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Abstract.
BACKGROUND: The selection of optimal target areas in the surgical treatment of epilepsy is always a difficult problem in
medicine.
OBJECTIVE: We employed a theoretical calculation model to explore the control mechanism of seizures by an external voltage
stimulus acting in different nerve nuclei.
METHODS: Theoretical analysis and numerical simulation were combined.
RESULTS: The globus pallidus, excitatory pyramidal neurons, striatal D1 neurons, thalamic reticular nucleus and specific relay
nuclei were selected, we analyzed that the electrical stimulation has different effects in these target areas.
CONCLUSIONS: The data selected were reasonable in study, the results may give a theoretical support for similar studies in
clinical.
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1. Introduction

Deep brain stimulation technology has been proved to be effective in relieving seizures for intractable
epilepsy patients [1,2]. Cortex and thalamus are the main seizure areas of epilepsy [3], and the subthalamic
nucleus (STN) is a common stimulus target for treating seizures [4]. Basal ganglia (BG) as an important
unit in the brain has closely input and output relationship with cortical and thalamic circuit [5–7]. Thus,
in addition to the STN, other organizations in the BG may also be effective DBS targets in controlling
seizures. Vuong and Devergnas reviewed the possible roles of the BG in regulating absence, neocortical
seizures and temporal lobe [8]. di Giacopo et al. observed that substantia nigra DBS can inhibit myoclonus
for myoclonic seizures [9]. The electrophysiological and lesion results implied that substantia nigra pars
reticulata (SNr) anterior can inhibit convulsant in seizures [10]. Guo et al. showed that SNr-DBS can
effectively control seizure activities in rats [11]. SNr-DBS can also relieve amygdala-kindled seizures
for a long time [12]. Chua et al. found that the quality of life can be improved with DBS of the ventral
pallidum (VP) in rat models [13]. Yu et al. found that VP-DBS can reduce seizure activity and behavior in
pilocarpine-treated rats [14]. Cheng et al. observed that low-frequency stimulation at the external globus
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palladium (GPe) can inhibit tonic-colonic generalized seizures and temporal lobe epilepsy [15]. However,
the therapeutic mechanism and effect of these targets are different, the choice of the best stimulation
target area is an important direction of clinical medicine research in the future, which need the support of
theoretical research results. Also, many studies implied that striatum may involve in controlling epileptic
seizures [16], however, if the striatum can be taken as an effective target in the DBS, it still needs a lot of
theoretical evidences to support.

Abnormal interactions of cortex and thalamus circuits have been considered to be a key factor in
inducing epilepsy seizures, recently, some studies have shown that the inhibition effect is also obvious as
the external stimulation was exerted in the thalamocortical system directly [17,18]. Molnar et al. found
that thalamic DBS may increase short-interval intracortical inhibition, which is similar to the treatment
effect of antiepileptic drugs [19]. Lee et al. shown that using the DBS at the anterior thalamic nuclei can
significant relief epileptic symptoms in the patient [20]. Son et al. observed that centromedian thalamic
nucleus DBS is effective and safe in controlling refractory seizures [21]. Recently, Elhadd et al. found that
generalised epilepsy can be successfully managed by thalamic DBS [22]. Grewal et al. shown that chronic
subthreshold cortical stimulation may be effective for focal epilepsy [23]. Young et al. pointed out that
the piriform cortex may relieve seizures in focal and generalized epilepsy [24]. Lundström et al. found
that chronic subthreshold cortical stimulation can reduce the probability of seizures [25,26]. However, the
control mechanism of seizures is complex, which should be intensively studied in the dynamic model.

Therefore, the mechanism of DBS in epilepsy is still unclear, the choice of the best treatment plan and
region is a difficult problem to be solved. In this paper, we explored the treatment principle of absence
epilepsy through exerting voltage stimulation in different neural nuclei of brain network. Different
mechanisms were derived, which may be the theoretical basis for further research.

2. The calculation model and method

The coupling relation of different populations is presented in Fig. 1. The specific meaning and symbols
of this model can be referred from [27–30]. The red lines and black lines represent excitatory and
inhibitory inputs, respectively. The electrical stimulation was exerted in different targets, which were
denoted in red.

The dynamic equations that described the network structure of the model were derived from previous
studies [27–32]:

dφe (t)

dt
= φ̇e (t)

dφ̇e (t)

dt
= γ2e [−φe (t) + F (Ve (t))]− 2γeφ̇e (t)

dX (t)

dt
= Ẋ (t)

X (t) = [Ve (t) , Vd1 (t) , Vd2 (t) , Vp1 (t) , Vp2 (t) , Vζ (t) , Vr (t) , Vs (t)]
T

dV̇e (t)

dt
= αβ (νeeφe + νeiF (Ve (t)) + νesF (Vs (t))− Ve (t))− (α+ β) V̇e (t)

dV̇d1 (t)

dt
= αβ (νd1eφe + νd1d1F (Vd1 (t)) + νd1sF (Vs (t))− Vd1 (t))− (α+ β) V̇d1 (t)
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Fig. 1. Schematic diagram of the calculation model used in this paper, the symbol and biological significance of which can be
referred from [27–30].

dV̇d2 (t)

dt
= αβ (νd2eφe + νd2d2F (Vd2 (t)) + νd2sF (Vs (t))− Vd2 (t))− (α+ β) V̇d2 (t)

dV̇p1 (t)

dt
= αβ (νp1d1F (Vd1 (t)) + νp1p2F (Vp2 (t)) + νp1ζF (Vζ (t))− Vp1 (t))− (α+ β) V̇p1 (t)

dV̇p2 (t)

dt
= αβ (νp2d2F (Vd2 (t)) + νp2p2F (Vp2 (t)) + νp2ζF (Vζ (t))− Vp2 (t))− (α+ β) V̇p2 (t)

dV̇ζ (t)

dt
= αβ (νζeφe + νζp2F (Vp2 (t))− Vζ (t) + V )− (α+ β) V̇ζ (t)

dV̇r (t)

dt
= αβ (νreφe + νrp1F (Vp1 (t)) + νrsF (Vs (t))− Vr (t))− (α+ β) V̇r (t)

dV̇s (t)

dt
= αβ

(
νseφe + νsp1F (Vp1 (t)) + νAsrF (Vr) + νBsrF (Vr (T − τ))− Vs (t) + φn

)
− (α+ β) V̇s (t)

The meaning of parameters in the above equations were listed in Table 1 [27–29]. Through the numerical
calculation of the above equations [27,28], we got the main results of this paper. The default simulation
data were derived from previous literature [27–32], which are in a reasonable range: β = 200 s−1, α =

50 s−1, τ = 50 ms; The unit in mV: σ = 6, θp2 = 9, θd1 , θd2 = 19, θp1 = θς = 10, θr = θe, θi = θs =

15; The unit in mV s: νei = νes = 1.8, νp2ς = 0.45, νd2e = 0.7, νp2d2 = νd2d2 = 0.3, νd1d1 = 0.2,
φn = 2, νd1e = νee = 1, νp1p2 = 0.03, νp1ς = νd1s = νςe = νp1d1 = 0.1, νre = 0.05, νrp1 = νsp1 =

0.035, νςp2 = 0.04, νrs = 0.5, νp2p2 = 0.075, νd2s = 0.05, νse = 2.2; The unit in Hz: Qmax
p2 = 300, = 0,

Qmax
d1

, Qmax
d2

= 65 , Qmax
ς = 500, Qmax

s = Qmax
p1 = Qmax

r = Qmax
e , Qmax

i = 250.
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Table 1
Description of the parameters in the calculation equations [27–29]

Parameter Meaning Parameter Meaning
Qmax

e , Qmax
i Maximum cortical discharge rate θe, θi Average discharge threshold (ADT) of the cor-

tical nuclei
Qmax

d1
, Qmax

d2
Maximum striatal discharge rate θ,d1θd2 The ADT of the striatum

Qmax
ς Maximum STN discharge rate θs The ADT of the SRN

Qmax
p1 Maximum SNr discharge rate θp1 The ADT of the SNr

Qmax
p2 Maximum GPe discharge rate θr The ADT of the TRN

Qmax
r Maximum TRN discharge rate θς The ADT of the STN

Qmax
s Maximum SRN discharge rate θp2 The ADT of the GPe

τ The delay induced by the receptors GABAB α The decay time constant of synaptodendritic
β The rising time constant of synaptodendritic γe The damping rate in cortex
σ Change in discharge rate threshold φn The nonspecific subthalamic input
νab The connection weight from the population “b” to the population “a”

Fig. 2. The stimulation V was acted in GPi, EPN, GPe, SRN, TRN and striatum D1 neurons, respectively. The AE may be well
relieved by tuning V . Here, we set νp1ς = 0.05 and −νsr = 1.

3. Main results

In this section, we explored the control mechanism of seizures by a small voltage V acting in different
nuclei. The simulation results were presented in Fig. 2, which is a bifurcation diagram of different states
in the EPN. The symbol A represents the low firing state, the B is the simple periodic discharge state, the
C is the seizure state and D represents the saturation firing state. The specific meaning and characteristics
of these four states can be referred from [27–29]. KK is a proportional coefficient between “GPi→ SRN”
and “GPi→ TRN”, i.e., νrp1 = kkνsp1 [27]. Figure 2a was obtained by exerting the V in the GPi. In this
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model, we inferred that the “GPi→ SRN” affected the EPN by the projection “GPi→ SRN→ EPN”, so
the νsp1 exerted an inhibitory role in EPN. The “GPi→ TRN” affected the EPN by the projection “GPi
→ TRN→ SRN→ EPN”, so the νrp1 exerted an excitatory role in EPN. As defined above, the effect of
νrp1 strengthenedwith increasing in KK. Therefore, an increase in KK promoted the discharge of EPN, as
indicated in Fig. 2a. Therefore, when KK was small, the effect of νsp1 was major, and the state C was
inhibited by transferring into the A. As KK increased to large enough, the role of νrp1 strengthened,
and the C was pushed into the D. Figure 2b describes the regulation effect via the V stimulating in the
EPN directly. We noticed that the V is positive, which improved the firing ability of EPN. So, when the
stimulus intensity increased to a certain value, the C disappeared and was pushed into the B or the D.
Figure 2c was simulated by putting the V in GPe. Here, we taken KK = 0.01, which was small. From
the above analysis, we known that the GPe mainly affected the EPN by the projection “GPe→ GPi→
SRN→ EPN”, which was generally excited. Therefore, the C can be pushed into the B by reducing the
V, as implied by the arrow. Figure 2d is a state transition process of the B and the C as the V acting in
SRN. Because SRN exerted a direct excitatory input to the EPN, seizures were changed to the B when
V was small. Therefore, we inferred that the inhibitory stimulation in SRN may be more conducive to
the control of seizures. In the contrary, when the V was putted in TRN, it gave an inhibitory effect to
EPN through the projection “TRN→ SRN→ EPN”. Thus, the C was inhibited with an increase in V, as
clearly presented in Fig. 2e. Striatum D1 neurons exerted inhibitory projections to GPi. The V in GPe and
striatum D1 neurons have similar mechanisms, which can be inferred from Fig. 1. Therefore, transfer
processes in Fig. 2e and f are similar, both were simulated as KK is small.

4. Conclusion

Although there are many reports on the experiment about various potential target areas for the treatment
of epilepsy, the theoretical mechanism research based on the model is limited. In this paper, we exerted a
stimulation voltage V in the thalamus, GPi, GPe, striatum and EPN respectively to explore the adjustment
mechanism of seizures in a dynamic calculation model. We found that positive voltages were suitable for
different targets and the stimulus intensity needed to inhibit the seizure was also different. For example,
we observed that the intensities needed to inhibit the seizures in SRN and TRN were smaller than that
in GPi and EPN. The decrease in V can lead the seizures in Fig. 2c and f to disappear. The parameter
values in the model have some influences on the control effect. For example, as shown in Fig. 2a, the
excitatory stimulation protocol was effective, but the seizure was transferred to the state A when KK was
small, and the seizure was pushed into the state D when KK increased to large enough. As indicated in
Fig. 2c and f, the stimulus protocol may be suitable in GPe and striatum D1 when KK was small. The
minimum voltage intensity needed to inhibit seizures in SRN and TRN may be relative small as implied
in Fig. 2d and e. These different dynamic mechanisms may give theoretical basis for the choice of the
optimal scheme and precise treatment in the experiment.
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