSM3024195 and GSM3024196
were defined as biased and were therefore excluded from the further analysis (Fig. 1A). Other samples
were applied for calculating the Pearson’s Correlation Matrices. Weighted adjacency matrices were
calculated via the formula amn = |cmn|β (amn: the adjacency between gene m and n, cmn: Pearson’
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correlation, β: soft power threshold). Subsequently, data on clinical features were loaded and average con-
nectivity and scale independence were evaluated. Moreover, topological overlap measure (TOM) matrices
transformed via adjacency matrices were employed for the estimation of their connectivity. Furthermore,
the corresponding genetic information was extracted for each module for the further analysis.

2.4. Identification of clinically significant module

The traits matrix contains Adenocarcinoma, Adenoma, Normal (case cancer, CaseC), and Con-
trol_ademoma 4 clinical traits. After the identification of modules, the module eigengene (ME) was
concluded through the first principal component of the expression level of module. Module-trait cor-
relations were estimated utilizing association between clinical traits and ME, which enabled efficient
recognition of related modules. To assess the strength of correlation, we measured the module significance
(MS), which is determined as the mean absolute gene significance (GS) of all genes that participated in
the module [38]. GS was calculated as a log10 transformation of the P -value (lgP) in a linear regression
between clinical information and gene expression. The key module was defined as the modules that
exhibited the highest correlation (positively and negatively) coefficients among all modules [39].

2.5. Tumor immune cell infiltration analysis

The calculation functions for TIP were created in R [40,41,42]. The JavaScript, Struts2 and Bootstrap
framework were employed to communicate between the web interfaces and R, which were subsequently
implemented via JavaScript, and the table results were produced from DataTables. Additionally, bar,
heat, scatter and pie plots were produced with HighCharts, while D3 powered box, line, circle and radar
plots. The source code for https://github.com/dengchunyu/TIP. In general analysis, TIP receives four
categories of expression data from Case tissue as input. One is RNA-seq expression data (TPM or raw
counts), and the other is microarray expression data (non-log or log transformed). Phenotyping of tumor
cell infiltration was carried out online with the usage of TIP domain (http://biocc.hrbmu.edu.cn/TIP) in
accordance with the derived data GSE111156. The samples were divided into CtrlA: Control adenoma
tissue; CaseN: case normal tissue; CaseA: case adenoma tissue and CaseC: case cancer tissue group. The
analysis followed default parameters.

2.6. Identification of TFs in the key module

Enrichr (http://amp.pharm.mssm.edu/Enrichr/) is a comprehensive tool based on the Web [43,44]. Ge-
netic information of key module was imported into Enrichr to capture the interaction between transcription
factors (TFs) and the associated target genes. To minimize the possibility of detecting false positives, we
only retrieved TFs from the ENCODE and ChEA gene-set libraries with consensus targets and identified
P < 0.05 through Fisher exact test. Later, Cytoscape 3.4.0 software (Cytoscape Consortium, SanDiego,
CA, USA) was applied for visualizing the regulatory networks of TF-target gene.

2.7. Functional enrichment analysis

Enrichment analysis of GO [45] and KEGG [46] pathway utilizing clusterprofiler package in the
R software (Version 3.3.3) [47] for investigating the underlying mechanism of DEGs, the genes in
modules of interest, as well as a group of hub genes. FDR < 0.1 was established as the cutoff value.
The clusterProfiler is a R package based on ontology that can automate the bio-term classification and
the gene cluster enrichment analysis, simultaneously delivers a module for visualization to display the
analysis results [48].



W.-R. Lin et al. / Identifying genes related with FAP 1679

Table 1
The differentially expressed genes in Familial Adenomatous Polyposis (FAP) under different condition

Compared groups Log2FC_Cutoff FDR_Cutoff All Gene_Num Up Gene_Num Down Gene_Num
CaseN VS CtrlA 1 0.05 63 3 60
CaseA VS CtrlA 1 0.05 23 1 22
CaseC VS CtrlA 1 0.05 220 44 176
CaseA VS CaseN 1 0.05 10 2 8
CaseC VS CaseN 1 0.05 196 136 60
CaseC VS CaseA 1 0.05 20 12 8

Abbreviation: Ctrl A: Control adenoma tissue; CaseN: case normal tissue; CaseA: case adenoma tissue; CaseC: case
cancer tissue.

2.8. Quantitative Real-Time PCR (qRT-PCR)

Extraction of total RNA was performed from 12 pairs of FAP TR and IT tissues through TRIzol
reagent (Invitrogen) and reverse transcribed to cDNA. The qRT-PCR was implemented on the ABI
PRISM 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA). Primers for CD2, CD3G,
CCL5, KLF2 and TLR3 are presented in Table 2. GAPDH was served as the internal control. mRNAs
relative expression levels were computed employing the 2−∆∆CT approach. All of the experiments were
replicated a minimum of 3 times. Our research was authorized by the ethics committee of the First
Affiliated Hospital of Kunming Medical University. All the patients provided written informed consent.

3. Results

3.1. Identification of DEGs in FAP and their functional

The differential analysis was performed using GSE111156 data. By comparing case normal tissue (Case
N) with control adenoma tissue (Ctrl A), it was possible to determine 63 differentially expressed genes
(DEGs) in the sample tissues, of which 3 were raised and 60 were decreased (Table 1). By comparing
case adenoma tissue (Case A) with Ctrl A, it was possible to determine the 23 DEGs in the sample tissues,
of which 1 gene was raised and 22 were decreased. By comparing case cancer tissue (Case C) with Ctrl
A, it was possible to determine 220 DEGs in the sample tissues, of which 44 genes were raised and
176 were decreased. By comparing Case A with Case N, it was possible to determine 10 DEGs in the
sample tissues, of which 2 genes were raised and 8 were decreased. In contrast to Case N, 196 DEGs
were identified in the samples from Case C, 136 of which were up-regulated and 60 were down-regulated.
Then, the number of 20 DEGs were screened in Case C compared with Case A, of which 12 were raised
and 8 were decreased.

Figure 2A displays the volcano charts of DEGs expression variations in Case N and Ctrl A. The
signal distribution of the plot indicates specific up-regulated (PCK1, SLC15A1, MIR2054) and down-
regulated (CEACAM6, POF1B, RNF 43, NQO1, CD44, ANXA10, SNORD123, SLC12A2, CERS6,
KIAA1324) transcripts. As shown in Fig. 2B, the differentially expressed genes between Case A with Ctrl
A tissue, the specific up-regulated gene contained SNORA76, and down-regulated genes included FABP1,
LOC399753, CPS1, DMBT1, AGAP7, ADH1C, SI, MIR548O2, LOC101060495, MIR548X). Figure 2C
suggested that the expression of some genes was increased (GREM1, VTRNA2-1, MIR2054, MIR4759,
THBS1, VTRNA1-3) whereas that of others was downregulated (ADH1C, CPS1, HMGCS2, PBLD,
KIAA1324, CPS1-IT1, ADH4, ADH1A, EPHX2, SLC4A4) between Case C with Ctrl A. Compared Case
A with Case N, the DGEs contained up-regulation (CEACAM6 and REG4) and down-regulation (RBP2,
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Table 2
Primer information for qRT-PCR

Genes Primer sequence
CCL5 5’-CCCCATATTCCTCGGACAC-3’ (forward)

5’-CACTTGGCGGTTCTTTCG-3’ (reverse)
CD3G 5’-GGAATCTGGGAAGTAATGCCAA-3’ (forward)

5’-TCAATGCAGTTCTGACACATTCT-3’ (reverse)
CD2 5’-CCCCATATTCCTCGGACAC-3’ (forward)

5’-CACTTGGCGGTTCTTTCG-3’ (reverse)
TLR3 5’-TTGCCTTGTATCTACTTTTGGGG-3’ (forward)

5’-TCAACACTGTTATGTTTGTGGGT-3’ (reverse)
KLF2 5’-TTCGGTCTCTTCGACGACG-3’ (forward)

5’-TGCGAACTCTTGGTGTAGGTC-3’ (reverse)
GAPDH 5’-GGACCTGACCTGCCGTCTAG-3’ (forward)

5’-GTAGCCCAGGATGCCCTTGA-3’ (reverse)

Fig. 1. Sample clustering was conducted to detect outliers.

GSTA1, GSTA2, ALDOB, SLC15A1, ACE2, MEP1B and AKR1B10) genes (Fig. 2D). Then, compared
Case C with Case N, the signal distribution of the plot indicates specific up-regulated (RBP2, ALDOB,
APOB, GIP, GSTA1, GSTA2, FOLH1, FOLH1B, CREB3L3, SST) and down-regulated (CEACAM5,
SLC2A1, MYOF, CEACAM6, PKM, SNORA71C, SNORA74A, GDF15, SPP1, SULF1) transcripts
(Fig. 2E). The differentially expressed genes between Case C with Case A tissue, the specific up-
regulated genes contained SULF1, VCAN-AS1, SPP1, POSTN, SNORD114-12, COL3A1, COL1A1,
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Fig. 2. The results of DEGs among different groups. (A) The volcano plot of DEGs in Case N vs Ctrl A. (B) The volcano plot of
DEGs in Case A vs Ctrl A. (C) The volcano plot of DEGs in Case C vs Ctrl A. (D) The volcano plot of DEGs in Case A vs Case
N. (E) The volcano plot of DEGs in Case C vs Case N. (F) The volcano plot of DEGs in Case C vs Case A. Red points indicate
up-regulation genes, blue points indicate down-regulation genes.

COL1A2, SPARC and GREM1, and down-regulated genes included DEFA5, DEFA6, ADH1C, HMGCS2,
KIAA1324, MT1H, MT1G, CPS1 (Fig. 2F).

Hierarchical clustering heatmap was applied to reveal the DEGs profiles among two group, displayed
differences in the mode of gene expression between both groups (Fig. 3). Figure 3 presents that these
genes could distinctly separate all samples into two groups.

In order to understand their functionality, all of the DEGs were plotted against the terms of the GO
database and subsequently compared to the entire reference database. The GO analysis results for the
DEGs are presented in Fig. 4A. They were categorized into three groups, namely, the Cellular Component
(CC), the Molecular Function (MF), together with the Biological Process (BP). It was revealed that these
genes were linked to mRNA catabolic processes, neutrophil degranulation, as well as the neutrophil
activation involved in the immune response. For further insight into the bio-functions of the genes
determined and to categorize their functional annotations, remarkably enriched pathways were defined
through comparison with KEGG database. When comparing case N with Ctrl A, the DEGs were enriched
to Ribosome and PPAR signaling pathway. As shown in Fig. 4B, the findings presented that the genes
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Fig. 3. Identification of hub genes associated with FAP. (A) The results of clustering analysis based on genes in Case N vs Ctrl A.
(B) T The results of clustering analysis based on genes in Case A vs Ctrl A. (C) The results of clustering analysis based on genes
in Case C vs Ctrl A. (D) The results of clustering analysis based on genes in Case A vs Case N. (E) The results of clustering
analysis based on genes in Case C vs Case N. (F) The results of clustering analysis based on genes in Case C vs Case A.

were correlated with catabolic and metabolic process, annotated to digestion and absorption pathways.
When comparing Case C vs Ctrl A, DEGs were associated with immune response, annotated to chemical
carcinogenesis and metabolism (Fig. 4C). When comparing Case A vs Case N, DEGs were associated
with catabolic and metabolic and annotated to metabolism pathways (Fig. 4D). Notably, when comparing
Case C vs Case N, DEGs were associated with leukocyte migration (Fig. 4E), while the genes were
associated with extracellular organization when comparing Case C vs Case A (Fig. 4F). Some pathways
that are strongly associated with immunity were markedly enriched, for instance the “leukocyte migration
and acute inflammatory”, which warranted to be further studied.

3.2. Immunophenotype profiling

To reveal the status of immune infiltration in FAP, we tracked, analyzed and later validated the anti-
cancer immune status and the ratio of tumor-infiltrating immune cells in the 7-step Cancer-Immunity
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Fig. 4. The gene ontology enrichment and KEGG pathway classification of DEGs. It contains three categories including biological
process, cellular component and molecular function. The abscissa axis indicates the number of enriched genes. The abscissa
represents the annotated genes in KEGG database; the ordinate represents Categories in KEGG database.

Cycle through the Tracking Tumor Immunophenotype (TIP) website utilizing samples from patients with
FAP. Figure 5A exhibited that in contrast to other groups, the scores of the first to third Cancer-Immunity
Cycle steps corresponding to cancer cell antigen release (Step 1), the presentation of cancer antigens (Step
2), as well as excitation and activation (Step 3) were increased in Case C. The step 4, which corresponds
to the trafficking of immune cells to the tumors showed significant alterations between the samples in each
group. Specifically, immune activity scores corresponding to dendritic cell recruiting, Th1 cell recruiting,
T cell recruiting, Treg cell recruiting, Th2 cell recruiting, and B cell recruiting raised, while scores
corresponding to Th22 cell recruiting, CD8 T cell recruiting, CD4 T cell recruiting, neutrophil recruiting,
monocyte recruiting, macrophage recruiting, eosinophil acidophil recruiting, NK cell recruiting, Th17 cell
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Fig. 5. Global visualization of the immunophenotype across samples from TCGA. (A) The heatmap of 23 normalized immune
activity scores in 48 samples. (B) The relative proportion of tumor-infiltrating immune cells. (C) Left, the expression pattern of
signature genes from the seven-step cancer-immunity cycle. Each row represents a single gene, and each column represents one
sample. Right, the principal component analysis (PCA) of signature genes expression for all samples.

recruiting and basophil recruiting correspondingly declined significantly in both Case A and Case C. In
FAP samples, immune cell infiltration of the tumors (Step 5) was diminished, while T cell recognition of
cancer cells (Step 6) and killing of cancer cells (Step 7) revealed elevated immune activity scores. Analysis
of the infiltration of immune cells in multiple samples (Fig. 5B) suggested that FAP samples mainly
infiltrated by CD8 T cells, memory B cells, monocyte and naive B cells. The expression of signature
gene on samples was depicted in the heatmap (Fig. 5C). With 48 samples, we identified signature genes
participating in the cancer-immune cycle that exhibited diverse patterns of expression among Case A,
Case C, Case N and Ctrl A samples (Fig. 5D).
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Fig. 6. Weighted gene co-expression network analysis. (A) Sample dendrogram and trait heatmap. (B) Scale independence
and mean connectivity of various soft-thresholding values (β). (C) Dendrogram of all filtered genes enriched according to a
dissimilarity measure (1-TOM) and the cluster module colors. (D) Heatmap of the correlation between the clinical traits and
MEs of FAP. The darker the module color, the more significant their relationship. (E) Eigengene adjacency heatmap.

3.3. WGCNA analysis for identification of gene modules associated with FAP

After applying the “cluster” function to the expression matrix assessed via the averaging approach [20],
a total of four samples including GSM3024207, GSM3024217, GSM3024218 and GSM3024211 whose
cluster height above 0.05 were considered as deviations and were therefore excluded from the further
analysis (Fig. 6A). R package “WGCNA” was employed to group similarly expressed genes into distinct
modules. In this research, β = 8 was taken to ensure low mean connectivity (close to 0) and high scale
independence (close to 0.9). The phase anisotropy of modules was set to 0.2, and in total, 10 modules
were produced (Fig. 6C). Figure 6D presents the eigengene neighbor-joining heatmap, suggesting that
the pink and black modules, as well as some other modules were adjacent to each other. The module-trait
association is illustrated in (Fig. 6E). The pink module related to FAP was the darkest (cor = 0.55, P =
6.6e-29) and this module was selected for the further analysis (Fig. 7A). As illustrated in Fig. 7B, GO
analysis revealed that these genes were linked to cofactor binding, fatty acid metabolic processes, and
organic anion transport. KEGG pathway enrichment analysis indicated that chemical carcinogenesis,
cytochrome P450 metabolism of xenobiotics and drug metabolism-cytochrome P450 signaling pathways
were the most predominantly enriched.
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Fig. 7. (A) The scatter plot between the pink module membership and the gene significance for normal. (B) Functional enrichment
of genes in the pink module, including Biological process GO terms, Cellular component GO terms, Molecular function GO
terms and KEGG analysis.

3.4. Construction of co-expression network and identification of hub genes in pink module

In pink module, the edges marking the correlations were filtered with the weight value > 0.2, and in
total, 381 edges were derived. 79 nodes were determined after entering them into Cytoscape (Fig. 8A).
Therefore, the boxplots proving the associations between the hub genes and the FAP were displayed
in Fig. 8B, including SLC2A2, ACE2, ABCG2, ASAH2, MGAM, MS4A10, MEP1A, ASAH2C, TM-
PRSS15, SLC15A1, ME-AS1, MEP1B, CDHR5, CYP3A, SLC6A19, ADA, GBA3, APOB, MME and
SLC7A9, 20 hub gene were significant in distinguishing FAP and normal tissue. The 20 hub genes were
performed functional enrichment analysis (Fig. 8C). GO analysis presented that hub genes were related to
lipid catabolic process and digestion. KEGG pathway enrichment analysis indicated that protein digestion
and absorption signaling pathways was the most predominantly enriched.

Furthermore, we entered these 161 genes into Enrich with a P < 0.01 and identified four TFs, namely
NFE2L2, HNF4A, BSR1 and FOXA1. Networks corresponding to these genes were displayed in Fig. 9A.
Then performed functional enrichment analysis in Fig. 9B. GO analysis revealed that these TFs were
most obviously linked to organic anion transport. KEGG pathway enrichment analysis demonstrated
that platinum resistance together with drug metabolism-other enzyme signaling pathways were the most
significant enrichment sites.

3.5. Function annotation of the midnight blue module of interest and the hub genes

Midnight blue module related to FAP was the darkest (cor = 0.57, p = 1.6e-05) and was selected for
the further analysis (Fig. 10A). Figure 10B exhibited the KEGG pathway and GO analysis of the 50
significant genes in midnight blue module. GO analysis indicated that these hub genes were linked to
responses to steroid, oxidation, peptide and toxic substance. Enrichment analysis of the KEGG pathway
suggested that the MAPK signaling pathway was the primary enrichment pathway.

3.6. Construction of co-expression network and identification of hub genes in midnight blue module

In midnight blue module, the edges marking the correlations were filtered with the weight value
> 0.2, and in total, 136 edges were derived. 17 nodes were determined after entering them into Cy-
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Fig. 8. The identification and further analysis of hub genes in pink module. (A) Genes network with 381 edges and 79 nodes, red
points represented hub genes [20]; (B) Boxplots for the expression of hub genes in normal vs. FAP; (C) Functional annotation for
hub genes associated with control ademona, including Biological process GO terms, Cellular component GO terms, Molecular
function and KEGG analysis.
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Fig. 9. Identification and functional enrichment analysis of transcriptional factors in pink module. (A) The transcriptional factor
(TF) network of the 80 genes generated by Webgestalt. The diamond and red color indicate the TFs while the green and eclipse
shape indicate the target gene. (B) The GO and KEGG enrichment analysis for TF in pink module.

Fig. 10. (A) The scatter plot between the midnightblue module membership and the gene significance for control ademona.
(B) Functional enrichment of genes in the pink module, including Biological process GO terms, Molecular function GO terms
and KEGG analysis.
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Fig. 11. The identification and further analysis of hub genes in midnight blue module. (A) Genes network with 136 edges and
17 nodes, red points represented hub genes [17]; (B) Functional annotation for hub genes associated with control ademona,
including Biological process GO terms and KEGG analysis; (C) Boxplots for the expression of hub genes in control ademona vs.
FAP.

toscape (Fig. 11A). The 17 nodes were performed GO analysis and KEGG, which was associated with
p38MAPK cascade and participated in MAPK signaling pathway (Fig. 11B). Figure 11C showed the
mRNA level of 17 nodes (MYADM, DUSP1, KLF2, NR4A1, PLK3, MMP19, JUND, PPP1R15A,
LMNA, OTTHUMG00000060830, MIDN, NFIL3, EMP1, MAP2K3, EPHA2, PFKFB3, AFP36) were
significantly upregulated. Furthermore, we analyzed TFs in midnight blue module (Fig. 12A), 43 TFs
were identified and used for performing functional enrichment analysis. The findings revealed that TFs
were also correlated with the MAPK signaling pathway (Fig. 12B).

At last, we merged the genes of the most significant correlation module with immune infiltration
signature genes to obtain the potential biomarkers for FAP pathogenesis. For the most positive module
(pink module), in total, four genes were eventually acquired which including CCL5, CD3G, CD2 and
TLR3 (Fig. 13). GO analysis demonstrated that these four genes were linked to protein self-binding and
T cell activation. Enrichment analysis of KEGG pathway suggested that the Toll-like receptor signaling
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Fig. 12. Identification and functional enrichment analysis of TFs in midnightblue module. (A) The transcriptional factor (TF)
network of the 48 genes generated by Webgestalt. The diamond and red color indicate the TFs while the green and eclipse shape
indicate the target gene. (B) The GO and KEGG enrichment of analysis in midnightblue module.
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Fig. 13. The most significant correlation module merge Immune infiltration signature genes, pink (CCL5, CD3G, CD2, TLR3).
The GO and KEGG enrichment of four identified genes. The GO item contains (A) biological process, (B) cellular component
and (C) molecular function. (D) KEGG pathway analysis.

pathway was the predominant enrichment pathway. CD3G is also a gene in pink module correlated to
HNF4A, which is one of the types of TFs.

For the most negative module (midnight blue module), we identified only one gene (KLF2), which
is also a hub gene in midnight blue correlated to Ctrl A (Fig. 14). KEGG pathway enrichment analysis
indicated that FoxO signaling pathway was the most predominantly enriched.

The outcomes of qRT-PCR exhibited that among the genes of cancer-associated pathway, CD2, CD3G,
CCL5, KLF2 and TLR3 were all dramatically upregulated in the FAP IT tissues versus tumor rim (TR)
tissues (Fig. 15), pointing to their effects in the FAP progression.

4. Discussion

Patients with FAP are born with the germline mutation in APC gene that unavoidably progresses to
hundreds of multi-stage precancerous adenomas in the rectum and colon. This characteristic allows
FAP to serve as a natural model for investigating the adenoma-cancer metastasis process. At present,
it is generally agreed that early intervention and early detection of high-risk human can benefit FAP
patients [21,22]. Therefore, to explore the early detection and early diagnosis of FAP is a hot topic in this
field.

In order to uncover genes driving the pathogenesis of FAP, WGCNA and differential gene expression
analysis were carried out based on GSE111156 data that is publicly available. Compare with Ctrl A,
we found the most distinct genes in Case N were down-regulation of CEACAM6 and up-regulation of
MIR2054. The most distinct DEGs between Case C and Ctrl A were ADH1C and VCAN-AS1. While
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Fig. 14. The most significant correlation module merge Immune infiltration signature genes: midnightblue (KLF2). The GO and
KEGG enrichment of the KLF2. The GO item including (A) biological process, (B) cellular component. (C) KEGG pathway
analysis.

Fig. 15. Validation of genes in FAP TR and IT tissues, including CCL5, CD3G, CD2, TLR3 and KLF2.
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compare with Case N, we found the most distinct genes in Case A were down-regulation of RBP2,
ALDOB and up-regulation of CEACAM6, the most distinct genes in Case C were down-regulation of
CEACAM5, SPP1 and up-regulation of RBP2, ALDOB, further compare with Case A, the most distinct
genes in Case C were down-regulation of DEFA5, DEFA 6 and up-regulation of VCAN-AS1, SPP1. In
summary, we could observe that VCAN-AS1, SPP1, RBP2, ALDOB, ADH1C significant differential
expression occurred in different samples, which had never been reported to be associated with FAP. Both
of ADH1C and VCAN-AS1 were revealed to be related with development of gastric cancer [23,24].
Besides, ADH1C displayed high expression in the normal epithelium of FAP patients in contrast to that of
patients with sporadic CRC. In our study, we found that ADH1C was down-regulation in Case C compare
with Ctrl A, which provided a guess that ADH1C may be an adenoma-associated gene in FAP patients.
Among the most DEGs, SPP1 was reported to be associated with immune infiltration [25]. Several studies
revealed that CEACAM6 can used be a novel therapeutic target in many cancers, such as gastric cancer,
pancreatic ductal adenocarcinoma and oral squamous cell carcinoma [26,27,28]. There are few reports
about MIR2054. To the best of our knowledge, this research represents the first effort to determine key
genes related to the oncogenesis and progress of FAP. The correlations of the pink and midnight blue
modules with FAP were remarkably significant, thus we choose these two modules for further analysis.
After constructing co-expression networks and the recognition of hub genes in midnight blue and pink
module, we found 17 and 20 hub genes in midnight blue and pink module separately. In pink module, the
most differentially expressed hub genes were APOB and CDHR5. It was reported that APOB participated
in fat digestion and absorption, vitamin digestion and absorption. CDHR5 was related to cell adhesion
together with the homologous cell adhesion through plasma membrane adhesion molecules. While,
the most significant hub gene in midnight blue module was ZFP36, which was also identified as a hub
gene associated with HTLV-I infection [29]. Furthermore, we identified five biomarkers (CCL5, CD3G,
CD2, TLR3 and KLF2) by merging the immune infiltration signature genes with the genes of the most
significant module with FAP. All of the biomarkers have never been reported to be associated with FAP
before, which may provide new predictive and diagnostic targets for the cancerization of FAP.

In our study, for the first time, we have determined a group of genes connected to tumor infiltration
and FAP. CCL5 is a subfamily CC member that serves as a chemoattractant for monocytes, eosinophils
as well as memory T helper cells in the blood. It also enables the histamine release from basophils and
activates eosinophils [30]. CD3G could influence activation and stimulation of T cell. CD2 is involved in
the leukocyte migration, activation of T cell [31] and T cell differentiation modulation [32]. TLR3 could
mediate the production of cytokines necessary for the development of effective immunity. KLF2 could
also negatively regulate production of interleukin-6 and participant immune infiltration [33]. These genes
can be used as markers of adenoma infiltration, providing new targets for clinical diagnosis.

Nonetheless, it should be recognized that there are limitations to our research and that additional
clinical samples were needed to verify our results and clarify the underlying mechanisms. In our future
work, we will concentrate on this issue.

5. Conclusions

Through co-expression analysis, we identified five biomarkers including CCL5, CD3G, CD2, TLR3
and KLF2 based on GSE111156 dataset. The findings of the functional enrichment analysis exhibited that
such genes may participate pathogenesis of FAP by modulating the toll-like receptor and foxO signaling
pathway. These results may have important clinical significance in improving cancer prediction in patients
with FAP.
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