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Abstract.
BACKGROUND: The risk factors of hypertensive disorders in pregnancy (HDP) could be summarized into three categories:
clinical epidemiological factors, hemodynamic factors and biochemical factors.
OBJECTIVE: To establish models for early prediction and intervention of HDP.
METHODS: This study used the three types of risk factors and support vector machine (SVM) to establish prediction models of
HDP at different gestational weeks.
RESULTS: The average accuracy of the model was gradually increased when the pregnancy progressed, especially in the late
pregnancy 28–34 weeks and > 35 weeks, it reached more than 92%.
CONCLUSION: Multi-risk factors combined with dynamic gestational weeks’ prediction of HDP based on machine learning
was superior to static and single-class conventional prediction methods. Multiple continuous tests could be performed from early
pregnancy to late pregnancy.
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1. Introduction

Hypertensive disorders in pregnancy (HDP) has been a major cause of increased morbidity and mortality
among pregnant women and perinatal infants [1]. There are various risk factors of HDP, mainly related
to clinical epidemiology, hemodynamics and biochemistry [2–5]. Using epidemiological factors alone
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to predict HDP, the detection rate was only about 30%. Studies have shown that maternal factors and
uterine artery Doppler were better than maternal factors alone in predicting early-onset preeclampsia [6].
A joint assessment of multiple risk factors is needed. In order to improve the prediction rate, researchers
have carried out a variety of combinations of different biomarkers. Myers et al. used maternal historical
medical information and biochemical information placental growth factor (PlGF), soluble endoglin (sEng)
and soluble fms-like tyrosine kinase-1 (sFlt-1) to establish a joint prediction model. The sensitivity of
the model to predict pre-eclampsia was 45% at 14–16 weeks of gestation when the false positive rate
was 5% [7]. Jaana et al. also used maternal characteristics and combined screening markers to develop a
predictive risk model for early-onset pre-eclampsia. The best detection rate was 47% [8].

Current studies have focused on exploring changes in static parameters at a specific time during the first
and second trimesters of pregnancy, and prospectively assessing the risk of HDP [9–12]. However, all
kinds of static and single-class conventional prediction methods did not achieve very good model accuracy
and effect. Some prediction models had relatively high detection rates for early-onset preeclampsia.
Nevertheless, the detection rate was not ideal for late-onset preeclampsia or gestational hypertension.

With the extensive establishment of the hospital database, data mining and machine learning are
gradually applied to clinical research. HDP prediction models at different gestational weeks could
be established by effectively applying hospital medical record data and combining machine learning
algorithms.

2. Materials and methods

2.1. Subjects and specimens

In this study, the whole gestation period was divided into five stages: pregnancy 6 13 weeks, pregnancy
14–20 weeks, pregnancy 21–27 weeks, pregnancy 28–34 weeks, pregnancy > 35 weeks [13]. The subjects
of this study were 507 pregnant women at the Beijing Obstetrics and Gynecology Hospital from 2006 to
2008, and 183 pregnant women at the Beijing Haidian Maternal and Children Health Hospital from 2015
to 2016.

The inclusion criteria were: (a) Pregnant women without chronic hypertension, heart disease, anemia
or other chronic diseases; (b) Pregnant women without long-term oral drugs; (c) No fetal malformation.

From the first maternity examination of pregnant women, the radial artery pulse wave waveform of
each pregnant woman who went to the hospital for prenatal examination was collected and tracked. After
the delivery, according to the final diagnosis of doctors, the subjects were divided into the HDP group or
normal group.

Retrospective methods were used to collect the maternal medical records of pregnant women at different
gestational weeks, including outpatient medical records, admission records, discharge records and delivery
records. The demographic data of pregnant women, blood routine and biochemical examination during
pregnancy were collected. The basic information of the pregnant women is shown in Table 1.

As shown in Table 2, this study selected easily accessible clinical predictors, which were all high-risk
factors for HDP with statistical differences. Most of the clinical epidemiological parameters were obtained
by prenatal examination. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) of pregnant
women was obtained from prenatal examination data at various gestational weeks. The characteristic
parameters of pulse wave were obtained by detecting the pulse wave of radial artery. Radial artery
pulse wave detection at the Beijing Obstetrics and Gynecology Hospital was obtained by MP HDP
detection instrument developed by Beijing Yes Medical Devices Co. Ltd. The eight-channel PowerLab
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Table 1
Basic information of the pregnant women

Parameters HDP group Normal group P

Number 300 390 –
Detection times 561 1102 –
Age 29.9 ± 4.2 29.6 ± 3.5 0.37
Height (cm) 162.1 ± 5.2 162.2 ± 5.1 0.93
Pre-pregnancy weight (kg) 62.9 ± 12.1 55.1 ± 7.6 0.00
Note: P < 0.05 has significant difference.

Table 2
Risk factors of HDP

Type Risk factors
Clinical epidemiological factors Pre-pregnancy BMI, pregnant BMI, a multiple pregnancy, history of spontaneous abortion,

history of HDP.
Hemodynamic factors SBP, DBP, PP, MAP, Waveform Area Parameters, CI, TPR.
Biochemical factors Platelet, Hematocrit, MPV, Cr, UA.

Notes: BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure. MAP, mean
arterial pressure; CI, Cardiac output index; TPR, Total peripheral resistance; MPV, Mean platelet volume; Cr, Creatinine; UA,
Uric acid. Between the HDP group and normal group, P values of all risk factors were less than 0.05. P < 0.05 has significant
difference.

data acquisition system, LabChart 8 software and strain gauge pressure sensor were used to collect radial
artery pulse wave at the Beijing Haidian Maternal and Child Health Hospital. Biochemical parameters
were obtained by blood routine examination and biochemical examination. SPSS 23.0 software was used
for statistical basic analysis and support vector machine (SVM) was used to construct the predictive
model of HDP in MATLAB 2018a.

2.2. Statistical analyses

In 1995, Vapnik and Cortes proposed a new pattern recognition algorithm: support vector machine
(SVM). SVM has special advantages in pattern recognition of small samples, non-linear and high-
dimensional data [14]. It can find the best compromise between the complexity of the model and the
learning ability to obtain the best generalization ability in the case of limited training data. Compared
with other traditional pattern recognition methods, SVM requires relatively less sample data.

The algorithm used was non-linear SVM. Input: Training Data Set T = {(x1, y1) , (x2, y2) , . . . , (xN ,
yN )}, where xi ∈ Rn, yi ∈ {−1,+1}, i = 1, 2, . . . , N ; Output: classification decision function.

(a) Selecting appropriate kernel function K (x, z) and parameter C to construct and solve optimization
problems. min

α

1
2

∑N
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(b) Selecting a positive component 0 < α∗

j < C of α∗ and calculate b∗ = yj −
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i=1 α
∗
i yiK (xi · xj).

(c) Constructing decision function: f (x) = sign
(∑N

i=1 α
∗
i yiK (x · xi) + b∗

)
.

In this study, Libsvm toolbox developed by Prof. Lin Chih-Jen of National Taiwan University was
selected as a pattern recognition classifier. Using RBF kernel function to solve the multi-classification
problem. At different gestational weeks, the risk factors of HDP were selected as input of the SVM
classifier. After 5-fold cross-validation of the training sets, the effect of models at all gestational weeks
was obtained.
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Table 3
Basic information of the selected pregnant women

Parameters HDP group Normal group P

Number 300 390 –
Detection times 300 390 –
Age 29.9 ± 4.2 29.6 ± 3.5 0.37
Height (cm) 162.1 ± 5.2 162.2 ± 5.1 0.93
Pre-pregnancy weight (kg) 62.9 ± 12.1 55.1 ± 7.6 0.00
Note: P < 0.05 has significant difference.

Table 4
Performance of prediction models for HDP with different types
of risk factors

Factors Training set AC-avg
E 75.10%
H 77.03%
B 78.76%
E + H 82.63%
E + B 83.98%
H + B 84.94%
E + H + B 87.64%

Notes: E, Epidemiology; H, Hemodynamics; B, Biochemistry.

Table 5
Training models and test results of each gestational week

Models Training set AC-avg
Pregnancy 6 13 weeks sub-model 80.73%
Pregnancy 14–20 weeks sub-model 81.93%
Pregnancy 21–27 weeks sub-model 84.42%
Pregnancy 28–34 weeks sub-model 92.10%
Pregnancy > 35 weeks sub-model 92.95%

3. Results

The total number of pregnant women included in this study was 690, who were divided into the HDP
group (300 women) and normal group (390 women). Detection times were randomly selected for each
woman during the different gestational weeks, as can be seen in Table 3.

There are two batches of data in the data collection process. Five hundred and seven subjects gave birth
at Beijing Obstetrics and Gynecology Hospital from 2006 to 2008 and 183 subjects gave birth at Beijing
Haidian Maternal and Children Health Hospital from 2015 to 2016. The ratio was 3 to 1. In Table 4, the
training data set which belonged to the first batch of data were cross-validated five times by combining
three kinds of risk factors. As shown in Table 4, the predictive value of these factors of HDP was explored.

As shown in Table 4, with the increase of risk factors of HDP, the predictive effect improved. In the five
sub-models provided in Table 1, 5-fold cross-validation of the training sets which randomly accounted
for 75% of the total number of each sub-model were carried out respectively (Table 5).

As shown in Table 5, the average accuracy of the model gradually increased when the pregnancy
progressed, and the overall accuracy was more than 80%. Especially in late pregnancy, the average
accuracy of 28-34 weeks and > 35 weeks models could reach more than 92%. The highest average
accuracy of the model without considering gestational weeks was only 87.64% (Table 4).
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4. Discussion

Nicolaides et al. established risk models based on maternal factors, uterine artery pulsation index, and
more at 11–13 weeks, 19–24 weeks, 30–34 weeks and 35–37 weeks [15–18]. Lim et al. recorded the
blood vessel activity factor and uterine artery pulsation index of pregnant women in the four stages of
11–14, 18–22, 28–32 and 34 weeks of pregnancy, and measured the central artery pressure of pregnant
women by radial artery pulse wave to explore the changes of arteriosclerosis [19]. Gómez et al. tracked
the uterine artery pulsation index at 11–41 weeks [20]. This study aimed to establish a reference range
of pulsation index based on gestational weeks. We furthermore aimed to accurately assess the risk of
HDP, which required comprehensive measurements of multiple risk factors for pregnant women at all
gestational weeks.

In this study, support vector machine (SVM) was used to establish the predictive model of HDP.
Combined prediction of epidemiology, hemodynamics and biochemistry was helpful to improve the
model accuracy, and the discriminant effect was better than that of single prediction. The prediction
accuracy of the model considering gestational weeks increased gradually with the progress of pregnancy,
which was better than the model without considering this factor.

5. Conclusion

Based on the literature, the risk factors of HDP are summarized as clinical epidemiological factors,
hemodynamic factors and biochemical factors. The dynamic risk assessment model of HDP by SVM was
established with the change of gestational weeks. Continuous testing could be carried out from early to
late pregnancy for early detection of risk and intervention. The predictive model proposed in this study
could be applied to the risk assessment of all kinds of HDP. In future studies, the model needs to be
refined according to different diseases.
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