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Abstract.
BACKGROUND: As an essential indicator of labour and delivery, uterine contraction (UC) can be detected by manual palpation,
external tocodynamometry and internal uterine pressure catheter. However, these methods are not applicable for long-term
monitoring.
OBJECTIVE: This paper aims to recognize UCs with electrohysterogram (EHG) and find the best electrode combination with
fewer electrodes.
METHODS: 112 EHG recordings were collected by our bespoke device in our study. Thirteen features were extracted from
EHG segments of UC and non-UC. Four classifiers of the decision tree, support vector machine (SVM), artificial neural network,
and convolutional neural network were established to identify UCs. The optimal classifier among them was determined by
comparing their classification results. The optimal classifier was applied to evaluate all the possible electrode combinations with
one to eight electrodes.
RESULTS: The results showed that SVM achieved the best classification capability. With SVM, the combination of electrodes
on the right part of the uterine fundus and around the uterine body’s median axis achieved the overall best performance.
CONCLUSIONS: The optimal electrode combination with fewer electrodes was confirmed to improve the clinical application
for long-term monitoring of UCs.

Keywords: Electrode combination, uterine contraction, electrohysterogram (EHG), classifier

1. Introduction

As an essential indicator of labour and delivery, uterine contraction (UC) can be detected by manual
palpation, external tocodynamometry and internal uterine pressure catheter [1–5]. However, these methods
are not applicable for long-term monitoring.

UC is the results of the myometrial cells’ underlying electrical activity, which is represented by the
electrohysterogram (EHG) signal. With electrodes on a pregnant woman’s abdominal surface, EHG
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signals could be recorded noninvasively [6]. However, the electrode combination, including the number
and arrangement, was primarily based on clinical experience and varied greatly in the published papers.
Six bipolar electrodes were connected to the abdomen to identify and track UCs during labour. Threatened
premature labour was diagnosed by eight electrodes in two symmetrical vertical columns of the belly
button [7].

Multiple electrodes can provide comprehensive information about the uterine activity, however, causing
inconvenience for clinical practice. Placing too many electrodes will cause stress on the pregnant woman
and limit her activities. Decreasing the number of electrodes is mostly required for long-term monitoring.
The F1-score method has been used to select the most appropriate electrode combination to classify
between pregnancy and labour [8]. However, most researchers adopted an electrode combination with
some subjectivity. Few studies have focused on optimizing electrode combinations. This paper intends
to explore the best electrode combination of UC detection. Therefore, the optimal classifier has to be
confirmed beforehand.

In recent years, many EHG features combined with different classifiers including SVM, decision tree
(DT), artificial neural network (ANN), and convolutional neural network (CNN) have been investigated
to recognize EHG signals for various research objectives [9–14]. The performance of DT, SVM and ANN
depends on their input features. DT requires only a small size of training samples. ANN is a better solution
for nonlinear medical decision support systems. SVM is particularly appropriate for the classification
of nonlinear, high-dimensional and small-size samples. CNN is one of the representative algorithms of
deep learning, which has the advantage of incorporating feature learning and classification tasks into the
unified network architecture. At the same time, one-dimensional CNN is more appropriate for processing
time series, which has not been investigated in the classification of EHG signals [15]. Although a variety
of classifiers have been used to identify UCs, the optimal one is still not explicit due to the different
data sources. We chose the optimal classifier based on the same database and made efforts to reduce the
number of electrodes.

In this paper, we selected four classifiers to differentiate UCs and non-UCs and the optimal classifier
among them was determined based on their recognition capability. Then, with the optimal classifier, the
recognition performance of all the electrode combinations were compared to achieve the best combination.

2. Methods

2.1. EHG recording

One hundred twelve women were recruited at the Department of Gynecology and Obstetrics, Peking
Union Medical College Hospital, Beijing. All healthy women were 38 to 42 weeks of gestation and gave
birth within 24 hours. The recordings were recorded under the Declaration of Helsinki of the World
Medical Association and approved by the Ethics Committee of Peking Union Medical College Hospital.
After informing the pregnant woman of goals, potential benefits and research risks, they were required to
sign an informed consent form.

As shown in Fig. 1, eight electrodes placed in the abdomen were inverted cones. Electrode R and
G were the reference electrode and the ground electrode respectively. One-channel TOCO signal and
eight-channel EHG signals were collected simultaneously for about 30 minutes at the sampling frequency
of 250 Hz using a bespoke recording system [16]. The pregnant women were required to press the button
to indicate UCs they felt during recording.
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Fig. 1. Configuration of the eight electrodes.

Fig. 2. (a) Illustration of the TOCO signal and eight EHG signals (b) The duration reference used to segment the EHG signal.

2.2. Signal preprocessing

All EHG signals were preprocessed by a low-pass filter of 3 Hz and a median filter to eliminate other
interference. The amplitude of EHG signals was normalized between −1 and 1 to overcome individual
differences. Then, EHG signals were manually segmented into UCs and non-UCs according to the TOCO
signal and maternal perception. Figure 2a shows the TOCO signal and eight-channel EHG signals from
the same person. The duration of UC was about 30–60 s clinically. Its corresponding non-UC with the
duration of the 60 s was chosen 10 s after that UC, shown as Fig. 2b. 342 UCs and 342 non-UCs were
obtained from the EHG signals in each channel. A total of 5472 UCs and non-UCs were obtained from
eight-channel EHG signals, which were further confirmed by our obstetricians.

2.3. EHG feature extraction

The conventional classifiers DT, SVM and ANN require the input feature vectors. Therefore, EHG
features from UCs and non-UCs have to be extracted to train and test these classifiers. Table 1 summarizes
the brief information about the thirteen extracted features.



S238 M. Du et al. / Recognition of UCs with EHG and exploring the best electrode combination

Table 1
Extracted features from EHG segments

Feature Formula

Root mean square (RMS) RMS =

√
1
N

N∑
i=1

x(i)2

Standard deviation (STD) STD =

√
N∑

i=1
(x(i)−x̄)

N−1

Log detector (LOG) LOG = e
1/N

N∑
i=1

log(|x(i)|)

Mean absolute value (MAV) MAV = 1
N

N−1∑
i=1

|x(i)|

Simple square integral (SI) SI =
N−1∑
i=1

|x(i)|2

Difference absolute standard deviation value (DAS) DAS = 1
N−1

N−1∑
i=1

(x(i+ 1)− x(i))2

Average amplitude change (AAC) AAC = 1
N

N−1∑
i=1

|x(i+ 1)− x(i)|

Median frequency (MF) MF = im
fs
N
,
i=im∑
i=1

P (i) =
i=N∑
i=im

P (i)

Peak frequency (PF) PF = arg
(
fs
N

N
max
i=1

P (i)
)

Energy energy =

N∑
i=1

P (i)

N/fs

Time reversibility (TR) TR =
(

1
N−τ

) N∑
i=τ+1

(x(i)− x(i− τ))3

Lyapunov Exponent (LE) LE = lim
t→∞

lim
||4x(t0)||→0

(
1
t

)
log(||4x(t)||/||4x(t0)||)

Sample entropy (SampEn) SampEn(m, r,N) = − log

(
N−m∑
i=1

Ai

/
N−m∑
i=1

Bi

)

Table 2
The details of the 1D-CNN structure

Layer Type Number of neurons Kernel size Stride
1 Convolution 741*64 10 1
2 Convolution 737*32 5 1
3 Convolution 734*16 4 1
4 Fully connected 2048 – –
5 Fully connected 1024 – –
6 Fully connected 2 – –

2.4. Development of four classifiers

DT is a tree that each internal non-leaf node denotes a test on an input feature. In our study, Fig. 3a shows
the diagram of DT. In SVM, the EHG signal described by 13 features (x1, x2, . . . x13) was projected into
the higher-dimensional space by the use of Gaussian Radial Basis Function (RBF) kernel [17]. Figure 3b
gives the diagram of SVM. A backpropagation (BP) ANN with 27 neurons in the hidden layer and one
neuron in the output layer was built. The BP-ANN was trained by the error backpropagation algorithm.
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Fig. 3. Three classifiers (a) DT (b) SVM (c) ANN.

Fig. 4. The structure of 1-D CNN.

The Sigmoid function and Pureline function were used as activation functions within the hidden and
output layers. Moreover, the connection weight and bias values were updated by the gradient descent
algorithm with an adaptive learning rate. Figure 3c shows the diagram of ANN.

The CNN used in this study is a kind of feed-forward neural network that can automatically obtain
optimal features from the training data. Figure 4 shows the structure of CNN. Table 2 summarizes the
details of the 1-D CNN structure. The size of the kernel in the CNN model was selected based on the
preliminary test, and the learning rate was 0.001.

2.5. Classification evaluation

Ten-fold cross-validation was utilized to estimate the performance of four classifiers. Seven parameters,
including area under the receiver operating characteristic curve (AUC), sensitivity (Sen), specificity (Spe),
positive predictive value (PPV), negative predictive value (NPV), accuracy (ACC) and F1-Score were
employed to estimate the effect of the classifiers. The outcomes of Sen, Spe, PPV, NPV, AUC, ACC and
F1-score in the ten-fold cross-validation were calculated and averaged to evaluate the classifiers. The
optimal classifier was determined by the overall consideration of these results.

2.6. Evaluation of electrode combination

Evaluation of electrode combination is essential for reducing the number of electrodes and improving
UC recognition’s ability. In the case of eight electrodes, there are C (8, 1), C (8, 2) . . . C (8, 8) combinations
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Table 3
Summary of the performance of four classifiers (95% CI)

Parameter (95% CI)

Classifier
DT SVM ANN CNN

Sen 0.78 (0.76, 0.80) 0.84 (0.83, 0.86) 0.78 (0.75, 0.80) 0.68 (0.66, 0.70)
Spe 0.80 (0.79, 0.82) 0.86 (0.84, 0.88) 0.72 (0.70, 0.75) 0.83 (0.81, 0.85)
PPV 0.80 (0.79, 0.81) 0.86 (0.84, 0.88) 0.74 (0.72, 0.76) 0.88 (0.86, 0.90)
NPV 0.78 (0.77, 0.80) 0.85 (0.83, 0.86) 0.76 (0.74, 0.79) 0.58 (0.55, 0.62)
ACC 0.79 (0.78, 0.80) 0.85 (0.84, 0.86) 0.75 (0.73, 0.77) 0.73 (0.72, 0.74)
AUC 0.79 (0.78, 0.80) 0.85 (0.84, 0.86) 0.74 (0.73, 0.75) 0.73 (0.72, 0.74)
F1-Score 0.79 (0.78, 0.80) 0.85 (0.84, 0.86) 0.76 (0.74, 0.78) 0.77 (0.76, 0.77)

Table 4
Performance of the optimal combinations with different number of electrodes

Number of electrodes One Two Three Four Five Six Seven Eight
Number of combinations 8 28 56 70 56 8 8 1
Optimal combination 1 1-6 2-3-4 1-3-6-7 1-2-3-5-6 2-3-4-5-6-8 1-2-3-4-5-6-7 1-2-3-4-5-6-7-8
Sen 0.81 0.86 0.84 0.82 0.85 0.82 0.85 0.84
Spe 0.75 0.77 0.81 0.86 0.83 0.86 0.85 0.86
PPV 0.77 0.79 0.82 0.86 0.83 0.86 0.85 0.86
NPV 0.80 0.84 0.84 0.83 0.85 0.83 0.85 0.85
ACC 0.78 0.81 0.83 0.84 0.84 0.84 0.85 0.85
AUC 0.74 0.81 0.83 0.85 0.84 0.85 0.85 0.85
F1-Score 0.78 0.82 0.83 0.84 0.84 0.84 0.85 0.85

from one electrode to eight electrodes, a total of 255 electrode combinations. For each combination,
the derived EHG segments of UC and non-UC were applied to train and test the optimal classifier with
ten-fold cross-validation.

The combinations with one to eight electrodes were sorted in terms of the seven parameters. These
parameters voted the optimal combinations with a different number of electrodes. Further, the best
electrode combination was determined by the tradeoff between these optimal combinations.

3. Results

Table 3 summarizes the classification results of UC and non-UC with their 95% confidence intervals
(CI). These results were obtained from the 8-electrode EHG signals. We deduced that SVM achieved the
best recognition results. Table 4 shows the optimal combinations of the different number of electrodes
and their classification performance using the optimal classifier SVM. The classification performance
of one electrode, two electrodes and three electrodes were poor. In addition, more electrodes did not
significantly improve the classification. The four-electrode combination used fewer electrodes but had
a similar performance with the eight-electrode combination. The combination of 1-3-6-7 with four
electrodes achieved better performance by overall consideration.

4. Discussion

This study proposed an efficient way to explore the best electrode combination to differentiate UCs and
non-UCs. We established four popular classifiers to identify UCs and non-UCs. The optimal one among
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these four classifiers was determined by their performance. Using the optimal classifier, we achieved the
best electrode combination for identifying UCs among the 255 combinations. This study facilitates us to
decrease the number of electrodes and obtain necessary information for UC identification.

These four classifiers were selected because they have been applied to identify EHG signals in the
previous studies, but have never been compared to the same dataset. The most popular EHG features
were extracted to establish these classifiers. The comparison results indicated that SVM outperformed
the other three classifiers with our EHG recordings. SVM is particularly applicable to small samples
with high-dimensional features. DT is easy to overfit and ignore correlations between attributes. Its
learning algorithms based on heuristics cannot guarantee to return the global optimum. There are some
fundamental problems about BP ANN: the definition of the network size, the slow training process, and
the local minimum. Besides, 1-D CNN was first applied to classify EHG signals in this study, but its
performance is limited by the small sample set and parameter selection.

The characteristics of the EHG signal largely depend on the position of the recording electrode.
Therefore, this study evaluated all possible electrode combinations. The optimal electrode combinations
were voted by seven parameters. Covering the uterus, the electrode combination of 1-3-6-7 on the fundus,
body, and cervix of the uterus was selected to reduce the number of electrodes, which also achieved
better performance in recognition of UCs. In another study, the locations that provide higher accuracy
for the classification of UCs from pregnancy and labour were similar to the positions of electrode 1 and
electrode 3 in this study. The uterus’s median axis, where electrode 6 was placed, was found to be the
best location for recording EHG signals [18]. The deviation of the electrode placement may be due to
the uterus’ shape, position, and dimensions. We realized that the evaluation results depend heavily on
the criteria, which may not be convincing with a single criterion. Therefore, the most commonly used
evaluation parameters were summarized to obtain the overall results. Our study contributes to reducing
the number of electrodes in clinical applications and facilitates long-term monitoring of UCs.

The limitation of the present work includes the manual segmentation of UCs and non-UCs with
subjectivity. In the future, we will investigate the UC automatic recognition algorithm to improve
identification accuracy.

5. Conclusion

The present study obtained the optimal classifier for recognition. The optimal electrode combination
with fewer electrodes was achieved to improve the clinical application for long-term monitoring of uterine
activities.

Funding

This research was sponsored by the National Key Research and Development Program of China
(2019YFC0119700), the National Natural Science Foundation of China (U20A20388), and the Beijing
Science and Technology Project (Z161100000116005).

Conflict of interest

None to report.



S242 M. Du et al. / Recognition of UCs with EHG and exploring the best electrode combination

References

[1] Norwitz ER, Robinson JN, Challis JR. The control of labor. New England Journal of Medicine. 1999; 341(9): 660.
[2] Rabotti C, Mischi M, Van Laar JOEH, Oei GS, Bergmans JWM. Estimation of internal uterine pressure by joint amplitude

and frequency analysis of electrohysterographic signals. Physiological Measurement. 2008; 29(7): 829–841.
[3] Lucovnik M, Novak-Antolic Z, Garfield RE. Use of non-invasive uterine electromyography in the diagnosis of preterm

labour. Facts, Views, Vision in ObGyn. 2012; 4(1): 66–72.
[4] Barrie H-G, Sarmina H, Fadi G, Mirza S, Ommani J. Accuracy and reliability of uterine contraction identification using

abdominal surface electrodes. Clinical Medicine Insights: Women’s Health. 2012; 5(5): 65–75.
[5] Lucovnik M, Maner WL, Garfield RE. Accuracy of frequency-related parameters of the electrohysterogram for predicting

preterm delivery. Obstetrical and Gynecological Survey. 2010; 65(2): 141.
[6] Yiyao Y-L, Javier G-C, Gema P-B, José A-R, Alfredo P. Automatic identification of motion artifacts in ehg recording for

robust analysis of uterine contractions. Computational and Mathematical Methods in Medicine. 2014; 11.
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