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Abstract.

BACKGROUND: Ultrasound computed tomography (USCT) is a promising technique for improving the detection of breast
cancer. Image quality of USCT has a major impact on the breast cancer diagnosis.

OBJECTIVE: This paper investigates the combination of variational mode decomposition (VMD) and coherent factor method
for USCT image quality enhancement.

METHODS: The signals can be decomposed into multiple intrinsic mode functions (IMFs) sifting through the frequency by
VMD method. Refactoring the remaining IMFs, spatio-temporally smoothed coherence factor (STSCF) beamforming method is
applied to reconstructed data for USCT.

RESULTS: The validation of combination the VMD and STSCF is described through the breast phantom experiment and in vivo
experiments. The evaluation indicators such as contrast ratio (CR), contrast to noise ratio (CNR) and signal to noise ratio (SNR)
have been better improved in the experimental results. For the breast phantom, the proposed method gives a higher resolution and
the better contrast properties for the hyperechoic cyst. The borders of cysts and tumors in the breast phantom can be distinguished
clearly. For volunteer breast experiments, artifacts are removed more efficiently while the clutters are suppressed simultaneously.
CONCLUSION: The combination of VMD and STSCF can further reduce the noise and suppress the side lobes.
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1. Introduction

Signal processing plays a crucial role in image reconstruction. Empirical Mode Decomposition (EMD)
is firstly proposed in 1998 for signal decomposition, it is the core algorithm of Hilbert Huang transform
(HHT) [1]. It aims at obtaining a series of intrinsic mode functions (IMF) representing the time scales of
signal features by decomposing the non-linear non-stationary signals so that each IMF is a narrow-band
signal for Hilbert spectrum (HS) analysis. Due to modal aliasing and endpoint effects in EMD, ensemble
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empirical mode decomposition (EEMD) method is proposed by Huang [2]. EEMD method overcomes the
modal aliasing problem of EMD. In order to distribute the signal evenly, it adds Gaussian white noise to
the signal, but there are still serious pseudo components [3,4]. Variational mode decomposition (VMD) is
an adaptive signal decomposition algorithm proposed by Dragomiretskiy and Zosso [5]. It can decompose
a signal into some meaningful modes efficiently according to their frequency information and maintain
good robustness. Dutta [6] points out that the VMD method decomposes data into multiple modalities to
acquire and process noise signals in the data and improve the signal-to-noise ratio.

Ultrasound computed tomography (USCT) is a new management technique for breast cancer detec-
tion [7]. Image quality of USCT has a major impact on the early diagnosis of breast cancer. The raw data
collected by USCT contains a lot of external noises. The effective reflection and transmission signals
need to be separated from the noises. Ruiter introduced the signal pre-processing method which convolve
the local maximum of the envelope with the truncated difference of the sine function [8]. Yankelevsky
processed ultrasound signals by component-based modeling. It could effectively reduce the side lobe
artifacts [9]. Nebojsa Duric developed a USCT system which can be reconstructed multiple images with
the processing data [10].

In this work, VMD method is introduced for USCT signal processing dealing with the phase aber-
ration of the A-scan signals. After the VMD decomposition and the remaining IMF refactoring, image
reconstruction is performed by weighting with coherence factor, which can further reduce the noise and
suppress the side lobes [11]. To demonstrate the benefits of the VMD method in USCT imaging, the
phantom and in vivo experiments are performed.

The remainder of this paper is arranged as follows. The method of the VMD technique and the
coherence factor are described in Section 2. Section 3 shows the experimental setups. The USCT system
and experimental subjects are also introduced briefly. Section 4 presents the experimental results. The
selection of the number of modal components are discussed in Section 5. Finally, Section 6 is devoted to
the conclusion.

2. Methods
2.1. Variational mode decomposition algorithm

Variational mode decomposition is a sequential process that decomposes the input signal into a discrete
number of sub-signals (modes), where each mode has limited bandwidth. Each mode £ has a center
pulsation wy. The number of modes can be selected which determines the center pulsation.

For assessing the bandwidth of a mode, the associated analytic signals by means of the Hilbert transform
are computed so that a unilateral frequency spectrum can be obtained. By mixing with the exponent
adjusted to the respective estimated center frequency, the spectrum of the mode is moved to the baseband.
The constrained variational problem is described in the literature [5], the formula is given by
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The reconstruction constraint problem uses a quadratic penalty function and Lagrange multiplier
operator. The quadratic penalty function is the method that can transform the constrained optimization
problem into an unconstrained optimization problem for accurate reconstruction. Usually, prior knowledge
such as Gaussian noise is added. In a noise-free environment, the weight is infinite for performing strict
data fidelity, so that the processing system will show morbidity. On the other hand, the Lagrange multiplier
is a method of strictly implementing constraints. The combination of the quadratic penalty function
and Lagrange multiplier operator has good convergence of function under strict execution of Lagrange
multipliers. The augmented Lagrangian method is as follows [12]:
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where « is the balancing parameter, A the Lagrangian multiplier. The solution method for the Eq. (2) is
called the alternate direction method of multipliers (ADMM) [13]. The iterative formulas of wuj and wy
are described as follow
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where 4y (w) is the center of gravity corresponding power spectrum, f (w) the spectrum of signal, n the
number of iteration.

According to the iteration of mode u; and center frequency wy, the ADMM algorithm is used to directly
optimize in the frequency domain after Fourier transform. The update formula of Lagrangian multiplier
can be obtained as follows:
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The final convergence formula of the mode is as follows:
> Nt — a3/ ag)E < e . (6)

The Lagrange multiplier is to strengthen constraint, and second penalty can improve the convergence.
Constraints can be relaxed using only the quadratic penalty function and deleting the Lagrangian multiplier
if precise reconstruction is not required. In fact, the quadratic penalty function represents the accuracy
with which the least squares are associated with the added Gaussian noise. The main process of VMD
can be briefly summarized as follows [14]:

(1) Initialize 4}, w}, ! initial value of iteration 12, maximum number of iteration N;

(2) n =n+ 1, update 4y, for all w > 0 based on Eq. (3);

(3) update wy, for all w > 0 based on Eq. (4);

(4) update X based on Eq. (5);

(5) Repeat step (2) to (4) until n > N and convergence formula 3°, ||a7 ™! — a7 \; /a3 < e.

A complex echo signal can be decomposed into multiple modal signals by VMD. If the noise in the
unexpected mode is removed and the modalities of other frequencies near the center frequency of the
transducer are combined, the new data can be used to reconstruct the image.
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Fig. 1. (a) Ring transducer and breast phantom 052A; (b) Breast scan of a female volunteer.
2.2. Combination of VMD and coherent factor (CF)

After the VMD decomposition, the data of the useful modality is retained. The image reconstruction is
performed by weighting with coherence factor, which can further reduce the noise and suppress the side
lobes.

The CF is defined as follows [15]:

CFn] = e osm[ n? 7 o Ism[ | —3[n]] ’ o
M Y055 smln]l? MZ o lsm[n]l?
where s,,,[n] the RF data of channel m, $[n] the mean of s,,[n],
M the entire number of channels.

The coherent of CF is calculated at individual time index of each element. The side lobe interferences
have a great influence on CF value. Spatio-temporally smoothed coherence factor (STSCF) can smooth
the coherence factor spatially and temporally. It can reduce speckle variance in homogeneous regions
consequently. The formula of the STSCF is

S kIS Zﬁf’fl smln + k|2
(M = L+ 1) 35 S ISt sl + k]2

where s,,[n + k] received RF data of channel m. K the range of time series, L is the subarray length, M
the entire number of array channels.

- | the modulus, and

STSCF[n] = (®)

3. Experimental setups

The experiment was carried out on the USCT system developed by the Medical Ultrasound Laboratory.
The ring array consists of 1024 elements with center frequency of 2.5 MHz and sampling frequency
of 12.5 MHz. The diameter of transducer is 200 mm. The ring array is placed in a suitable sink. The
image object is usually placed in the center of the array and filled with water in the sink. The ring
array was immersed in the sink. Water was coupled between the probe and the imaged object. Each
element sequentially transmits signals, and all elements receive the echo signals. Figure 1a shows the ring
transducer and breast phantom 052A (CIRSINC, USA). The phantom 052A was located in the center of
the probe for scanning. Figure 1b is a data acquisition process for breast of a female volunteer. During the
measurement, the volunteer was lying prostrate on the expeimental platform.
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Fig. 2. The spectral analyzing for one channel data. (a) original signal; (b) spectrum of (a); (c) spectrum of mode 1; (d) spectrum
of mode 2; (e) spectrum of mode 3; (f) spectrum of mode 4.

4. Experimental results

Figure 2 shows the spectral analysis of a channel data of the phantom 052A. Here, the number of k is
selected as 4. Figure 2a shows the original signals of one channel in the ring array. Figure 2b shows the
spectrum of the original signals. Four modes are decomposed according to the value of k. Figure 2c—
shows the spectrum of the four modal data. It can be seen that the frequency of Fig. 2c is the lowest
frequency, and the Fig. 2f has the highest frequency. By performing Fourier inverse transformation on the
four sets of data, time domain data of four modes can be obtained. The decomposed data can be used for
imaging.

For representing the relationship between the original signal and the three modalities more clearly, the
spectrum of the original signals and each mode after decomposition are plotted in logarithmic coordinates,
as shown in Fig. 3. The black curve represents the original signal which is obtained by Fourier transform
of the data in Fig. 2a. The blue, green, red and pale blue curves represent the spectrum of the four modes
as shown in Fig. 2c—f. It can be seen from the figure that the blue part is mainly a low-frequency signal,
which may be caused by the direct-current offset and need be removed. The green is a useful signal with
a large value, which needs to be retained. The red part is a signal with a higher frequency, and there is
also a lot of useful information. The pale blue part is the highest frequency which included lots of noises.
Here, all channel signals are decomposed into four modes. The blue low-frequency mode and pale blue
mode are removed, and the new data obtained by combining the other two modes is used for imaging.
The imaging results are shown in Fig. 4.

Figure 4a is the phantom 052A image reconstructed by DAS. The background is the water. Figure 4b is
reconstructed by the DAS after the data processing using VMD method. Mode 2 and mode 3 data are
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Fig. 3. Spectral analyzing for one channel data and all modes.
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Fig. 4. Reconstructed images of breast phantom by (a) DAS; (b) VMD; (c¢) STSCF; (d) VMD+CF; (e) VMD+STSCEF; (f) MRIL.

remained for reconstructed. The image reconstructed by VMD method has higher contrast while the cysts
and calcification points in the phantom are clearer compared with DAS. But the artifacts in the water
are also clearer. Figure 4c is reconstructed using traditional DAS beamformer weighted by the STSCFE.
Figure 4d is reconstructed using the CF method weighted combination of the remaining mode 2 and
mode 3 data using VMD decomposition. In Fig. 4e, the CF method is replaced by the STSCF method for
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reconstructed images. Figure 4f shows the image by MRI scanning.

For quantity analysis, CR, CNR and SNR were calculated to evaluate image contrast and resolution.
Table 1 shows the values of CR, CNR and SNR before and after processing by the VMD method. CR is
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Table 1

CR, CNR and SNR of different methods for the breast phantom

ROI1 ROI2 Background
Method CR CNR CR CNR  Mean Std SNR
DAS 096  0.09 88.38 8.01 2857 11.04 054
VMD 1.0o1  0.13 99.53 13.03 3335 7.64 0.84
STSCF 1.31  0.09 120.01 825 32115 1054 034
VMD-CF 098 0.09 7539  11.38  29.31 6.62 0.94

VMD-STSCF 138 0.16 12379 13.79 38.01 8.25 0:65
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Fig. 5. Reconstructed images of female volunteer breast by (a) DAS; (b) VMD; (¢c) VMD+-CF; (d) VMD+STSCE.

defined as CR = |ugor — pB|- pp and pgoy are the mean value of the background and region-of-interest
(ROI) respectively. CNR is defined as the ratio of CR to op. o p is the standard deviation of amplitudes in
the background [16]. SNR is calculated as SNR = up/.op.

In ROI1, using the VMD method can increase CR from 0.96 dB to 1.01 dB compared with DAS. In
ROI2, the CR is increased from 88.38 dB to 99.53 dB. Using the VMD+STSCF method, the CR is further
improved. Therefore, both in the hyperechoic area and the hypoechoic area, the method can effectively
improve the contrast. Similarly, CNR is also increased by 0.04 dB to 5 dB. The uniform tissue in the
phantom is selected as the background region, the mean value of the region and the overall brightness
of the image increase a little. The background variance became smaller which indicated that the tissue
image in the phantom appeared to be more uniform using VMD method. In the reconstruction of the
VMD method, the image quality of the phantom is improved but more artifacts can be seen in the water.
It shows that this method will still lead to the generation of pseudo components when data decomposition
is performed, but the main influence is the near field data.

When VMD is combined with CF, the contrast of ROI1 is slightly improved, and the contrast of ROI2
is decreased. This indicates that after the VMD processing, the CF method can suppress the side lobes
and improve the contrast in the low echo region, but at the same time it also produces a serious pseudo.
Due to the influence of artifacts, the contrast is reduced in the high echo region. At the same time, there
are black artifacts around the middle high echo area of the ring. When VMD is combined with STSCF,
the CR and CNR of both ROI regions are improved. Compared with the use of the VMD method alone,
or the use of the STSCF method alone as shown in Fig. 4, the combination of the two methods can better
reduce the side lobes and clutter.

Figure 5a is the breast image of a female volunteer reconstructed by DAS, and Fig. 5b is reconstructed
after the data processing using VMD method. It can be seen that compared with DAS, the contrast is
higher using the VMD method. Figure 5c is reconstructed by CF combined with VMD method. Figure 5d
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Table 2
CR, CNR and SNR of different methods
ROI1 ROI2 Background
Method CR CNR CR CNR Mean Std SNR
DAS 0.50 003 1143 059 5824 19.51 0.28
VMD 1.19 0.04 13.68 092 39.15 1486 0.28
VMD-CF 0.56 0.02 791 042 6875 18.81 0.22

VMD-STSCF 1.21  0.06 952 046 4791 20.76 0.23

Table 3
Center frequency corresponding to different k&
Number k& Center frequency (/MHz)
2 0.06 1.94 - - - - -
3 0.06 194 4.09 - - - -
4 0.06 1.85 219 445 - - -
5 0.06 1.81 2.08 245 491 - -
6 0.06 1.81 208 245 4.16 4091

is STSCF combined with VMD. Table 2 shows the CR, CNR and SNR values before and after processing
with the VMD method. The CR is increased from 0.5 dB to 6.49 dB. In ROI2, the CR is increased
from 11.43 dB to 13.68 dB. Therefore, in the high echo region and the low echo region, the method can
effectively improve the contrast. Similarly, the CNR has also increased by 0.4 dB. A more uniform portion
of the image of the water is selected as the background, the brightness and the variance are reduced.
The background appears to be more uniform. When VMD is combined with CF, the contrast of ROII is
slightly higher than that of DAS, and the contrast of ROI2 is decreased. This indicates that after the VMD
processing of the data, the CF method can suppress the side lobes and improve the contrast in the low
echo region. However, at the same time, it also produces artifacts. Because of the effects of artifacts, the
contrast is reduced in the hyperechoic area. When VMD is combined with STSCF, the CR and CNR of
the two ROI regions are improved. Compared with the VMD method alone, the combination of the two
methods can better reduce the side lobes and clutter.

5. Discussion

Before the VMD applied, the number of modal components k needs to be determined. The k value
affects the center frequency of each modal component after decomposition. A bigger k¥ means more modes
can be decomposed, and which is supposed to obtain more modal combination patterns. However, there
has been a phenomenon of over-decomposition of the center frequency. In this paper, k is determined by
observing the center frequency of each modal component. Using VMD method to decompose the data in
Fig. 2a. All modes k are shown in Table 3.

In Table 3, over-decomposition of the center frequency appeared when k is selected as 5. Here, we
assumed k = 4.

6. Conclusion

The input data can be modulated adaptively by VMD method which can avoid modal aliasing and
pseudo component generation effectively. Meanwhile, the method represents the original signal at a good
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scale and reduces noise interference. However, this method also has some problems, such as artifacts may
increase and affect the near field data. STSCF can smooth CF both spatially and temporally, reducing the
impact of CF changes and improving image quality effectively. The combination of VMD and STSCF
can further reduce the noise and suppress the side lobes. The results of the breast phantom and volunteer
breast experiments show that it can effectively reduce noise while reducing side lobes compared with the
traditional imaging method.
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