
Technology and Health Care 30 (2022) 1299–1314 1299
DOI 10.3233/THC-220321
IOS Press

Severity detection of COVID-19 infection
with machine learning of clinical records and
CT images

Fubao Zhua,1, Zelin Zhua,1, Yijun Zhangb, Hanlei Zhua, Zhengyuan Gaoa, Xiaoman Liua,
Guanbin Zhouc, Yan Xub,∗ and Fei Shanb,∗
aSchool of Computer and Communication Engineering, Zhengzhou University of Light Industry,
Zhengzhou, Henan, China
bDepartment of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
cPeople’s Hospital of Yicheng City, Yicheng, Hubei, China

Received 26 May 2022
Accepted 18 August 2022

Abstract.
BACKGROUND: Coronavirus disease 2019 (COVID-19) is a deadly viral infection spreading rapidly around the world since
its outbreak in 2019. In the worst case a patient’s organ may fail leading to death. Therefore, early diagnosis is crucial to provide
patients with adequate and effective treatment.
OBJECTIVE: This paper aims to build machine learning prediction models to automatically diagnose COVID-19 severity with
clinical and computed tomography (CT) radiomics features.
METHOD: P-V-Net was used to segment the lung parenchyma and then radiomics was used to extract CT radiomics features
from the segmented lung parenchyma regions. Over-sampling, under-sampling, and a combination of over- and under-sampling
methods were used to solve the data imbalance problem. RandomForest was used to screen out the optimal number of features.
Eight different machine learning classification algorithms were used to analyze the data.
RESULTS: The experimental results showed that the COVID-19 mild-severe prediction model trained with clinical and CT
radiomics features had the best prediction results. The accuracy of the GBDT classifier was 0.931, the ROUAUC 0.942, and the
AUCPRC 0.694, which indicated it was better than other classifiers.
CONCLUSION: This study can help clinicians identify patients at risk of severe COVID-19 deterioration early on and provide
some treatment for these patients as soon as possible. It can also assist physicians in prognostic efficacy assessment and decision
making.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is a deadly viral infection that has spread rapidly around the
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world since its outbreak in 2019. According to a report from the World Health Organization, as of 25
May 2022, there have been more than 524 million confirmed cases of COVID-19, including more than
6.28 million deaths 0. The severity of COVID-19 can be classified into the following categories: mild,
ordinary, severe, and critical [2]. Patients with severe COVID-19 may suffer from massive alveolar
damage and respiratory failure, leading to death [3]. Therefore, early classification of COVID-19 and
effective targeted treatment for critically ill patients can reduce the risk of complications. Early and
automatic diagnosis will help countries all over the world provide timely treatment and quarantine.
Hospitals can also offer more professional treatment for severe COVID-19 patients.

Nucleic acid screening, clinical features, epidemiological features, and imaging findings are basic for
diagnosing COVID-19 [4]. After comparing the diagnostic effects of RT-PCR tests and chest computed
tomography (CT) on the initial negative to positive diagnosis, AI [5] concluded that chest CT detection
is faster. Chest CT is recommended as a routine test for surveillance and diagnosis of COVID-19 due
to imaging features such as ground-glass opacity and consolidation on Chest CT used to determine
SARS-CoV-2 infection-associated pneumonia [6]. A chest CT also assists physicians in identifying the
early stages of lung infection [8] and is beneficial in helping governments to establish greater public
health surveillance and response systems [10]. A combined assessment using clinical records and imaging
features allows for a more accurate early diagnosis of patients with COVID-19.

Although some studies have constructed machine learning (ML) prediction models, to our knowledge,
the current diagnosis of COVID-19 does not achieve satisfactory accuracy. Terwangne et al. [11] used
295 RT-PCR-positive COVID-19 patients data to develop a model based on the Bayesian network to
predict the severity grading of COVID-19 patients and finally obtained a AUC of 83.8%. Yao et al. [12]
developed a model to predict the severity of COVID-19 based on the SVM algorithm using data from 137
COVID-19 patients (75 severe, 62 mild) and finally obtained an accuracy of 81.48%.

Liang et al. [13] developed a model for predicting the severity of COVID-19 patients based on the
SVM algorithm using data from 172 patients (60 severe) and finally obtained an average accuracy of
91.83%. Liang et al. [14] used data from 1590 (131 severe) patients to develop a model based on the LR
algorithm for predicting clinical risk scores for the occurrence of critical illness in hospitalized patients
with COVID-19, ultimately obtaining an AUC of 88% on the validation set.

Zhu et al. [15] used data from 127 patients (16 severe groups) to develop a model to assess the severity
of infection in COVID-19 patients based on the LR algorithm, ultimately obtaining an AUC of 90.0%.

The above studies related to the severity classification of COVID-19 were based on clinical features
only. They did not consider the influence of CT image feature factors on the classification of mild to
severe disease. Because of this, we use clinical examination data and CT radiomics features to build
a prediction model for mild and severe COVID-19 patients. The study aims to segment the region of
interest in the lung, extract CT radiomics features based on the segmentation results, and train a machine
learning prediction model using the clinical records and the extracted image features. In the following
sections, data collection and modeling methods will be described first, followed by developing COVID-19
patient severity detection models using traditional and ensemble machine learning algorithms.

2. Materials and methods

The clinical and chest CT data used for this retrospective study were collected by the Shanghai
Public Health Clinical Center from 20 January to 29 May 29 2020. The Ethics Committee approved the
retrospective study of the Shanghai Public Health Clinical Center. Figure 1 shows the overall flowchart
we developed for detecting the severity of COVID-19. Firstly, SP-V-Net was used to segment the CT
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Table 1
Baseline characteristics of COVID-19 patients with mild and severe disease

Features Mild Severe P value
PO2 14.38 ± 4.46 10.91 ± 5.54 0.084
Age 40.26 ± 15.16 60.58 ± 14.69 0.263
Lactate dehydrogenase (LDH) 218.98 ± 68.56 347.85 ± 138.83 0.000
C-reactive protein (CRP) 15.16 ± 19.57 55.91 ± 54.91 0.000
APTT 38.45 ± 5.73 41.86 ± 6.91 0.030
eGFR 117.36 ± 24.56 104.16 ± 28.39 0.150
Blood sodium 139.91 ± 2.54 137.12 ± 4.00 0.000
Total cholesterol 4.25 ± 0.90 4.19 ± 0.98 0.907
PRO-BNP 60.05 ± 103.20 179.28 ± 363.39 0.000
PCO2 5.43 ± 0.62 5.37 ± 0.89 0.000
Urea 4.40 ± 1.39 5.72 ± 3.79 0.000
White blood cells (WBC) 5.48 ± 2.08 5.43 ± 2.15 0.204
D-dimer 0.54 ± 1.41 2.19 ± 4.52 0.000
Lymphocyte count 1.44 ± 0.57 1.03 ± 0.47 0.174

Fig. 1. Flowchart of our approach to building the COVID-19 severity diagnosis model.

images to obtain the lung contours. Radiomics was used to extract the lung image features, which were
combined with clinical features to build a mild-severe diagnostic model after feature screening.

The 427 clinical data collected were used for this study, including 387 patients with mild COVID-19
(mean age, 40.26 ± 15.16 years; range, 22–88 years; male 213, female 174), 40 subjects with severe
COVID-19 (mean age, 60.58± 14.69 years; range, 23–73 years; male 28, female 12), and seven eventually
died. The relevant scan parameters for chest CT are as follows: slice number, 49–90; matrix, 512 × 512;
pixel size, 0.590–1.0 mm; slice thickness, 5 mm. In the next diagnostic task of COVID-19 severity, all
subjects were divided into mild and severe COVID-19 groups for binary classification. The baseline
characteristics of patients with mild and severe COVID-19 are shown in Table 1.

By observing the basic situation of the clinical dataset, we found that some clinical features had missing
data, and the number of missing data and the proportion of missing data for different features are shown
in Table 2. To reduce the impact of missing data on the experimental results, we use the Multivariate
Imputation by Chained Equation (MICE) [16] method to interpolate the missing data. MICE is a multiple
interpolation method that works iteratively and can resolve the uncertainty of missing values by creating
multiple interpolations. The data can be interpolated by variable by specifying an interpolation model for
each variable. The MICE interpolation technique has better robustness and better accounts for uncertainty
and is selected to treat missing data values.
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Table 2
Features and missing values in the dataset

Feature Number of missing data values % of missing data values on the total
C-reactive protein (CRP) 122 28.18
PRO-BNP 100 23.09
PCT 25 5.77
Total cholesterol 15 3.46
PO2 15 3.46
PCO2 15 3.46
eGFR 6 1.39
Urea 5 1.15
Lactate dehydrogenase (LDH) 5 1.15
Blood sodium 4 0.92
APTT 3 0.69
D-Dimer 3 0.69
White blood cells (WBC) 1 0.23
Tlymphocyte 1 0.23

2.1. CT radiomics features extraction

SP-V-Net [17] is a lung parenchyma segmentation model based on image deformation. The advantage
of this model is that it uses 3D V-Net for end-to-end lung extraction and combines the spatial trans-
form network (STN) module and prior shape knowledge to refine the V-Net output results so that the
final segmentation results are closer to the ground-truth label. First, the threshold segmentation results
were used as the lung lobes shape prior, combined with the gold standard data to train the SP-V-Net
segmentation model. Second, lung lobes of each patient were segmented automatically by SP-V-Net;
experienced operators confirmed the CT image segmentation results. Finally, we used the binary image
of the segmentation result to multiply the original image to obtain all CT lung ROIs of 427 patients.
Radiomics was used to extract the CT radiomics features from lung ROIs for machine learning; 120
features presented by Zwanenburg et al. [18] were measured. All of them may be related to COVID-19
classification are extracted for our analysis.

2.2. Feature selection

The feature selection algorithm effectively reduces the feature number and also helps to improve
accuracy in many cases [19]. Feature selection algorithms can effectively remove those unrelated fea-
tures [20], which usually enhances the model’s generalization performance. We used the random forest
to rank features and selected the top-ranked features. Due to the random nature of the Random Forest
algorithm, we trained the model several times, choosing a certain number of features each time and using
the intersection of the results of multiple experiments as the last selected features.

2.3. Model selection

By comparing different classes of machine learning classifiers, we consider training the following
classifier model to predict the severity of COVID-19.

AdaBoost (Adaptive Boosting) [21] is an iterative algorithm that trains different weak classifiers for the
same training set by increasing the weights of misclassified data and decreasing the importance of correctly
classified data. Finally, AdaBoost combines these weak classifiers linearly to form a robust classifier.
GBDT (Gradient Boosted Decision Tree) [22] is an ensemble algorithm that produces a weak classifier in
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each iteration by multiple iterations. The total classifier is obtained by weighting and aggregating the weak
classifiers, which improves prediction accuracy. MLP (Multilayer Perceptron) [23] is a feed-forward ANN
containing at least three layers of neurons, trained with back-propagation supervised learning techniques,
which can identify not linearly separable data. XGBoost (Extreme gradient boosting) [24] is a scalable
tree-boosting machine learning system in all scenarios and can solve real-world scale problems using
minimal resources. KNN (K-nearest neighbors) [25] is a simple and effective classification algorithm
that performs classification by measuring the distance between different feature values. LR (Logistic
Regression) [26] is a classical classification method in supervised learning and is often used to deal with
regression problems in which the dependent variable is categorical. Logistic regression is often used
to analyze medical research risk factors for a particular disease. NB (Naive Bayes) [27] is one of the
most effective inductive learning algorithms in data mining and machine learning, and it has surprising
performance in classification. RF (Random Forest) [28] is an ensemble algorithm that can solve the data
imbalance problem by decision tree voting to get the final prediction and can be used for feature selection
by providing the relative importance of different features in the classification process.

2.4. Data sampling methods

Data imbalance is one of the current challenges in data analysis, which usually leads to over-fitting
models. To further describe the data imbalance, we represent the minority class sample by using P for
the minority class sample and N for the majority class sample, and define the following:

P = {(x, y)|y = 1}, N = {(x, y)|y = 0} (1)

When |N | � |P | represents the height imbalance problem. The imbalance ratio is used to describe
the level of imbalance in the data set and is defined as the ratio of the number of majority samples to the
number of minority samples.

Imblanced Ratio(IR) =
nmajorty

nmin ority
=
|N |
|P |

(2)

There was also a data imbalance in this study, with 387 cases of mild disease and 40 cases of severe
disease in the data we collected, with a data imbalance ratio of 9.675. To further address the effect of data
imbalance on the experimental results, we sampled the data in three different ways (Under-sampling,
Over-sampling, and Combination of over- and under-sampling methods) for all the data separately.

2.4.1. Under-sampling methods
– ClusterCentroids [29] use KMeans to cluster each sample type separately, replacing the entire cluster

of samples using the center of mass.
– RandUnder (Random Under Sampling) [30] randomly selects samples from the majority class

samples for rejection.
– NearMiss [31] selected the most representative samples from most classes for training to alleviate

the problem of information loss in random undersampling.
– TomekLink [32] represents the nearest pair of samples between different categories, which are

nearest neighbors of each other and belong to different classes.
– ENN (Edited Nearest Neighbor) [33] traverses the samples of most classes, and if most of the

k-nearest neighbor samples are not the same as their class, they are deleted.
– RENN (Repeated Edited Nearest Neighbor) keeps repeating the deletion process of ENN until it can

no longer be deleted.
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– CNN (Condensed Nearest Neighbor) [34] uses the nearest neighbor approach to iterate and determine
whether a sample should be retained or rejected.

– OSS (One Side Sampling) [35] rejects noisy samples by using multiple TomekLink iterations.
– AllKNN [36] applies ENN multiple times and will change the number of nearest neighbors.

2.4.2. Over-sampling methods
– RandOver (Random Over-Sampling) randomly samples from categories with few samples, and then

adds the sampled samples to the data set.
– SMOTE (synthetic minority oversampling technique) [37] interpolates between a few classes of

samples to generate additional samples.
– BorderSMOTE (Borderline Synthetic Minority Oversampling Technique) [38] first distinguishes the

minority class samples located at the border and performs KNN sampling for these samples.
– KMeansSMOTE [39] first applies KMeans clustering and then oversamples using SMOTE.
– SVMSMOTE [40] uses the SVM classifier to generate support vectors to generate new minority

class samples, which are then synthesized using SMOTE.
– ADASYN (adaptive synthetic sampling) [41] uses some mechanism to automatically determine how

many synthetic samples need to be generated for each minority class sample.

2.4.3. Combination of over- and under-sampling methods
– SMOTETomek (SMOTE with tomek links cleaning) [42] combines over and under sampling using

SMOTE and Tomek links.

2.5. Model training and evaluation

3-fold cross-validation was used to prove the performance of the model on the training data set. The
training data consist of 67% of the total data; the test data consist of the remaining 33%. Among all
427 sets of patient data, 285 (258 mild, 27 severe) data sets were used as training data, and 142 (129
mild, 13 severe) data sets were used as test data. Finally, we used training data to train eight different
machine learning algorithms and the trained models to predict the test data. Accuracy, f1-score, AUC, and
AUCPRC were used to analyze the model’s performance. Figure 2 shows the workflow of our method.

To better measure the model’s effectiveness, we used different evaluation indicators to compare the
multiple aspects. According to the confusion matrix, the following indicators were used to evaluate the
performance of the model comprehensively:

TP, FP, TN, and FN stand for True Positive, False Positive, True Negatives, and False Negative
respectively.

Accuracy =
TP + TN

TP + FP + FN + TN
(3)

precision =
TP

TP + FP
(4)

recall =
TP

TP + TN
(5)

F1-score =
2× (recall× precision)

recall + precision
(6)

G-mean =
√

recall · precision (7)
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Fig. 2. Overall training flowchart of the COVID-19 mild-severe disease prediction model.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(8)

AUCPRC = Area Under precision− recall Curve (9)

AUC = area under the curve (10)

3. Results

3.1. Feature selection

To further verify the effect of different features on machine learning prediction results, we performed
100 RandomForest feature sorting on clinical features, CT radiomics features, a mixture of clinical
features, and CT radiomics features, respectively. The final mean value of 100 experimental results was
calculated as the final feature importance ranking result. We further filtered the number of features that
make different machine learning algorithms get optimal results based on the feature ranking results. The
optimal number of feature combinations for different machine learning models is shown in Fig. 3.

The order of feature selection was sorted according to the score of the random forest algorithm from
high to low. The feature importance scores of the clinical features and the CT extracted features are shown
in Table 3. To get the best prediction results, we used gridSearchCV to optimize the parameters of each
machine learning model. The optimal model parameters are shown in Table 4.



1306 F. Zhu et al. / Severity detection of COVID-19 infection with machine learning of clinical records and CT images

Fig. 3. Number of features for each machine learning algorithm to obtain optimal prediction results.

Fig. 4. Experimental results of AUCPRC obtained by various machine learning algorithms using different types of features.
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Table 3
Feature importance scores

Feature name Feature importance score
PO2 0.0513
Age 0.0264
original_firstorder_Entropy 0.0211
original_glcm_SumEntropy 0.0189
PCT 0.0180
original_firstorder_RobustMeanAbsoluteDeviation 0.0170
Lactate dehy drogenase 0.0168
C-reactive protein 0.0166
original_glrlm_GrayLevelNonUniformityNormalized 0.0164
original_firstorder_Kurtosis 0.0159
original_firstorder_InterquartileRange 0.0150
original_glrlm_RunEntropy 0.0150
original_glcm_JointEnergy 0.0147
APTT 0.0143
original_glcm_JointEntropy 0.0142
original_firstorder_Skewness 0.0140
original_firstorder_Uniformity 0.0135
original_glszm_SmallAreaEmphasis 0.0126
original_glcm_Id 0.0126
eGFR 0.0125
original_glcm_InverseVariance 0.0125
Na 0.0123
original_glszm_SizeZoneNonUniformityNormalized 0.0119
Total cholesterol (TC) 0.0115
original_glszm_ZoneEntropy 0.0104
original_glszm_GrayLevelNonUniformityNormalized 0.0098
original_glszm_ZonePercentage 0.0095
original_firstorder_MeanAbsoluteDeviation 0.0093
original_glcm_MaximumProbability 0.0092
original_glcm_Idm 0.0086

After parameter optimization and combining the optimal features, we trained the COVID-19 mild-severe
prediction models with eight machine learning algorithms. Due to some imbalance in the experimental
data, we finally chose the PRAUC value to verify the model’s goodness. Ten 3-fold cross-validation
experiments were conducted separately, and the mean values were obtained as the final results of the
experiments. Figure 4 shows the experimental results of AUCPRC obtained by each machine learning
algorithm using different types of features. By comparing the experimental results, we can see that the final
results obtained by different machine learning algorithms using the combined Clinical and CT radiomics
features are higher than those obtained with clinical or CT radiomics features alone. The experimental
results also further demonstrate the more accurate results of the machine learning classification model
built using clinical and CT radiomics features. Therefore, to further verify the effect of data imbalance on
the experimental results. We will select combined clinical and clinical feature data for further sampling
experiments in the following experiments.

3.2. Evaluation of diagnostic performance

In the following data sampling experiments, 3-fold cross-validation was used to divide the data, and
then the divided data were combined with different sampling methods for the sampling experiments. The
Under-sampling methods were used to sample 0.2, 0.4, 0.6, 0.8, and 1.0 times the majority of the data.
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Table 4
The optimal model parameters

Algorithm Model parameters Value
KNN n_neighbors 11

p 1
LR Penalty L2

C 1
class_weight Balanced

RF class_weight Balanced
Criterion Entropy
max_depth 14
min_samples_leaf 1
n_estimators 65

XGB learning_rate 1
n_estimators 64
max_depth 2
subsample 0.8
reg_alpha 0.1
reg_lambda 1

GBDT boosting_type gbdt
colsample_bytree 0.6
learning_rate 1
n_estimators 32
num_leaves 50
objective Binary
reg_alpha 0.1
reg_lambda 10
subsample 0.8

MLP hidden_layer_sizes 3
Activation Identity
Solver lbfgs
learning_rate Constant
random_state 2008

The Over-sampling methods were used to sample 0.1, 0.2, 0.4, 0.6, and 0.8 times the majority of the data
for the minority data. All sampling methods were performed on the training set data, and no processing
was done on the test set data. Ten 3-fold cross-validation experiments were conducted separately, and the
average of the ten experimental results was used as the final result. Figure 5 shows the results without
the data sampling process. Figure 6 shows the optimal results after data sampling. By comparing Figs 5
and 6, it can be found that the model results still improve after sampling the data. RandomForest has the
largest PRAUC value improvement of 3.7% after using the sampling method, and GBDT has the optimal
PRAUC result of 0.697 in the used model after the sampling process.

To further verify the final results of each machine learning algorithm under different sampling methods
and sampling ratios, we collated all the results after sampling, and the final experimental results are shown
in Table 5. By analyzing the experimental results in Table 5, we can find that the final results obtained
by different models combined with different sampling methods and sampling ratios are different. The
experimental results of all eight machine learning experiments were further improved after using the data
after data sampling and processing. RandomForest obtained the largest AUCPRC value improvement
of 2.7% for the data after sampling with SVMSMOTE. GBDT got the largest AUCPRC value of 0.697
among the eight machine learning prediction models after sampling with SVMSMOTE. GBDT used the
RandOver sampling method to make the final combined performance optimal among the eight different
machine learning algorithms, the accuracy is 0.931, the AUC is 0.942, and the AUCPRC is 0.694.
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Fig. 5. The optimal prediction results were obtained by each machine learning model trained using unsampled data.

Fig. 6. The optimal prediction results were obtained by each machine learning model trained using sampled processed data.
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Table 5
The optimal prediction results of each machine learning model are obtained by training with data processed in different data
sampling methods

Model Category Method Radio Accuracy f1-score AUC AUCPRC MCC GM
NB ORG 0.861 0.887 0.864 0.575 0.454 0.659

Undersampling NearMiss 20 0.905 0.936 0.855 0.588 0.563 0.649
RandUnder 80 0.864 0.889 0.865 0.577 0.452 0.663
ClusterCentroids 80 0.877 0.905 0.863 0.580 0.469 0.661

Oversampling BorderSMOTE1 100 0.835 0.852 0.867 0.579 0.431 0.662
BorderSMOTE2 40 0.838 0.858 0.865 0.579 0.437 0.660

MLP ORG 0.920 0.968 0.869 0.549 0.572 0.614
Undersampling RandUnder 80 0.915 0.959 0.868 0.552 0.575 0.615

ClusterCentroids 80 0.916 0.965 0.869 0.554 0.567 0.614
ENN – 0.907 0.944 0.870 0.555 0.584 0.625
OSS – 0.917 0.962 0.870 0.554 0.569 0.610

KNN ORG 0.928 0.993 0.843 0.525 0.551 0.578
Undersampling RandUnder 40 0.926 0.978 0.864 0.549 0.559 0.591

ClusterCentroids 80 0.927 0.991 0.849 0.526 0.542 0.570
ENN – 0.929 0.982 0.853 0.541 0.554 0.581
RENN – 0.923 0.969 0.854 0.537 0.552 0.583
AllKNN – 0.926 0.978 0.855 0.548 0.565 0.593
OSS – 0.930 0.991 0.844 0.532 0.557 0.582

LR ORG 0.836 0.844 0.864 0.539 0.542 0.593
Undersampling ENN – 0.820 0.823 0.866 0.544 0.559 0.606

RENN – 0.803 0.804 0.868 0.568 0.562 0.611
AllKNN – 0.818 0.818 0.868 0.553 0.563 0.613

Oversampling KMeansSMOTE 100 0.890 0.920 0.864 0.558 0.567 0.610
SVMSMOTE 40 0.857 0.872 0.863 0.556 0.563 0.608

RF ORG 0.919 0.965 0.893 0.609 0.601 0.631
Undersampling ClusterCentroids 60 0.921 0.965 0.906 0.629 0.598 0.635

ENN – 0.910 0.948 0.886 0.617 0.605 0.639
AllKNN – 0.908 0.940 0.896 0.613 0.607 0.640
CNN – 0.908 0.937 0.888 0.634 0.629 0.659
OSS – 0.922 0.966 0.903 0.629 0.614 0.647

Oversampling RandOver 20 0.917 0.956 0.901 0.629 0.611 0.646
SMOTE 60 0.890 0.911 0.906 0.632 0.605 0.641
KMeansSMOTE 20 0.921 0.962 0.896 0.620 0.598 0.636
SVMSMOTE 20 0.914 0.954 0.900 0.636 0.613 0.645
ADASYN 20 0.908 0.940 0.898 0.612 0.611 0.645

Over+Undersampling SMOTETomek 60 0.891 0.916 0.900 0.632 0.619 0.657
AdaBoost ORG 0.925 0.975 0.928 0.609 0.605 0.303

Undersampling RandUnder 80 0.924 0.973 0.929 0.623 0.610 0.303
ClusterCentroids 80 0.918 0.968 0.926 0.611 0.604 0.303
TomekLinks – 0.928 0.981 0.931 0.654 0.633 0.303

Oversampling RandOver 40 0.922 0.956 0.928 0.620 0.607 0.303
SMOTE 40 0.911 0.942 0.917 0.616 0.617 0.303
SVMSMOTE 40 0.917 0.951 0.916 0.623 0.601 0.303

Over+Undersampling SMOTETomek 20 0.920 0.964 0.922 0.620 0.601 0.303
XGB ORG 0.927 0.972 0.921 0.643 0.623 0.661

Undersampling ClusterCentroids 80 0.926 0.967 0.922 0.661 0.629 0.667
Oversampling SVMSMOTE 20 0.924 0.967 0.917 0.655 0.632 0.667

GBDT ORG 0.930 0.978 0.940 0.676 0.644 0.684
Undersampling ClusterCentroids 80 0.931 0.975 0.939 0.680 0.637 0.674

OSS – 0.932 0.974 0.938 0.679 0.635 0.672
Oversampling RandOver 40 0.931 0.970 0.942 0.694 0.660 0.696

KMeansSMOTE 40 0.932 0.971 0.940 0.680 0.640 0.677
SVMSMOTE 40 0.931 0.965 0.940 0.697 0.654 0.686
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Table 6
Comparison of machine learning-based methods for COVID-19 mild and severe diagnostic studies

Study Features ML
approaches Sample size Performance

Terwangne et al. [11] clinical Bayesian 295 patients (−) AUC of 83.8%
Yao et al. [12] clinical SVM 137 patients (75 severe) Accuracy of 81.48%
Zhao et al. [13] clinical SVM 172 patients (60 severečl’ Accuracy of 91.38%
Liang et al. [14] clinical LR 1590 patients (131 severe) AUC of 88%
Zhu et al. [15] clinical LR 127 patients (16 severe) AUC of 90.0%
Our method clinical+CT radiomics GBDT 427 patients (40 severe) Accuracy of 0.931 and

AUC of 0.942

The results can also provide some reference value for data imbalance experiments combining different
algorithms and sampling methods to optimize the experimental results.

4. Discussion

The purpose of this study was to develop a diagnostic model for predicting the severity of patients
with COVID-19. Using clinical features and CT radiomics features, the optimal prediction accuracy of
0.932 and AUC value of 0.942 were obtained for the diagnostic model based on the GBDT algorithm
after data sampling processing and feature selection. The model can assist clinicians in screening patients
with severe COVID-19, providing more medical resources for these patients, and can also be used to
improve patient prognosis decisions and assess prognostic treatment outcomes.

Several studies have been conducted to build diagnostic models for the severity of COVID-19 patients
using machine learning algorithms, and details of the diagnostic models are shown in Table 6. These
studies used patients’ clinical features to build diagnostic models and did not consider the impact of
CT radiomics features on model prediction performance. In our study, to further validate the effect of
CT radiomics features on the prediction model’s performance, we segmented the ROI on the chest CT
by using SP-V-Net and extracted the CT radiomics features on the ROI. Experiments were performed
separately using clinical features, CT radiomics features, and a mixture of both. Figure 4 shows that
the COVID-19 mild-severe prediction model built by using a mixture of features of both has better
performance.

The data imbalance problem was widely present in many real-world decision problems, and in medical
diagnosis models, the data imbalance problem can have a negative impact on experimental results. The
problem of data imbalance in the studies of Liang et al. [14] and Zhu et al. [15] was not addressed. In our
research, to reduce the impact of the data imbalance problem on the prediction results, we sampled the
data using three different data sampling methods. By comparing Figs 5 and 6, it can be found that the
prediction results of different models were still further improved after the data imbalance treatment. In
this study, the optimal prediction results were obtained using integrated models such as GBDT, AdaBoost,
and XGB combined with the data after sampling. These classifiers all used integrated learning techniques
to improve the accuracy of individual classifiers and overall classifier performance. And related studies
have demonstrated that the model prediction performance can be further improved by using integrated
models when dealing with data imbalance problems [43].

By further feature ranking and screening of a mixture of CT radiomics features and clinical features,
we found that PO2, age, PCT, LDH, and CRP were the five most important clinical risk factors with
the most severe degree of prognostic observation for patients with COVID-19, and this result was also
consistent with previous related studies. Studies have shown that older age, elevated PCT, LDH, and
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CRP are all important correlates of the severity of COVID-19 [17]. More important is the continued
importance of image features extracted from chest CT to diagnose mild to severe disease in patients with
COVID-19. The combination of clinical features and chest CT extracted features has a good performance
in diagnosing the severity of COVID-19. COVID-19 patients have specific chest CT image features,
including ground-glass opacities (GGO), multifocal patchy consolidation, or interstitial changes in the
peripheral distribution [44]. The increase in lesion volume, gross glass volume, and other volumes also
provided the possibility for the model to predict the severity of COVID-19.

Machine learning algorithms are now widely used in complementary medical diagnosis and are playing
an increasingly important role. Catic et al. [45] built prenatal diagnosis classification models using
Artificial Neural Networks (ANNs) artificial neural networks to help physicians in their daily work,
eventually obtaining feedforward neural networks with an average accuracy of 89.6% and feedback
of 98.8%. Begic et al. [46] applied machine learning algorithms to diagnose congenital heart defects,
obtaining a diagnostic accuracy of 94.28% by making the model built by SVM. Stokes et al. [47]
applied the trained machine learning model to diagnose and refer to bronchitis and pneumonia. They
obtained a 93% AUC value model performance by using decision trees. In our study, the COVID-19
mild-severe diagnostic model built using the GBDT algorithm obtained optimal predictive performance
with an accuracy of 93.2% and an AUC of 94.2%. Compared with the above three studies, the model
we developed also has good performance in diagnosing mild and severe COVID-19, which can assist
physicians in the early detection of severe COVID-19 patients and provide them with better medical
resources, and this study has better clinical significance. ML can help improve disease-specific diagnostic
systems’ reliability, performance and accuracy. The research and application of ML in the medical field
are also increasing, and the related research will provide more convenience for doctors and patients.

The present study still has some limitations that need to be considered. First, the number of patients
with COVID-19 is relatively small, limiting the accuracy of the predictive model. Second, the diversity of
data in our study is limited, all subjects are Chinese COVID-19 patients, and the results may not be fully
applicable to data from other countries. Third, the number of severe patients’ data is small, and the mild
and severe patients’ data are imbalanced. We need to collect more COVID-19 patient data, especially
severe patients. Further research is still required.

5. Conclusions

This study proves that the COVID-19 mild-severe prediction model based on features extracted from
chest CT and clinical characteristics can effectively differentiate the severity of COVID-19 patients
and can provide helpful insights for early diagnosis of patients with COVID-19 mild-severe disease.
And the prediction models based on both chest CT features and clinical features had higher prediction
performance than those built using the two different types of data alone. The results could help clinicians
more effectively assess the severity of COVID-19 patients and stratify patients for treatment to reduce
potential mortality and ease the burden of care.
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