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Abstract.
BACKGROUND: The coherent plane wave compounding (CPWC) is a promising technique to enhance the imaging quality
while maintaining the high frame rate in the plane wave ultrasound imaging. Recently, the spatial-coherence-based method has
been specially designed to process echo matrix required by the minimum variance (MV) method.
OBJECTIVE: In this paper, a novel beamforming method that integrates the submatrix-spatial-coherence-based MV with the
sign coherence factor (SCF) is proposed to further improve the imaging quality.
METHOD: The submatrix smoothing technique is modified to smooth and de-correlate signals of the receiving array dimension.
Then, the SCF is used to modify the input vector of the beamformer, which can reduce side lobe noises with almost no increase
in the amount of calculation. Simulation, phantom, in vivo, and sound velocity error experiments have been performed to verify
the superiority of the proposed beamformer.
RESULTS: The imaging results show that the proposed approach performs better in the imaging resolution and contrast
compared to the traditional CPWC method.
CONCLUSION: The robustness of the proposed method is enhanced, and the over-suppression phenomenon can be alleviated,
which is a phenomenon that occurs in the original spatial-coherence and SCF methods.
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1. Introduction

The plane wave imaging (PWI) is an effective mode to realize ultrafast ultrasound imaging for the
visualization of rapid tissue motions [1,2]. However, it causes the significant reduction in the imaging
quality due to emitting unfocused plane waves. Lu and Cheng proposed the plane wave compounding
(PWC) method to provide enhancement of the imaging quality without affecting the frame rate in the
plane wave modality [3–5]. Montaldo et al. modified the PWC in 2009 and named it as the coherent plane
wave compounding (CPWC). Here the echo signals from different firing angles were compounded to
improve the image quality [6,7].
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The adaptive beamforming algorithm dynamically calculates the weight vector of received echo signals.
Compared to the conventional delay and sum (DAS) algorithm, it can effectively enhance the ultrasound
imaging quality [8]. In 1969, Capon proposed the minimum variance (MV) algorithm, which was one of
representative adaptive beamforming algorithms. The core of the method is calculating the undistorted
weighting vector by minimizing the output energy of the beamformer dynamically [9,10]. The method
improves the imaging resolution and suppresses the interference noise significantly.

The coherence factor (CF) is another typical adaptive beamformer. It calculates the ratio of the coherent
energy to the total energy of echo signals and works as a multiplier to constrain the output of the
beamformer. The phase coherence factor (PCF) is also a coherence-based method. It uses the signal phase
dispersion to design the factor, which is different from the CF. The sign coherence factor (SCF) is a special
case of the PCF [11]. It is simple to calculate and easy to implement. All coherence-based methods can
reduce sidelobes and improve the imaging contrast. However, these methods will reduce the brightness of
the speckle region owing to the over-suppression of desired signals. In addition, MV-based, CF-based and
MV-CF combined methods have been extensively applied to the CPWC imaging mode [12–14].

Recently, several methods based on the MV and CF have been modified for the 2-D echo dataset of the
CPWC. The joint MVDR (JTR) method proposed by our group computes two MV weighting vectors: the
transmitting aperture weighting vector and receiving aperture weighting vector [15,16]. By combining two
vectors, the beamformer can obtain a significant improvement in the imaging resolution. Data compounded
among transmit (DCT) MV and data compounded among receive (DCR) MV beamformers were both
proposed by Nguyen et al., who used different combinations of signals to estimate the covariance matrix.
It is covenient to implement since the MV weight only needs to be calculated once [17]. These two
beamformers are based on the van Cittert-Zernike theorem and can improve the imaging resolution and
contrast [18,19]. However, the diagonal loding factors used by these two beamformers are much larger
than the conventional range, which is the limitation of two beamformers. In addition, the over-suppression
phenomenon will occur in the DCT-MV method with a small loading factor, which may affect the contrast
ratio (CR) and contrast-to-noise ratio (CNR) values.

In this paper, a submatrix-spatial-coherence combined with SCF method is proposed to implement the
MV beamforming, which can enhance the imaging quality of the CPWC. We use submatrix smoothing
technique to divide the data matrix into overlapped submatrices over the receive dimension and full data
is preserved along the transmit dimension. Afterwards, the submatrix spatial coherence is estimated to
approximate the sub-covariance matrix. After averaging all results of submatrices, the final covariance
matrix can be obtained. The input data vector of the beamformer is obtained by compounding data
over multiple transmits of the average submatrix, which is also corrected by the SCF. There are three
advantages of the method. First, the proposed beamformer achieves the better performance both on the
resolution and contrast compaired with the CPWC. Second, the speckle region is preserved well. Third,
the robustness is significantly improved.

The contents of other chapters are arranged as follows. The theories of existing approaches are illustrated
in Section 2. The novel beamformer is described in detail in Section 3. In Section 4, the set up and results
of the simulation, phantom, in vivo and sound velocity error experiments are described. In Sections 5 and
6, the discussion and conclusion are given respectively.

2. Background

2.1. Coherent plane wave compounding

For the CPWC imaging mode, we record the echo signals into a two-dimensional matrix for beam-
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forming [6]. Here we assume that the number of transducer elements is M and the number of steering
beams is N , and the data matrix X(n) can be denoted by:

X(n) =


x1,1(n) x1,2(n) · · · x1,M (n)
x2,1(n) x2,2(n) · · · x2,M (n)

...
...

. . .
...

xN,1(n) xN,2(n) · · · xN,M (n)

 (1)

where xi,j(n) is the ith transmission beam signal received by the jth array element, and n represents the
time index. By superimposing and averaging all received signals in X(n), the beamforming output is
expressed as follows:

yCPWC(n) =
1

MN

N∑
i=1

ωT (i)

M∑
j=1

ωR(j)xi,j(n) (2)

where ωR and ωT are weights of the receiving and transmitting apodization respectively.

2.2. Minimum variance beamformer

The mathematical expression of MV is as follows:

y(n) = wH(n)x(n) =

M∑
k=1

wH
k (n)xk(n) (3)

where (·)H represents the matrix conjugate transpose, w(n) is the MV weighting vector and x(n) is the
received echo signals after time delays.

The MV method calculates the undistorted weighting vector by a constraint process that minimizes the
output power of the beamformer. It can be expressed as:

min
w

wHR(n)w, subject to wHa = 1 (4)

where R(n) represents the covariance matrix, a represents the steering vector, which is an all one vector.
The solution of the above equation can be computed through the Lagrange multiplier approach:

wMV =
R−1a

aHR−1a
. (5)

R(n) is usually approximated to the sample covariance matrix:

R̂(n) = E[x(n) xH(n)]. (6)

The estimation of R̂(n) is a key part of the MV algorithm, so that the spatial smoothing process is
used to improve its accuracy. By dividing the receiving array into multiple overlapping subarrays, the
sub-covariance matrix can be calculated in each subarray. By averaging each result, the final R̂(n) is
obtained:

R̂(n) =
1

M − L+ 1

M−L+1∑
l=1

xl(n)xMl (n) (7)

where xl(n) is the lth subarray and L is the subarray length.
Diagonal loading technique is also applied to the covariance matrix to obtain a comparably stable
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matrix. We use R̂(n) + ε× I to replace R̂(n), where ε represents the diagonal loading factor. It is usually
expressed as ∆× (trace[R̂(n)]/L), where ∆ is usually between 0.01 ∼ 0.2, and I is the identity matrix.

The output of the MV beamformer is as follows:

yMV (n) =
1

M − L+ 1

M−L+1∑
l=1

wH
MV (n)xl(n). (8)

2.3. Sign coherence factor beamformer

To implement SCF, the normalized phase space [−π, π] is divided into two sub-intervals (−π/2, π/2]
and [−π,−π/2] ∪ (π/2, π]. If the phases of the aperture data all fall into the same interval, the data can
be considered completely coherent with the same polarity. Therefore, the SCF designs the factor by using
the sign bit instead of the phase of the data. The sign bit b(n) of the data no less than zero is set to +1,
otherwise b(n) is set to −1. The variance of b(n) can be expressed as:

σ2 = 1−

(
1

M

M∑
i=1

bi(n)

)2

. (9)

σ2 ranges from 0 to 1, and the SCF is defined as:

SCFp(n) = |1− σ|p . (10)

where p is the factor used to regulate the effect of the SCF method.

2.4. Data compounded among transmit MV beamformer

This method estimates the covariance matrix by using different combinations of echo signals for
each transmission angle [17]. For the 2-D data matrix X(n), DCT-MV uses a data vector v(n) =
[v1(n), v2(n), . . . vM (n)]T as the input vector of the beamformer, where

vj(n) =

N∑
i=1

xi,j(n) for j = 1→M (11)

vj(n) is the accumulated signal over all transmit beams on the jth element, N is the number of steered
transmitting beams and M is the element number.

Then the covariance matrix of v(n) is approximated to the second-order statistics of several new
snapshots of the data pk(n) = [pk,1(n), pk,2(n), . . . , pk,M (n)]T , where

pk,j(n) =
1

N − 1

N∑
i=1
i 6=k

xi,j(n) (12)

For every transmit event, pk(n) can be generated to calculate the covariance matrix (k = 1→ N ). By
averaging these results, the final covariance matrix of the DCT-MV can be obtained:

R̂DCT =
1

N

N∑
k=1

pk(n)pH
k (n) + ε I (13)

where ε represents the diagonal loading factor, I represents the identity matrix. The schematic of
DCT-MV beamformer is described in Fig. 1a.
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Fig. 1. Schematics of two beamformers: (a) DCT-MV, (b) SM-DCT MV.

3. Methods

The proposed method is the sub-matrix data compounded among transmit MV beamformer combined
with the SCF. It is named as SM-DCT MV for short. We build a new data matrix by dividing the original
2-D data matrix into overlapping submatrices. Different to the submatrix technique used by Qi et al. [16],
we just smooth the data on the receive dimension and full data are kept on the other transmit dimension.
It is described as follows:

X̂ = [X1,X2, . . . ,XM−L+1] (14)

R̂ can be considered as a N × L× (M − L+ 1) size 3-D data matrix, L is the subarray length and the
lth submatrix Xl is expressed as follows:

Xl =


x1l x

1
l+1 · · · x1l+L−1

x2l x
2
l+1 · · · x2l+L−1

...
...

. . .
...

xNl xNl+1 · · · xNl+L−1

 (15)

We take the average of these overlapping submatrices Xl as the input matrix X̂R (a N × L size 2-D
data matrix). It can be viewed as the data matrix of original signals after the decorrelation processing
across the receiving aperture dimension.

X̂R =
1

M − L+ 1

M−L+1∑
l=1

Xl (16)

The input vector of the proposed SM-DCT beamformer can be obtained by a data vector compounded
over different transmits afterwards. Considering that multiple steering angle signals have a certain
coherence to the imaging result of the same imaging target, and the coherence to the noise and clutter is
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poor. Therefore, the SCF factor is used as a correction to obtain a more accurate input signal vector. First,
a vector is obtained by compounding the columns of X̂R, which represents imaging results of different
beams at the same point. Second, the SCF can be calculated (described in Section 2.3) [20]. We denote
the final input vector by sv(n) = scfp ∗ [sv1(n), sv2, . . . svL(n)], where

svj(n) =

N∑
i=1

xi,j(n) for j = 1→ L (17)

where i and j are reused in X̂R, representing the transmit event and submatrix receive element index.
Then, the new set of snapshot spk(n) = [spk,1(n), spk,2(n), . . . , spk,L(n)]T can be generated, where

spk,j(n) =
1

N − 1

N∑
i=1
i 6=k

xi,j(n) (18)

Afterwards, N vectors of spk(n) can be obtained by over all firing angles. The sub-covariance matrix
can be obtained:

X̂l =
1

N

N∑
k=1

spk(n)spH
k (n) (19)

By averaging all results, the covariance matrix similar to the second-order statistics of sv(n) is obtained.
We denote it as

X̂SM-DCT =
1

M − L+ 1

M−L+1∑
l=1

X̂l + εI (20)

where ε represents the diagonal loading factor, I is the identity matrix.
It is worth mentioning that we can obtain the spk(n) by compounding different combinations of data

first and smoothing it later. Compared with the method of smoothing first and recombination later, it saves
a cycle of calculating time, but the result is consistent. The schematic of SM-DCT beamformer is shown
in Fig. 1b.

4. Experiments and results

4.1. Experiment setup

The performance of different beamformers was evaluated using the CPWC through simulation, phan-
tom, in vivo and sound velocity error experiments. The simulation data was acquired using Field II, the
phantom and in vivo data was obtained using Verasonics ultrasound platform. The processing of different
algorithms are implemented on the MATLAB platform.

For all simulations, a 128-element transducer with 0.3 mm pitch, centered at 5 MHz, was used to
acquire simulation data. Both transmitting and receiving processes used full array elements. The sampling
rate was 40 MHz. We simulated four point targets placed at z = (30, 40, 50, 60 mm) for the resolution
evaluation, and a cyst target with 2.5 mm radius located at (x, y, z) = (0, 0, 50 mm) was used to assess
the imaging contrast. For the phantom experiments, the transducer array configuration we used is the
same as the simulation experiment. For in vivo data, we collected the carotid artery data from a healthy
adult male. The sound velocity error experiment was performed to study the robustness of algorithms.
The sound velocity value was set to 1540 m/s, and then changed by 2%, 5% for the point imaging. The
point was set at z = 40 mm. To implement the plane wave imaging, 49 plane waves were emitted in the
range of −12◦ to 12◦ degrees, which were 0.5◦ degrees apart from each other.
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4.2. Parameters and evaluation metrics

Parameters selected in the experimental evaluation are explained here. For the proposed SM-DCT
beamformer, the submatrix length L is set to 0.4 times the receiving array length for the point imaging
and 0.3 times the receiving array length for the cysts imaging, respectively. ∆ in the diagonal loading
is set to 0.01. In all experiments, we select different values of parameter p used by the SCF to evaluate
the imaging results. For the DCT beamformer, ∆ in the diagonal loading is set to 1 for the point target
simulation and 5 for other experiments. F -number is set to 1.

Evaluation metrics are used for the quantitative measurement. The full width of mainlobe (FWHM)
is used to evaluate the imaging resolution, and it is usually estimated by the mainlobe width at −6 dB
and −20 dB. For the measurement of the contrast, the CR, CNR and the speckle-signal-to-noise ratio
(s-SNR) are adopted in the cyst target study. They are defined as follows:

CR = 20 log10(µi/µo), (21)

CNR =
|µi − µo|√
σ2i + σ2o

, (22)

s-SNR =
µi
µo

(23)

where µi and µo represent the average amplitude of signals inside and outside the cyst. σi and σo are
standard deviations of µi and µo respectively.

4.3. Simulated study

Point target simulation results of different beamforming algorithms are presented in Fig. 2.
Figure 2a shows the imaging result of traditional CPWC method. It can be seen that the main lobe is

wide and side lobes are obvious. In Fig. 2b, the DCT-MV method achieves a narrow mainlobe and no
visible sidelobes. Figure 2c–e are results of the SM-DCT MV with p = 1, 0.8 and 0.5. It can be seen
that the width of the mainlobe and the amplitude of sidelobes are all performed better than those of the
CPWC.

In order to evaluate the imaging resolution quantitatively, the transverse beam amplitude response
diagram at z = 50 mm is given in Fig. 3, and FWHM values at −6 dB and −20 dB of different
beamformers are shown in Table 1. It shows that the −6 dB mainlobe width of the SM-DCT MV is
0.13 mm, which is slightly lower than that of the DCT-MV (0.17 mm). While the −20 dB mainlobe width
of the SM-DCT MV (0.38 mm) is slightly higher than that of the DCT-MV (0.34 mm). Nevertheless,
metrics of the proposed method are all better than those of the CPWC. Different values of the parameter
p used by the SCF have different effects on the sidelobe suppression. The larger p is, the better effect
achieves.

Cyst simulation results of different beamformers are given in Fig. 4. Figure 4a shows the imaging result
of the CPWC. The noise level inside the cyst is high, which is caused by the high sidelobe amplitude of
the traditional method. The result of the DCT-MV shows that the internal imaging achieves the better
noise suppression, and the edge of the cyst is clear. However, the brightness of the speckle region is
weakened, which results in the unsatisfactory contrast. As seen from Fig. 4c–e, results of the SM-DCT
MV with p = 0.8, 0.5 and 0.3 have the better performance in the speckle region compared with Fig. 4b.

The values of CR, CNR and s-SNR are displayed in Table 2 for quantitative assessment. It can be seen
that the contrast of the SM-DCT with p = 0.5 is the highest one, which is 10% and 22.7% higher than
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Table 1
FWHM at −6 dB and −20 dB for simulated
point targets at the depth of z = 50 mm

Beamformer FWHM (mm)
CPWC 0.49/0.80
DCT-MV 0.17/0.34
SM-DCT (p = 1) 0.13/0.38
SM-DCT (p = 0.8) 0.13/0.38
SM-DCT (p = 0.5) 0.13/0.38

Fig. 2. Simulated point targets imaging results: (a) CPWC, (b) DCT-MV, (c) SM-DCT MV (p = 1), (d) SM-DCT MV (p = 0.8),
(e) SM-DCT MV (p = 0.5). All results in the figure are displayed within a −60 dB dynamic range.

Fig. 3. The transverse beam amplitude response diagram at the depth of z = 50 mm.
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Table 2
CR, CNR and s-SNR for simulated cysts

Beamformer CR (dB) CNR s-SNR
CPWC 33.91 1.69 1.51
DCT-MV 30.41 0.76 1.15
SM-DCT (p = 0.8) 36.63 1.30 1.32
SM-DCT (p = 0.5) 37.30 1.39 1.34
SM-DCT (p = 0.3) 37.00 1.48 1.39

Table 3
FWHM at −6 dB and −20 dB for point
phantom at the depth of z = 30 mm

Beamformer FWHM (mm)
CPWC 0.42/0.66
DCT-MV 0.15/0.38
SM-DCT (p = 1) 0.17/0.51
SM-DCT (p = 0.8) 0.17/0.54
SM-DCT (p = 0.5) 0.17/0.59

Fig. 4. Simulated cysts imaging results: (a) CPWC, (b) DCT-MV, (c) SM-DCT (p = 0.8), (d) SM-DCT (p = 0.5), (e) SM-DCT
(p = 0.3). All results in the figure are displayed within a −60 dB dynamic range.

that of CPWC and DCT-MV, respectively. The CNR value of the SM-DCT MV with p = 0.5 achieves an
improvement of 0.63 compared with the DCT-MV. The s-SNR values of the proposed method are also
slightly improved compared with that of the DCT-MV. These numerical enhancements prove that the
SM-DCT MV can improve the imaging contrast while maintaining a good speckle background region.

4.4. Experimental phantom study

Figure 5 gives imaging results of the point targets phantom. It can be noted that although the DCT-MV
method has a better point imaging effect, its speckle background is over-suppressed, leading to the loss of
the image information. While the proposed SM-DCT method avoids this phenomenon successfully, the
brightness of the speckle region keeps well.

The transverse beam amplitude response diagrams at z = 30 mm is shown in Fig. 6. Table 3 lists
FWHM values (−6 dB and −20 dB) for the statistical evaluation. Values show that the SM-DCT’s −6 dB
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Fig. 5. Experimental point targets phantom imaging results: (a) CPWC, (b) DCT-MV, (c) SM-DCT (p = 1), (d) SM-DCT (p =
0.8), (e) SM-DCT (p = 0.5). All results in the figure are displayed within a −60 dB dynamic range.

Fig. 6. Transverse beam amplitude response diagrams at the depth of z = 30 mm.

mainlobe width is slightly higher than that of the DCT-MV. Nevertheless, it is still narrower than that of
the CPWC. The SCF with p = 0.8 achieves a narrower mainlobe width at −20 dB than the SCF with p =
0.5 and p = 0.3.

Results of the cysts phantom are presented in Fig. 7. Figure 7a shows that the noise level inside the cysts
is obvious with the CPWC. Figure 7b is the result of the DCT-MV beamformer. The internal imaging of
cysts is good, while the speckle area is weakened. From Fig. 7c–e, the proposed SM-DCT beamformer
performs better in the internal imaging than the CPWC and the speckle background preserved better than
the DCT-MV.



X. Yan and Y. Wang / A submatrix spatial coherence approach to MV beamforming combined with SCF S21

Table 4
CR, CNR, ands-SNR for experimental cysts

Beamformer CR (dB) CNR s-SNR
CPWC 28.35/16.02 1.91/1.61 1.99/1.93
DCT-MV 28.63/13.01 1.17/0.89 1.21/1.16
SM-DCT (p = 0.8) 33.51/19.59 1.43/0.89 1.46/1.00
SM-DCT (p = 0.5) 33.72/20.46 1.53/1.08 1.57/1.19
SM-DCT (p = 0.3) 33.25/19.84 1.63/1.25 1.67/1.39

Fig. 7. Experimental cysts phantom imaging results: (a) CPWC, (b) DCT-MV, (c) SM-DCT (p = 0.8), (d) SM-DCT (p = 0.5),
(e) SM-DCT (p = 0.3). All results in the figure are displayed within a −60 dB dynamic range.

CR, CNR, and s-SNR values are given in Table 4 for quantitative assessment. For the cyst at z =
15 mm, the CR of the SM-DCT (p = 0.5) is 17.8% and 18.9% higher than that of the DCT-MV and
CPWC. For the cyst at z = 45 mm, the CR of the SM-DCT (p = 0.5) is 57.3% and 27.7% higher than
that of the DCT-MV and CPWC. The SM-DCT also achieves the improvement in CNR and s-SNR values
compared with DCT-MV.

4.5. In vivo study

Figure 8 shows results of different beamformers using carotid artery data from an adult male. The
result is similar to the cyst phantom experiment because of the similarity between the circular artery and
the anechoic cyst. From Fig. 8a, it can be seen that noises are obvious inside the vessel with the CPWC.
Other beamformers achieve the better performance on reducing the noise level. The proposed SM-DCT
beamformer distinguishes the arteries and boundaries well, and the surrounding information preserved
more completely.

The internal and external signals of the carotid artery are used to calculate the CR, CNR, and s-SNR
values. Results are presented in Table 5 for the statistical assessment. Similar to the cyst phantom
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Table 5
CR, CNR, and s-SNR for in vivo carotid artery

Beamformer CR (dB) CNR s-SNR
CPWC 21.87 1.14 1.25
DCT-MV 19.12 0.67 0.77
SM-DCT (p = 0.8) 27.45 0.55 0.58
SM-DCT (p = 0.5) 27.97 0.71 0.74
SM-DCT (p = 0.3) 25.90 0.86 0.90

Fig. 8. In vivo human carotid artery imaging results: (a) CPWC, (b) DCT-MV, (c) SM-DCT (p = 0.8), (d) SM-DCT (p = 0.5),
(e) SM-DCT (p = 0.3). All results in the figure are displayed within a −60 dB dynamic range.

experiment, the CR of the SM-DCT (p = 0.5) increases 46.3% and 27.9% compared to that of the
DCT-MV and CPWC respectively. Also, the CNR and s-SNR are both higher than those of the DCT-MV.

4.6. Robustness to sound velocity error

Point imaging results for different sound velocity errors with different beamformers are given in Fig. 9.
In Fig. 9a and b, the mainlobe width of the CPWC and DCT-MV widened and the sidelobes increased
obviously with the increase of the sound velocity error. Figure 9c shows that the sidelobe level of the
proposed method is lower compared with the former two methods. Point imaging results of the SM-DCT
are less affected by the sound velocity and the robustness is better.

5. Discussion

From results, the SM-DCT method proposed in this paper shows its advantages in the plane wave
compounding mode in terms of the enhancement of the imaging quality and the improvement of algorithm
robustness. These performance advantages mainly result from two aspects. First, a submatrix spatial
smoothing technique is added to the spatial coherence method to fully de-correlate received signals. By
this way, a more accurate covariance matrix can be obtained, and the non-singularity of the covariance
matrix can be guaranteed. In addition, the diagonal loading factor chosen in the SM-DCT MV can be
a typical value. Both of the spatial smoothing and low loading factor lead to the improvement of the
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Fig. 9. Simulated point imaging results of different sound velocity errors: (a) CPWC, (b) DCT-MV (∆ = 5), (c) SM-DCT (∆ =
0.01, p = 1). All results in the figure are displayed within a −60 dB dynamic range.

robustness of the algorithm. Second, the SCF is used to correct the input vector of the beamformer, which
improves the imaging contrast while maintaining the mainlobe width at −6 dB, as shown in Fig. 3. Since
the SCF is calculated by the smoothed submatrix, the over-suppression problem of signals in the speckle
region has been avoided, as shown in Figs 4, 5, 7 and 8. In addition, the SCF contributes to the robustness
of the algorithm. All imaging results prove the superiority of the proposed algorithm.

As for several parameters used in all experiments, the selection of the length of submatrix L and the
diagonal loading factor affects the imaging result. A higher L means that a larger number of effective
elements are used, which can achieve the better imaging resolution, while the contrast slightly reduced,
and vice versa. Different diagonal loading factors also achieve different imaging results. It can be regarded
as a very small white noise added to diagonal elements of the covariance matrix. This disturbance should
not be too large, a small value can also ensure the robustness of the algorithm [8]. However, the original
DCT method has the limitation of choosing a much higher factor, as illustrated in literature [17]. From
Figs 4b and 5b, it can be noted that the DCT method occurs over-suppression phenomenon in speckle
background with ∆ = 5, which results in the unsatisfactory contrast. It is precisely because the value
of ∆ is not large enough. To explore this phenomenon, we have added additional experiments. If ∆ is
increased to 30, the phenomenon can be improved, and the CR value can be better than CPWC. However,
the diagonal loading factor is too large, and the mainlobe width is widened at the same time. In the
proposed method, there is no need to constantly adjust the diagonal loading factor. Therefore, it alleviates
the over-suppression phenomenon with ∆ = 0.01 (the normal condition) owing to the smoothing process
and obtains the improvement of imaging contrast resulting from the using of the SCF.

In addition to the above advantages, the proposed method also has certain limitations. From Figs 3
and 6, the mainlobe width at −20 dB is wider compared with DCT-MV and needs to be further improved.
Anyway, it is better than CPWC. Also, the calculation complexity of the SM-DCT is slightly increased
compared with the DCT-MV. It is summarized in detail. For the CPWC with N firing events, it calculates
MV weights and SCF for only once. The calculation of the SCF can be negligible because the process is
extremely simple. For the SM-DCT beamformer, the number of operations required to obtain the MV
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weight is approximately 2L3/3 + L2 + L + L + N × L2 × (M − L + 1). While the computational
amount of the DCT-MV is approximately 2M3/3 +M2 +M +M +N ×M2. Although the proposed
method reduces the calculation amount of the covariance matrix inverse owing to the reduction of the
matrix dimension, the process of obtaining the covariance matrix is improved by M −L+ 1 computes in
each submatrix. Generally speaking, the amount of calculation of SM-DCT MV is higher than that of
the DCT-MV. However, the computation amount of the SM-DCT still has advantages compared to other
methods using the spatial smoothing technique owing to the only once calculation of MV weights. The
execution times of the DCT-MV and SM-DCT MV are measured using MATLAB on PC (Windows 10,
64-bit system, Intel Xeon CPU E5-2687W v4, and 64-Gb memory). The results are about (630 ± 5s) and
(780 ± 5s) for the DCT-MV and SM-DCT MV respectively.

6. Conclusion

A novel beamformer based on the spatial coherence method integrating the submatrix smoothing
technique and sign coherence factor is proposed. Simulated and experimental results show that the
SM-DCT MV obtained higher CR, CNR and s-SNR values compared with the DCT-MV method under a
small diagonal loading factor condition. The −20 dB mainlobe width of the SM-DCT is wider than that
of the DCT-MV, while -6dB perform well. Both of them are better than the CPWC. More importantly,
the sound velocity error experiment proves that the robustness of the SM-DCT method is improved in
terms of the sidelobe reduction. Furthermore, the over-suppression phenomenon of the speckle region is
alleviated. In consideration of above performances, we consider that the proposed beamformer achieves
the improvement on the imaging quality and robustness in the CPWC imaging modality.
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