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Abstract.
BACKGROUND: The incidence of type 2 diabetes is rapidly increasing worldwide. Studies have shown that it is also associated
with cancer-related morbidities. Early detection of cancer in patients with type 2 diabetes is crucial.
OBJECTIVE: This study aimed to construct a model to predict cancer risk in patients with type 2 diabetes.
METHODS: This study collected clinical data from a total of 5198 patients. A cancer risk prediction model was established by
analyzing 261 items from routine laboratory tests. We screened 107 risk factors from 261 clinical tests based on the importance of
the characteristic variables, significance of differences between groups (P < 0.05), and minimum description length algorithm.
RESULTS: Compared with 16 machine learning classifiers, five classifiers based on the decision tree algorithm (CatBoost, light
gradient boosting, random forest, XGBoost, and gradient boosting) had an area under the receiver operating characteristic curve
(AUC) of > 0.80. The AUC for CatBoost was 0.852 (sensitivity: 79.6%; specificity: 83.2%).
CONCLUSION: The constructed model can predict the risk of cancer in patients with type 2 diabetes based on tumor biomarkers
and routine tests using machine learning algorithms. This is helpful for early cancer risk screening and prevention to improve
patient outcomes.
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1. Introduction

Over the past two decades, the incidence of type 2 diabetes and its complications have rapidly increased
worldwide, accounting for 90% of all diabetes cases [1]. As this trend continues, the incidence of
cancer among patients with type 2 diabetes has increased significantly [2]. A number of large-scale
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epidemiological studies and meta-analyses have demonstrated that type 2 diabetes is associated with the
development of various cancers, including pancreatic, colorectal, thyroid, esophageal, and gynecological
cancers [3,4,5,6,7]. Moreover, research indicates that this association may be attributed to hyperglycemia
and hyperinsulinemia [8]. Since different cancers have different manifestations and characteristics, they
are difficult to identify in patients with diabetes through routine screening. If one can comprehensively
analyze and fully utilize the relevant laboratory indicators in patients with type 2 diabetes, the risk of
cancer in patients with type 2 diabetes can be predicted.

Machine learning, an important field of artificial intelligence, is a general term for a class of algorithms
that can learn from numerous datasets to predict the characteristics of new samples and perform required
tasks [9]. A previous study by Choudhury [10] demonstrated the effectiveness of artificial intelligence
algorithms in evaluating the early diagnosis and prognosis of tumors. Furthermore, artificial intelligence
has been shown to assist greatly in cancer screening even when using the clinical data of patients
alone [11]. Compared to traditional statistical methods, machine learning performs more objectively
in classification and prediction, with better classification results. Currently, there are various machine
learning algorithms based on different weak learners, such as logistic regression, naive Bayes, support
vector machines, and decision tree classifiers. A previous study found that a sub-discipline of machine
learning requiring less user input but more data and processing power has provided great promise in
assisting physicians in achieving accurate diagnoses [12]. Furthermore, classifiers such as the multilayer
perceptron (MLP), random forest (RF), and decision tree (DT) can accurately predict the survival of
patients with cancer [13]. More and more machine learning methods have been applied in cancer diagnosis
and prognosis and have shown great potential [14,15,16].

This study aimed to establish a machine-learning prediction model by selecting important features and
predicting the risk of cancer in patients with type 2 diabetes based on tumor markers and other routine
laboratory tests.

2. Materials and methods

2.1. Sample information

The data for this study were collected from June 2013 to September 2022 from all hospitalized patients
diagnosed with type 2 diabetes at the Shaanxi Provincial People’s Hospital. This study was approved by
the Ethics Committee of the Shaanxi Provincial People’s Hospital. All participants were fully informed
about the study and provided written informed consent.

Of the 100120 cases, 9352 (9.34%) were patients with cancer. According to statistics, the cancer types
mainly included intestinal (20.4%), lung (16.2%), prostate (9.9%), breast (8.4%), liver (8.1%), gastric
(6.9%), bladder (5.2%), pancreatic (4.9%), bone (4.6%), lymphoma (4.0%), kidney (2.5%), ovarian
(1.8%), esophageal (1.7%), thyroid (1.4%), cervical (0.9%), leukemia (0.8%), glioma (0.7%), thymoma
(0.7%), nasopharyngeal (0.3%), and pituitary (0.2%) cancer, comprising 20 different types of cancer
(Fig. 1).

2.2. Quality control

2.2.1. Missing value control and filling
A total of 1381 variables of relevant clinical data were extracted. Variables with missing values

exceeding 50% in the both groups were gradually excluded. Patients were excluded if the missing value
rate exceeded 20%. Adjacent individual values were used for quantitative variables. For categorical
variables, missing values were randomly filled in using the proportion of categories.
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Fig. 1. Percentages of 20 different types of cancer in this study.

2.2.2. Data matching
The K-means algorithm cluster matching method was used to match the data of the cancer and non-

cancer groups based on age and sex. The basic method of cluster matching is to use the K-means algorithm
to cluster the observation group into different subgroups and obtain the grouping rules. According to
grouping rules, control patients were grouped based on the lowest value of the same type ratio (1:1) as
cases [20].

2.3. Feature selection

Feature selection methods are used to remove redundant features from all available features to improve
the efficiency of machine-learning models and reduce overfitting. Important feature combinations were
effectively identified and validated by combining significance tests (P < 0.05), importance ranking of
variables, and the minimum description length (MDL) algorithm [21]. This exploration of the importance
of each feature in extracting data variables helps identify the optimal feature combination for model
discrimination and improves model accuracy.

The MDL algorithm considers each relevant variable as a simple predictive model and compares and
scores these individual models using their respective MDL measures to determine the relevant variables.
The formula used was: Si (Modeli, D) = S (Modeli) + S (Ci), where Si (Modeli, D) is the total size
obtained after building a simple predictive model using the ith attribute, S (Modeli) is the size of the
simple predictive model built using the ith attribute, and S (Ci) is the total size of all the prediction errors
after building a simple predictive model using the ith attribute.

Ultimately, the following criteria were used to select important features (laboratory indicators) for
modeling: 1) features discovered by the feature selection algorithm are preferred features; 2) selected
features should cover as many different aspects of routine checks as possible, such as blood routine, liver
and kidney function, and electrolytes; 3) selected features should be as independent of each other as
possible, i.e., they should reduce multicollinearity and multivariate correlation as much as possible; 4) the
number of features should be proportional to the amount of data; and 5) medical expertise and practical
experience should be considered.

2.4. Model construction

This study used 16 machine learning algorithm classifiers, including logistic regression, softmax, and
dummy classifiers based on the principles of logistic regression, linear discriminant analysis, quadratic
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Fig. 2. Construction of the machine-learning predictive model.

discriminant analysis, ridge, support vector machine (SVM), k-neighbors, naive Bayes, and decision tree
classifiers such as random forest, adaptive boosting (AdaBoost), CatBoost, extra trees, light gradient
boosting, gradient boosting, and extreme gradient boosting (XGBoost). Figure 2 shows the specific
modeling process using the 10-fold cross-validation method with 90% of the data as the training set and
10% as the test set. The following is a brief introduction to different types of classifiers.

2.4.1. Logistic regression
Logistic regression [22] estimates the probability of an event occurring by fitting the data to a sigmoid
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function. For probability values between 0 and 1, a prediction of 1 was made when the probability was
greater than 0.5, whereas a prediction of 0 was made when the probability was less than 0.5. The R v4.1.2
Glm function was used to train the training set samples and build a logistic regression prediction model.
The softmax function is a commonly used logistic regression model with fast modeling speed and low
computational complexity.

2.4.2. Linear discriminant analysis
Linear discriminant analysis and quadratic discriminant analysis have similar algorithmic features and

can determine whether to use a quadratic model based on whether the covariance matrices of different
classification samples are the same. Ridge regression is based on the principle of least squares and
has practical value for overcoming the problem of feature collinearity by simultaneously imposing
regularization constraints on each feature coefficient.

2.4.3. Naive Bayes
The naive Bayes model [23] is based on the Bayesian theorem of conditional independence, which

assumes that each input variable can be independently estimated as a one-dimensional variable. The
posterior probability distribution is calculated for a given test set by learning the prior and conditional
probability distributions from the training dataset. The classification with the maximum posterior prob-
ability is the result. In this study, the naive Bayes function in the klaR package was used to build the
prediction model.

2.4.4. SVM
SVM [24] can theoretically achieve optimal classification of linearly separable data. Their basic model

defines a linear classifier with the maximum margin in the feature space, which can be transformed into
a convex quadratic programming problem to be solved. The SVM function in the e1071 package in R
v4.1.2 was used to train the training set samples and build an SVM prediction model configured using a
linear kernel function.

2.4.5. Decision tree
Various classifiers based on decision trees have been developed, including random forest, AdaBoost,

and gradient boosting. Random forest [25] is a bagging ensemble algorithm based on the decision tree
algorithm, which separately models each sample using resampling methods to generate multiple decision
trees. The result is the mode of the predicted result. Overfitting is less likely to occur owing to the
characteristics of random forests. The model was built using the importance function, replicate function,
and random forest function in randomForest v4.6-14 in R v4.1.2.

AdaBoost is a representative boosting ensemble algorithm. It iteratively trains weak classifiers (usually
decision trees), and assigns higher weights to misclassified samples from the previous layer of weak
classifiers during training. The dataset was redefined for training, and the results were obtained by
weighting each weak classifier. The model was built using the boosting function in the adabag package of
R v4.1.2.

Gradient-boosting ensemble algorithms, such as CatBoost and XGBoost, achieve accurate classification
results through iterative calculations of weak classifiers and aggregates the conclusions of multiple
decision trees as the final prediction result. It is suitable for running large-scale data; however, its
computation is relatively time-consuming.

2.5. Evaluation of prediction models

Following completion of model construction, the model performance was evaluated. In this study, 10%
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of data randomly selected from the original queue data was used as the test set to evaluate the classification
performance of the model using parameters such as accuracy, sensitivity, specificity [26], and F1 score
[27]. In addition, we used the area under the curve (AUC) of the receiver operating characteristic (ROC)
curve [28] to evaluate model efficiency. The AUC of the ROC is between 0 and 1, and the closer the AUC
value is to 1, the better the classification performance of the model.

3. Results

3.1. Preliminary model performance

To construct the model, the cancer group included cases diagnosed with type 2 diabetes and various types
of cancer (excluding heart disease, kidney disease, hypertension, arteriosclerosis, and hyperlipidemia). A
total of 2599 patients with 261 routine clinical laboratory indicators were included, with a detection rate
of > 80%; the non-cancer group included 26563 individuals. A total of 2599 non-cancer controls with
type 2 diabetes were matched to the cancer group in a 1:1 ratio according to sex and age; patients with
heart disease, kidney disease, hypertension, arteriosclerosis, and hyperlipidemia were excluded.

To predict the possibility of cancer occurrence in patients with type 2 diabetes, we introduced 16
machine learning classifiers and constructed and evaluated a risk prediction model for cancer in patients
with type 2 diabetes using 5198 patients with 261 clinical variables. First, all 261 feature variables
were included in the model and the accuracy of the 16 classifiers varied from 0.508 (dummy) to 0.739
(CatBoost). The AUC values ranged from 0.530 to 0.818. To further improve model performance and
reduce the impact of possible overfitting on classification performance, we conducted a feature selection
process.

3.2. Feature selection

We extracted 107 important features through a comprehensive comparison of differences in P -values,
importance, and MDL, including blood tumor markers, blood routine, liver and kidney function, blood
glucose, and other laboratory indicators between groups. Among them, indicators such as neuron-specific
enolase, alpha-fetoprotein, carbohydrate antigen 125, carbohydrate antigen 15-3, carbohydrate antigen 72-
4, and characteristic variable, had P < 0.05 and importance > 2, as shown in Table 1. The corresponding
original data can be found in the supplementary data.

3.3. Model performance

By continuously adding feature variables and testing classifier performance, we found that the model
classification performance peaked when 107 feature variables were used. The mean AUC values of the
top 10 classifiers was 0.770 (0.691–0.852), as shown in Fig. 3.

Based on the principle of decision trees, the five best classifiers were obtained: random forest, CatBoost,
light gradient boosting, gradient boosting, and XGBoost models, as listed in Table 2. The AUC values of
the five classifiers were all > 0.80 and ranged from 0.829 (gradient boosting) to 0.852 (CatBoost). The
precision, sensitivity, and specificity ranges were 0.754–0.796, 0.731–0.761, and 0.770–0.832, respectively
(Fig. 4). The CatBoost classifier model achieved the best performance (AUC: 0.852, precision: 0.796,
sensitivity: 0.761, and specificity: 0.832) and was considered the optimal model for predicting cancer risk
in patients with type 2 diabetes.
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Table 1
Statistics and importance of the 107 selected features

Patients with type 2 diabetes, Mean (SD)

Feature variables Total
(5198)

Non-cancer group
(2599)

Cancer group
(2599) P -value Importance

Neuron-specific enolase 14.934 (17.709) 11.902 (6.656) 17.967 (23.762) < 0.001 4.462
Alpha-fetoprotein (AFP) 15.941 (100.903) 4.109 (30.551) 27.773 (138.396) < 0.001 4.110
CA-125 (carbohydrate antigen
125)

6.894 (26.765) 3.888 (10.794) 9.900 (36.034) < 0.001 2.572

CA15-3 (carbohydrate antigen
15-3)

12.794 (25.888) 9.220 (8.972) 16.368 (35.136) < 0.001 2.549

CA72-4 (carbohydrate antigen
72-4)

0.495 (2.253) 0.420 (1.624) 0.571 (2.739) 0.016 2.425

Characteristic variable 68.061 (12.220) 66.615 (13.024) 69.508 (11.177) < 0.001 2.076
Fibrinogen (or fibrin) degradation
products

53.919 (233.679) 27.204 (96.430) 80.635 (313.858) < 0.001 1.980

Hematocrit measurement 226.336 (254.639) 225.756 (250.649) 226.915 (258.615) 0.870 1.929
Hemoglobin measurement 26.285 (847.005) 3.254 (24.197) 49.316 (1197.274) 0.050 1.849
Lipoprotein (a) 1.456 (0.779) 1.615 (0.757) 1.296 (0.767) < 0.001 1.759
Absolute lymphocyte count 0.364 (0.070) 0.383 (0.067) 0.346 (0.067) < 0.001 1.734
Neuron-specific enolase 120.357 (23.905) 126.499 (23.234) 114.215 (22.975) < 0.001 1.722
Fibrin degradation products
(FDP)

6.757 (18.445) 4.993 (18.353) 8.521 (18.372) < 0.001 1.671

Red cell distribution width
(RDW)

0.196 (0.079) 0.200 (0.070) 0.192 (0.088) < 0.001 1.559

Carcinoembryonic antigen (CEA) 64.747 (8.190) 64.997 (7.569) 64.497 (8.762) 0.028 1.521
Platelet volume fraction 3.931 (10.704) 4.010 (10.362) 3.853 (11.038) 0.597 1.496
Activated partial thromboplastin
time

32.339 (8.242) 32.219 (7.653) 32.459 (8.791) 0.294 1.481

Thyroid-stimulating hormone
(TSH)

3.459 (6.637) 3.452 (5.886) 3.466 (7.312) 0.940 1.434

Retinol-binding protein (RBP) 37.708 (18.072) 40.928 (18.179) 34.489 (17.381) < 0.001 1.416
Myoglobin 77.525 (288.505) 81.020 (303.085) 74.030 (273.163) 0.382 1.320
Total bile acids (TBA) 8.863 (23.144) 6.293 (11.544) 11.433 (30.415) < 0.001 1.320
Mean corpuscular hemoglobin
concentration (MCHC)

30.361 (2.796) 30.478 (2.235) 30.243 (3.257) 0.002 1.281

Free triiodothyronine (FT3) 4.677 (1.170) 4.742 (1.119) 4.612 (1.215) < 0.001 1.229
Albumin 36.444 (6.227) 37.311 (5.734) 35.578 (6.571) < 0.001 1.195
Triglycerides (TG) 1.581 (1.294) 1.597 (1.398) 1.566 (1.182) 0.395 1.153
Platelet volume distribution width
(PDW)

15.416 (2.803) 15.528 (2.729) 15.303 (2.872) 0.004 1.153

Blood glucose 7.535 (3.615) 7.724 (3.872) 7.346 (3.329) < 0.001 1.127
Protein 0.426 (0.741) 0.427 (0.793) 0.425 (0.684) 0.918 1.122
5’-nucleotidase (5’NT) 4.787 (9.825) 3.960 (6.760) 5.614 (12.085) < 0.001 1.121
Prealbumin 199.623 (77.217) 216.499 (68.563) 182.748 (81.588) < 0.001 1.113
Fibrinogen 3.525 (1.228) 3.404 (1.135) 3.646 (1.303) < 0.001 1.078
Prostate-specific antigen (PSA) 2.917 (26.362) 2.197 (24.110) 3.637 (28.423) 0.049 1.069
Mean corpuscular volume (MCV) 91.955 (6.276) 92.183 (5.748) 91.726 (6.756) 0.009 1.065
Cholinesterase 6562.606 (2466.747) 7139.902 (2207.827) 5985.310 (2575.021) < 0.001 1.056
Carbohydrate antigen 19-9
(CA19-9)

58.243 (206.582) 22.928 (75.813) 93.557 (277.716) < 0.001 1.055

Cystatin C 1.376 (0.969) 1.366 (1.041) 1.386 (0.893) 0.458 0.993
Eosinophil ratio (EOS) 0.022 (0.022) 0.024 (0.021) 0.020 (0.022) < 0.001 0.980
Apolipoprotein B (ApoB) 0.810 (0.258) 0.797 (0.257) 0.823 (0.257) < 0.001 0.967
Prothrombin time (PT) 17.166 (8.906) 17.609 (11.982) 16.724 (3.835) < 0.001 0.967
α-L-iduronidase (IDUA) 24.222 (9.147) 23.990 (8.646) 24.454 (9.619) 0.068 0.948
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Table 1, continued

Patients with type 2 diabetes, Mean (SD)

Feature variables Total
(5198)

Non-cancer group
(2599)

Cancer group
(2599) P -value Importance

Nucleated red blood cells
(NRBC)

0.084 (0.790) 0.081 (0.598) 0.087 (0.944) 0.784 0.945

Adenosine deaminase (ADA) 12.977 (6.371) 12.549 (5.764) 13.406 (6.899) < 0.001 0.914
Calcium 2.216 (0.186) 2.230 (0.161) 2.202 (0.206) < 0.001 0.906
Neutrophil ratio 0.666 (0.130) 0.638 (0.117) 0.695 (0.136) < 0.001 0.869
Monocyte ratio 0.078 (0.030) 0.079 (0.025) 0.076 (0.034) < 0.001 0.853
White blood cell count 7.225 (4.497) 6.799 (2.925) 7.651 (5.616) < 0.001 0.825
Lymphocyte ratio 0.228 (0.113) 0.253 (0.105) 0.203 (0.115) < 0.001 0.819
Lactate dehydrogenase (LDH) 251.827 (381.207) 231.046 (310.509) 272.607 (439.787) < 0.001 0.793
Fecal occult blood test (FOBT/
OB)

0.178 (0.349) 0.118 (0.288) 0.238 (0.392) < 0.001 0.789

Quantitative D-dimer 1.658 (4.972) 1.249 (5.108) 2.068 (4.798) < 0.001 0.773
Low-density lipoprotein
cholesterol (LDL-C)

2.254 (0.879) 2.228 (0.881) 2.280 (0.877) 0.032 0.751

Neutrophil gelatinase-associated
lipocalin (NGAL)

155.837 (162.717) 156.372 (180.541) 155.303 (142.718) 0.813 0.745

Ferritin 243.243 (374.617) 219.029 (352.352) 267.458 (394.214) < 0.001 0.728
Creatinine 84.489 (92.047) 89.687 (106.136) 79.290 (75.029) < 0.001 0.719
Alkaline phosphatase (ALP) 113.620 (162.957) 92.361 (65.960) 134.879 (218.781) < 0.001 0.696
Urea 7.231 (6.153) 6.955 (5.173) 7.506 (6.987) 0.001 0.684
Red blood cells (RBC) 309.913 (5549.819) 285.720 (7075.950) 334.106 (3397.439) 0.753 0.655
Monoamine oxidase (MAO) 7.421 (3.005) 7.297 (2.901) 7.545 (3.102) 0.003 0.637
Red blood cells (in high power
field/HPF)

58.166 (1012.069) 51.442 (1273.670) 64.890 (653.173) 0.632 0.633

Mean corpuscular volume (MCV)
of 70% RBC

22.187 (44.133) 18.791 (41.203) 25.582 (46.643) < 0.001 0.616

Total bilirubin 18.239 (35.744) 14.933 (16.703) 21.545 (47.485) < 0.001 0.601
Quantitative hepatitis B e-antigen
(HBeAg)

0.637 (10.692) 0.585876 (11.537) 0.688 (9.777) 0.729 0.577

Complement C1q measurement 173.428 (39.576) 174.516 (40.620) 172.340 (38.480) 0.047 0.577
Uric acid 318.547 (125.341) 323.582 (109.505) 313.512 (139.229) 0.004 0.569
Epithelial cells (in high power
field/HPF)

1.501 (3.297) 1.389 (3.494) 1.614 (3.085) 0.014 0.568

Mean corpuscular hemoglobin
concentration (MCHC)

287.090 (108.450) 283.327 (111.643) 290.852 (105.047) 0.012 0.566

Inorganic phosphate 1.070 (0.278) 1.079 (0.277) 1.062 (0.279) 0.027 0.562
Monocyte absolute count 0.525 (0.265) 0.521 (0.217) 0.529 (0.305) 0.246 0.554
Quantitative hepatitis B core
antibody (anti-HBc)

3.235 (4.560) 3.282 (5.573) 3.188 (3.245) 0.457 0.547

Prothrombin time (PT) 13.786 (4.143) 13.596 (4.117) 13.975 (4.161) 0.001 0.546
Red blood cell count (RBC) 4.027 (2.427) 4.157 (0.784) 3.897 (3.337) < 0.001 0.543
Globulin 28.339 (5.982) 27.710 (5.265) 28.967 (6.562) < 0.001 0.538
Gamma-glutamyl transferase
(GGT)

56.235 (123.965) 42.283 (72.679) 70.188 (158.331) < 0.001 0.528

Apolipoprotein A1 (ApoA1) 1.187 (0.280) 1.207 (0.274) 1.167 (0.285) < 0.001 0.520
Total cholesterol (TC) 4.026 (1.260) 4.000 (1.276) 4.051 (1.244) 0.145 0.512
Magnesium (Mg) 0.885 (0.128) 0.897 (0.126) 0.873 (0.130) < 0.001 0.512
Human immunodeficiency virus
antigen/antibody test (HIV Ag/
Ab)

0.441 (16.699) 0.768 (23.614) 0.115 (0.078) 0.159 0.502

Epithelial cells 4.578 (13.764) 4.038 (13.978) 5.119 (13.527) 0.005 0.491
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Table 1, continued

Patients with type 2 diabetes, Mean (SD)

Feature variables Total
(5198)

Non-cancer group
(2599)

Cancer group
(2599) P -value Importance

International normalized ratio
(INR) of prothrombin time

1.079 (0.412) 1.064 (0.442) 1.094 (0.379) 0.009 0.481

Glycated hemoglobin (HbA1c) 7.473 (1.751) 7.584 (1.835) 7.362 (1.656) < 0.001 0.458
Quantitative hepatitis B surface
antibody (anti-HBs)

102.791 (226.734) 109.701 (239.511) 95.880 (213.015) 0.028 0.456

Neutrophil absolute count 5.041 (4.152) 4.467 (2.551) 5.614 (5.227) < 0.001 0.454
Direct bilirubin 8.530 (25.691) 5.727 (10.749) 11.332 (34.483) < 0.001 0.450
Eosinophil absolute count 0.140 (0.153) 0.152 (0.151) 0.128 (0.155) < 0.001 0.442
Nucleated red blood cell absolute
count

0.0140 (0.0605) 0.0134 (0.0527) 0.0147 (0.0674) 0.440 0.440

Carbon dioxide combining power
(CO2CP)

23.520 (3.486) 23.727 (3.259) 23.313 (3.688) < 0.001 0.436

Platelet count 191.816 (85.029) 194.770 (75.947) 188.862 (93.151) 0.012 0.415
Acidity/Alkalinity (pH) 6.035 (0.777) 6.045 (0.772) 6.025 (0.781) 0.354 0.414
White blood cell count (WBC) 175.582 (3582.474) 216.176 (4979.509) 134.988 (935.078) 0.414 0.380
Specific gravity 1.0170 (0.0078) 1.0172 (0.0080) 1.0168 (0.0075) 0.045 0.379
White blood cell to red blood cell
ratio (WBC: RBC)

1.337 (0.353) 1.392 (0.340) 1.283 (0.357) < 0.001 0.374

Alanine transaminase (ALT) 29.762 (112.448) 29.187 (103.502) 30.338 (120.751) 0.712 0.371
Eosinophil ratio 0.0041 (0.0046) 0.0044 (0.0046) 0.0038 (0.0046) < 0.001 0.371
Aspartate transaminase (AST) 40.456 (284.429) 33.537 (208.257) 47.375 (344.041) 0.079 0.366
Mean platelet volume (MPV) 10.444 (1.465) 10.513 (1.453) 10.374 (1.474) 0.001 0.358
Urine glucose 0.808 (1.359) 0.924 (1.426) 0.691 (1.279) < 0.001 0.341
Quantitative hepatitis B
e-antibody (anti-HBe)

1.392 (2.096) 1.437 (2.883) 1.348 (0.687) 0.123 0.333

Bacteria (in high power field/
HPF)

284.715 (1320.872) 238.154 (1192.108) 331.275 (1436.879) 0.011 0.324

High-density lipoprotein
cholesterol (HDL-C)

1.068 (0.322) 1.075 (0.330) 1.061 (0.314) 0.116 0.302

Treponema pallidum-specific
antibody test (TPPA)

0.238 (1.556) 0.245 (1.706) 0.231 (1.392) 0.729 0.296

Quantitative hepatitis C antibody
(anti-HCV)

0.356 (1.808) 0.314 (1.654) 0.397 (1.948) 0.098 0.294

Prothrombin ratio (PR) 1.063 (0.319) 1.050 (0.327) 1.077 (0.311) 0.002 0.279
Potassium (K) 4.075 (0.542) 4.083 (0.492) 4.067 (0.589) 0.309 0.246
Bacteria 1664.088 (7657.302) 1502.787 (7662.094) 1825.389 (7650.581) 0.129 0.243
Casts (in low power field/LPF) 0.124 (0.679) 0.095 (0.326) 0.153 (0.903) 0.002 0.193
Sodium (Na) 139.705 (4.289) 140.068 (3.546) 139.342 (4.895) < 0.001 0.182
Small round epithelial cells 1.241 (2.183) 1.189 (2.571) 1.293 (1.709) 0.088 0.178

Table 2
Parameters of the five best classifiers

Classifier AUC Accuracy Sensitivity Specificity
CatBoost 0.852 0.796 0.761 0.832
Light gradient boosting 0.836 0.771 0.750 0.793
XGBoost 0.830 0.754 0.739 0.770
Gradient boosting 0.829 0.767 0.731 0.805
Random forest 0.833 0.779 0.746 0.813
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Fig. 3. Change of ROC AUC curve along with gradually added features.

Fig. 4. ROC curves of the five superior classifiers.

4. Discussion

Many studies have been conducted on cancer complications in patients with type 2 diabetes. The
main mechanisms by which diabetes increases the risk of cancer are as follows: 1) Diabetes and cancer
share common risk factors, such as family history (genetics), obesity, high-calorie diet, smoking, and
alcohol consumption. 2) High blood glucose in patients with diabetes leads to a decrease in insulin
sensitivity, compensatory hyperinsulinemia, and elevated levels of insulin-like growth factor (IGF).
High concentrations of growth factors activate insulin receptors, thereby activating the insulin/IGF axis
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signaling pathway, which, in turn, activates signaling pathways to promote the proliferation and metastasis
of cancer cells. 3) Long-term hyperglycemia provides sufficient energy for cancer cell proliferation,
which can cause oxidative stress and promote cancer cell proliferation [17,18,19,20]. Many studies have
shown that diabetes increases the risk of liver, breast, throat, endometrial, bladder, and kidney cancers.
A large study in the United States demonstrated that the risk and type of cancer in patients with type 2
diabetes varies by sex and organ system [19]. These studies do not completely agree on the results of
cancer in different organ systems, and the disparities may be due to differences in patient populations,
regions, course of disease, and selected analysis factors.

Currently, early screening for cancer is mainly based on a comprehensive evaluation of medical history,
family history, imaging data, and blood tumor markers. Imaging diagnosis still requires a subjective
assessment by a doctor, but omissions or misjudgments can occur. Blood tumor markers are one of the
most commonly used screening methods for early-stage cancer. However, high levels are only present
in some patients, and sensitivity is lacking in patients with low concentrations [21]. The diagnosis of
cancer using a single test method has limitations, while comprehensive judgment based on clinical data
extraction has great advantages. A previous study by Sharma et al. indicated that including data such as
age, blood glucose level, and weight change in the model could predict the cancer risk of patients with
diabetes and achieved good results with a sensitivity of 78%, specificity of 80%, and AUC of 0.87 [22]. In
addition, a British study showed that models including age, BMI change, smoking, diabetes medication,
proton pump inhibitors, hemoglobin, total cholesterol, and other indicators could predict the occurrence
of pancreatic cancer in high-risk groups, with a sensitivity of 11%, specificity of 99.7%, and AUC of
0.82 [23]. Moreover, Ben et al. demonstrated that glucose level alone could be used as an indicator of
pancreatic cancer risk [24]. We therefore considered that artificial intelligence could be used to extract
disease-related data from patients to establish a simple, efficient, and population-adaptable pre-screening
model, and subsequently established a prediction model using multiple classifiers and data from patients’
routine clinical tests. This can significantly increase the population participation rate and improve the
screening efficiency for the disease, thereby improving patient prognosis.

The present study is similar to Choudhury’s study [10] in that multiple classifiers were used to construct
models based on clinical data for early cancer diagnosis. Classifiers include MLP, voted perceptron,
Clojure classifier, kernel logistic regression, stochastic gradient descent, AdaBoost, Hoeffding tree, and a
primal estimated sub-gradient solver for support vector machines (s-Pegasos) [10]. In Choudhury’s study,
the classification accuracy of AdaBoost was 71.29%, which was better than that of the other algorithms.
However, the diagnostic efficiency obtained in our study differed because the number and category of
indicators entered into the model were different. This study used 261 clinical characteristic variables and
16 machine learning algorithms based on the optimal combination of 107 characteristics to establish a
prediction model. Our study used blood tumor markers as the main input, combined with routine blood,
liver and kidney function, and other routine laboratory tests to establish a more sensitive and specific
prediction model. In our study, the AUC values were all > 0.80, indicating that routine test indicators
related to type 2 diabetes and cancer were identified through data mining, and that efficient prediction
models could be established using machine learning algorithms.

The 16 machine-learning algorithms used in this study are commonly used in many research projects,
and different algorithms have different advantages and disadvantages owing to their different principles.
The random forest model performed well in this study because of its randomness, which makes it
less prone to overfitting and able to handle high-dimensional input samples without dimensionality
reduction, thereby achieving an AUC of 0.833. In addition, boosting algorithms are mainly divided into
AdaBoost and gradient-boosting decision trees, with the CatBoost and XGBoost algorithms optimized
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based on a gradient boosting decision tree and known for their parallel computing and ability to simulate
nonlinear effects, achieving high efficiency and accuracy in processing large datasets. These optimized
algorithms can be applied in future studies to further improve model accuracy and stability. The specificity
indicators of the three models (CatBoost, gradient boosting, and random forest) exceeded 80%, whereas
the sensitivity indicators of the top five models did not reach 80%, possibly because of the large number
of cancer types and relatively insufficient sample size, which made the model less effective for extracting
the characteristic features of these patients. This can be improved in the future by increasing the sample
size, thereby enabling the model to extract more typical features for modeling different types of cancer.
In summary, using the 107 routine examination indicators selected in this study as variables for modeling
enabled us to predict a high-risk population of cancer in patients with type 2 diabetes based on routine
examination indicators. This can help in early intervention and prevention of cancer in clinical practice.

5. Conclusion

This study used routine laboratory data from patients with type 2 diabetes to construct a predictive
model for cancer risk using 16 machine learning classifiers. The catBoost classifier model displayed
good sensitivity and specificity, and could promote early risk screening and cancer prevention, thereby
improving patient outcomes. Due to the large number of cancer types, the current number of atients is
relatively insufficient to achieve high-efficiency prediction.
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