
Technology and Health Care 30 (2022) S135–S142 S135
DOI 10.3233/THC-228013
IOS Press

Integrating molecular interactions and gene
expression to identify biomarkers and
network modules of chronic obstructive
pulmonary disease

Hai-Hui Huanga,b and Yong Liangb,∗
aFaculty of Information Technology, Macau University of Science and Technology, Macau, China
bMacau Institute of Systems Engineering and Collaborative Laboratory of Intelligent Science and
Systems, Macau University of Science and Technology, Macau, China

Abstract.
BACKGROUND: Chronic obstructive pulmonary disease (COPD) causes chronic obstructive conditions, chronic bronchitis,
and emphysema, and is a major cause of death worldwide. Although several efforts for identifying biomarkers and pathways
have been made, specific causal COPD mechanism remains unknown.
OBJECTIVE: This study combined biological interaction data with gene expression data for a better understanding of the
biological process and network module for COPD.
METHODS: Using a sparse network-based method, we selected 49 genes from peripheral blood mononuclear cell expression
data of 136 subjects, including 42 ex-smoking controls and 94 subjects with COPD.
RESULTS: These 49 genes might influence biological processes and molecular functions related to COPD. For example, our
result suggests that FoxO signaling may contribute to the atrophy of COPD peripheral muscle tissues via oxidative stress.
CONCLUSIONS: Our approach enhances the existing understanding of COPD disease pathogenesis and predicts new genetic
markers and pathways that may influence COPD pathogenesis.

Keywords: Chronic obstructive pulmonary disease, biomarkers, network-based

1. Introduction

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally. According
to recent estimates, from 2010 to 2030, the number of COPD cases in developed countries will increase
by over 150% [1]. COPD is a complex disease, so determining the genetic risk factors for the disease has
been challenging. Several studies have been conducted to meet this challenge. Qiu et al. [2] examined the
gene expression in COPD patients with related diseases by genome-wide association studies (GWAS)
to determine the functional effects of known susceptible genes and find new genes associated with
the disease. Sakornsakolpat et al. [3] identified 82 loci that may be associated with either COPD or
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population-based measures of lung function. However, the GWAS method often generates vast genome-
wide “hits” and the cost to examine these “hits” is high. In another study, Bahr et al. [4] used multiple
linear regression to adjust covariates to identify COPD candidate genes and pathways. They showed
that differentially expressed selected pathways in COPD subjects included those that have a role in the
inflammatory response of the immune system. According to Huang et al. [5], the secondary metabolic
pathway, the xenobiotic metabolic pathway, and the cellular response to xenobiotic stimuli possibly
contribute to the development and advancement of COPD.

Although various efforts have been made for identifying biomarkers and pathways, the specific causal
COPD mechanism still remains unraveled. Most of the information generated in these studies is based
on single-group data, wherein, the relationships among biological regulatory networks, protein-protein
interactions, signaling pathways, and well-known genes in the statistical framework on which they
are based have not been considered. In such a framework, the lack of biological information leads to
the stability of prediction factors and reduces the predictive ability of the model [6]. Therefore, prior
biological knowledge should be incorporated into the model to acquire more reliable and biologically
significant results [7–9].

A few such studies include those of Li and Li [10], Chen et al. [11], and Wang et al. [12] who attempted
to use biological knowledge. In their model, genome knowledge was encoded by a network, and its graph
structure determined the specific relationship (edge) between genes (nodes). They then integrated the
Laplace matrix into the penalty in linear, logistics, and Cox regression models. The network particularly
represented many types of biological information such as the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways [7], the correlation between genes [9,13], functional interaction network [14], or
protein-protein interactions (PPIs) [15]. These models which utilize a priori biological knowledge are
often called “network-based” methods.

The hypothesis that complex diseases such as COPD arise and develop due to interactions between
several interrelated pathogenic genes, is supported by a growing body of evidence, indicating that the
evaluation of the influence of any single variant is complicated [16]. In this study, we hypothesize that
combining biological interaction information with gene expression data would provide better insight
into biological processes and network modules for COPD. Therefore, we tried to unravel the biological
process involved in COPD using a network-based method and the results were promising. This study
enhanced our understanding of the network module of COPD and predicted the associated new candidate
genes and pathways affecting its pathogenesis.

2. Method

We applied a Laplacian constraint approach [10] to integrate the biological network for the analysis of
the gene expression data. Let a network G = (V,E), where V represents the genes with p dimension and
E represents the connections between genes. Assuming u and v are connected, then euv = 1, otherwise
euv = 0. The standard Laplacian transform L for G is shown as:

Luv =

1− wuv/du if u = v and du 6= 0,
−wuv/

√
dudv if u and v are adjacent

0 otherwise.

where du and dv are the degrees of genes u and v, respectively. For any fixed non-negative λ, the
network-based model is:

L(λ, β) = l(β) + λβTLβ. (1)
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As shown in Eq. (1), the first term represents the loss function. The second term is a network-based
penalty, which forms as a standard Laplacian matrix that captures the biological interaction knowledge.

Equation (1) is ill-posed in high-dimensional applications when the number of genes p is greater than
the sample size n. Then, regularization approaches are widely applied to address this issue of large p and
small n [6,14,17–23]. When a regularization term is added to Eq. (1), the sparse network constrained
regression can be represented as Eq. (2).

L(λ1, λ2, β) = l(β) + λ1P (β) + λ2β
TLβ (2)

where λ1 and λ2 are regularization variables that are responsible for balancing the tradeoffs between
fit and complexity. A popular regularization technique, Lasso (L1) has the regularization term P (β) =∑p

j=1 |βj |. However, in the lasso method, λ1 should be tuned very carefully because model β bears
substantial bias if it is too large, and model β may not be sufficiently sparse if λ1 is too small. To deal
with this problem, the smoothly clipped absolute deviation (SCAD) [24] method was proposed, which
can be expressed as:

Pλ,SCAD(β) =


λ|β|, if 0 6 |β| < λ,

−β2−2αλ|β|+λ2

2(α−1) , if λ 6 |β| < αλ,
(α−1)λ2

2 , otherwise.
(3)

The SCAD approach has several advantages over Lasso, such as better estimation accuracy and the
oracle property. Consequently, we penalized the network-based method using the SCAD approach as we
proposed earlier [14]. Finally, the method we used in this study was:

L(λ1, λ2, β) = l(β) + Pλ1,λ2,SCAD-Net(β) (4)
Where

Pλ1,λ2,SCAD-Net(β) = Pλ1,SCAD(β) + λ2
∑

16i<k6p;

wik

(
βi√
di
− βk√

dk

)2

, (5)

and l(β) is defined as a logistics regression model.
We used the coordinate descent algorithm to solve Eq. (4). For more detailed information, please refer

to our earlier publication [14].

Algorithm:
Input: Training dataset {Xn×p, yn}, λ1, λ2 and L.
Output: Model parameter β

Step 1: Update β(i)t, i = 1, . . . , p.
Step 2: Let t← t+ 1, if t < E, then repeat Step 1.

3. Results

3.1. Data description

To identify the key biological process for COPD, we included 136 subjects with COPD (42 ex-smoking
controls and 94 COPD subjects), in the study. Expression data from peripheral blood mononuclear cells
from these subjects were collected [4].

We mapped the dataset to an official gene symbol, and calculated average expression levels for multiple
probe-sets mapping to the same gene. BioGrid provides the biological interaction network L, which
includes 14,621 genes or proteins and 327,721 interactions. The gene expression data were integrated
into the network L, and 102,292 edges and 7024 genes remained.
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Table 1
The selected 49 genes from chronic obstructive pulmonary
disease gene expression data

Genes
MMP1 PAK2 SLC25A38 NSUN5
TGFB2 SOD2 BACH2 PMS2P1
CTC1 FAM13A NUDT16L1 CYFIP2
FCMR EFHC2 SNRPN THAP7
GPCPD1 NUMA1 HMCES TMEM134
FOXP1 VAPB ITPKB ZNF775
OFD1 PTEN NMT2 TSTD1
USP20 BCL6 FBXO46 DNLZ
RPARP-AS1 PPARD LONP1 UBIAD1
RAB43 MTERF4 PATZ1 IL21R
MMP12 AQP9 HIVEP2 RASGRP2
FIP1L1 NOSIP SFMBT1 SDR39U1
IRAK3

3.2. Construction of the model and selection of biomarkers

We used tenfold cross-validation on multiple dimensions to find optimal regularization parameters of
the model. With the estimated tuning parameters and all the training data, a classifier having 49 genes
was constructed (Table 1) with a training classification error of 4.26%. Among all the cutoff points, the
one with the highest sum of sensitivity and specificity was chosen.

Among these 49 genes, we observed some interesting findings. For example, smoke-induced emphy-
sema has been implicated with matrix metalloproteinase (MMP)-1, a collagen degrader, and MMP-12, an
elastin degrader, at least in animal models [25]. However, robust epidemiological data about serum MMPs
in COPD are scarce, and there is a massive gap between experimental research and clinical epidemiology.
MMPs genes may play a significant role in COPD, so with this perspective, we believe that our study
could be a step towards bridge this gap. FoxP1 is a transcription factor important for the development of
lung epithelial tissue. Recent data from the UK Biobank, ECLIPSE, and COPD Gene cohorts implicate
genetic variants in the FOXP1 gene as important predictors of airflow limitation. Moreover, loss of FoxP1
protein increases endoplasmic reticulum stress in lung epithelial cells that may contribute to COPD
development [26]. While the biological function of the FAM13A gene product is poorly understood.
genetic variants in the FAM13A gene might determine susceptibility to COPD and lung cancer [27].
Iwona et al. [28] confirmed that the FAM13A variants are predisposed to increased susceptibility to
COPD.

These findings imply that the selected genes may contribute to or act as a marker for the pathophysiology
of COPD.

3.3. Brief biological analysis

We then examined the 49 genes by GO and KEGG enrichment analyses (Figs 1 and 2). The results
of GO analysis show that the selected 49 genes are involved in 17 significant pathways (p < 0.05),
including regulation of B cell apoptosis, negative regulation of the production of cytokines involved in
immune response, response to metal ions, muscle cell proliferation, aging, collagen metabolism, mitotic
spindle organization, regulation of defense response, muscle structure development, extrinsic apoptotic
signaling pathway, perinuclear region of cytoplasm, Golgi membrane, mitochondrial transport, anion
transmembrane transport, chromatin binding, cellular response to abiotic stimulus and nucleocytoplasmic



H.-H. Huang and Y. Liang / Integrating molecular interactions and gene expression S139

Table 2
Pathway analysis of the molecular complex detection
network

GOID Description Log10 (p)
hsa04068 FoxO signaling pathway −4.6
hsa05200 Pathways in cancer −3.9
hsa05206 MicroRNAs in cancer −3.3

Fig. 1. The gene ontology (GO) enrichment analysis.

Fig. 2. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses.

transport. KEGG analysis suggested that the selected genes are enriched in FoxO signaling pathway,
cancer-associated pathways, microRNAs in cancer, and MAPK signaling pathways.

The enriched pathways may have possible roles in COPD. For example, the combination of chronic
bronchiolitis and emphysema leading to COPD causes chronic airflow limitation and their ratio varies
from patient to patient. B cell-related genes have been identified as being more prevalent in COPD
with emphysema than in bronchiolitis, according to Faner et al. [29]. Likewise, Tang et al. [30] found
an increased number of TC2-like cytokine-expressing cells in the lungs of COPD patients. The genes
associated with the negative regulation of cytokine production involved in the immune response pathway
might explain why lung eosinophilia occurs during a COPD exacerbation.

This information can help us understand COPD pathobiology better, leading to new therapeutic
possibilities for COPD.

We conducted a PPI enrichment analysis of the selected genes and also performed the Molecular
Complex Detection (MCODE) algorithm to identify densely connected network components from the
constructed PPI network. The MCODE network result is presented in Fig. 3.

We then performed pathway analysis of the MCODE network, and the result is shown in Table 2.
Atrophic muscle from COPD patients is shown to have increased expression of proteolysis pathway
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Fig. 3. The molecular complex detection algorithm resulted in the construction of protein-protein interaction (PPI) network from
the selected 49 genes.

markers, such as transcription factors FoxO1 and FoxO3 [31]. Evidently, skeletal muscle atrophy in-
volves increased expression of two E3 ubiquitin ligases, MuRF1 and atrogin-1, under the control of
the FoxO family of transcription factors, particularly, FoxO1, activating protein degradation via the
ubiquitin/proteasome system [32]. This information suggests that FoxO signaling may contribute to the
atrophy of COPD peripheral muscle tissues via oxidative stress.

Data in Tables 1 and 2 and Figs 1–3 suggest that the selected 49 genes in this study might influence
some biological processes and molecular functions related to COPD.

4. Discussion

Known for its chronic obstructive conditions, chronic bronchitis, and emphysema, COPD is the leading
cause of death for the largest number of people worldwide. Although many efforts to identify biomarkers
and pathways have been made, specific causal COPD mechanism remains unknown. This study combines
biological interaction data with gene expression data for an improved understanding of the biological
process and network module in COPD. We used a sparse network-based method and selected 49 genes
from peripheral blood mononuclear cell expression data of 136 subjects, including 42 ex-smoking controls
and 94 subjects with COPD. The results show that these 49 genes possibly influence biological processes
and molecular functions related to COPD. For example, one of these genes coding for FoxO signaling
may contribute to the atrophy of COPD peripheral muscle tissues via oxidative stress.

5. Conclusion

To conclude, our approach advances understanding of COPD disease pathogenesis and predicts new
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potential genetic markers and pathways that influence COPD pathogenesis. One limitation of this study
was the lack of an in-depth verification of the selected genes and network modules.
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