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Abstract.

BACKGROUND: An important part of the rehabilitation process using exoskeleton robots has been the creation of a friendly
Human Robot Interaction (HRI) system.

OBJECTIVE: In order to combine SEMG signal into the HRI system, a SEMG-angle model based on Hidden Markov Model
(HMM) was put forward in this paper.

METHODS: Feature extraction as a critical issue of signal preprocessing was handled by Principal Component Analysis (PCA)
which realized signal data dimension reduction and solved the common problem of redundant features. A comparison study
was given to show the different performance of various EMG-angle model separately based on HMM, Back Propagation (BP)
neural network and Radial Basis Function (RBF) neural network.

RESULTS: The HMM modeling method which with lower calculation complexity can achieve a better modeling performance
(average accuracy 93.063%) compared with BP neural network (average accuracy 88.180%) and RBF neural network (average
accuracy 88.752%).

CONCLUSIONS: SEMG signals have some characteristic properties which is similar to a quasi-stationary filtered white noise
stochastic process, the structure of HMMs makes it ideally suited for classification and modeling SEMG signals, and the results
of this study show that it can achieve a better performance than the commonly used methods (BP and RBF).
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1. Introduction

In recent decades, an important part of the rehabilitation process using exoskeleton robots, has been
the creation of a friendly HRI system. More and more human physiological signal which can reflect
the person’s relevant movements and can be translated into robot commands has been introduced to the
interfaces [1]. The surface electromyogram (SEMG) signal as one of the easiest collected signals has
been widely used to predict the related parameters in human body movement. In this study, SEMG of
biceps and triceps was applied to predict the elbow angle. To realize successful SEMG signal classifica-
tion, recognition and modeling, three critical parts should be considered carefully: data pre-processing,
features extraction, and modeling methods [2,3]. Data used in this study has been filtered in collecting
process, therefore, feature extraction and modeling methods were the main aspects of the researches.
Feature extraction which was used to exact the meaningful information that contained in the signal at
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the same time it can remove the useless and unnecessary components. However, numerous studies of the
SEMG-angle model have utilized one or two features with insufficient information or a series of features
which contained lots of redundant information. In this paper, four features which can comprehensively
reflect the signal were selected to represent the SEMG [4]. Combining with the Principal Component
Analysis (PCA) method to remove the redundancy, successfully reduced the 8-dimensional feature ma-
trix to a low-dimensional matrix. Back Propagation (BP) neural network, Radial Basis Function (RBF)
neural network and Hidden Markov Model (HMM) were used to establish the SEMG-angle model. After
comparing the simulation results of the modeling methods, it was possible to determine that the HMM
modeling method can achieve a better modeling performance, with lower calculation complexity.

With respect to SEMG-joint angle/force model, this issue has been researched for several decades.
This work was inspired by many related researches. Reed et al. [5] established a squat exercise model
using LifeModeler biomechanics simulation software and optimizing the muscle parameters to find a
more closely matched physiologically observed activation patterns of the exercise using Monte Carlo
methods. They indicated that a reasonable model can cause some useful unintended consequences. Han
et al. [6] have integrated the forward dynamics of human joint movement into the general Hill-based
muscle model and expressed the SEMG-angle model as a state-space model. Moreover, substituted an
integral closed-loop prediction correction approach to estimate continuous joint movement in the origi-
nal “open-loop” form. To some extent, this improved method increased the accuracy of the model. The
methods [7-14] most commonly used for SEMG classification and modeling, extract features such as
EMG amplitude, RMS, autoregressive coefficients, waveform length etc. to represent the signal. Then
modeling the relationship between SEMG and joint forces, joint moments and joint angles or using algo-
rithms for instance artificial neural networks, Hidden Markov Model, neuro-fuzzy algorithm et al. to do
action recognition. Cao et al. [15] proposed a SEMG-force modeling. This paper studied the generation
process of muscle force and SEMG signal and established the model on the muscle motor unit level.
Different with conventional methods which involves feature extracting and classification algorithms, it
reflected the relationship between the EMG and joint movement on the aspect of signal generation prin-
ciple and signal production process which reflect the nature of EMG signal. Meattini et al. [16] present
an HRI system based on 8 fully differential EMG sensors which can acquire forearm’s muscles SEMG
signals that related to hand movement. This research combined the positive aspects of ML-based and
the regression-based approaches to predict multi-DOFs motion of hand. Li et al. [17] also proposed
the research of back propagation network which is utilized to identify the upper limb motion based on
SEMG.

Most of the above studies were about SEMG-motion/pattern prediction [17], which have some simi-
larities with the prediction of SEMG-joint angles. The aforementioned algorithms contain several com-
plex parameters to different extent which limit their accuracy improvement. HMM is a kind of doubly
stochastic process with a hidden sate sequence and observable data (observation status). Compared with
the common modeling methods, the HMM model considering about the regularity and uncertainty of
the SEMG at the same time. And it modeled from the point of view of probability which was more
similar to the characteristics of SEMG and joint angle. In this study, the proposed methods were applied
to estimate the elbow joint angle from the SEMG signals which were measured by surface electrodes
attached to the biceps and triceps. The inertial measurement units (IMU) were correspondingly placed
to the upper arm and forearm to measure and record the elbow joint angle. Since the SEMG signals
have some characteristic properties which is similar to a quasi-stationary filtered white noise stochastic
process, and the structure of HMMSs makes it ideally suited for statistically modeling SEMG signals [9].
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Fig. 1. Experimental setup and the schematic diagram of motion range.
2. EMG feature extraction and Principal Component Analysis (PCA)
2.1. SEMG acquisition experiment

Eight healthy volunteers have participated in the SEMG signal acquisition experiment: four males and
four females aged between 23-28 years old. The volunteers participated in the experiment underwent
three 30 s elbow flexion and extension. Experimental setup and the schematic diagram of motion range
were shown in Fig. 1. SEMG acquisition equipment is the FlexComp Infiniti System. The device detected
SEMG by connecting the electrodes, each electrode has 3 terminals: anode, cathode and ground, TT-USB
is used for data conversion, and the IMU were fixed on the forearm and upper arm to measure and record
the “output” which was the angle variation of the elbow flexion/extension. Two channels of SEMG were
collected and the SEMG sampling frequency of the biceps and triceps is 2048. The range of modeling
angle was —35° to 51°.

Take the subject 1 as an example, one set of SEMG experimental data is shown in Fig. 2. Where, (a) is
the biceps signal of subject 1, (b) is the triceps signal of subject 1. It can be seen in the figures that biceps
and triceps muscle in the antagonistic state in the elbow joint flexion/extension process.
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Fig. 2. Elbow joint signals of subject 1.

2.2. SEMG features extraction

Take a number every seven data in a same set of data and get a total of 8000 data. Applied a rectangular
window of length 3000 in the signal process and modeling utilized MATLAB software.

Usually, the extracted features of the SEMG signals mainly are time domain, frequency domain and
time-frequency or time-scale representation. Phinyomark et al. [4] extracted 37 SEMG features, and
compared their performance in EMG signal classification. The results presented that features in time-
domain showed better performance, therefore, mean absolute value (MAV), waveform length (WL),
variance of EMG (VAR) and root mean square (RMS) were selected to be the features in this study.

Feature = [MAVB, MAVT, WLB, WLT, VARB, VART, RMSB, RMST] (1)

Where, MVAB, WLB, VARB, RMSB are respectively the MAV, WLB, VARB, and RMSB of the
biceps, MVAT, WLT, VART, RMST are respectively the MAV, WLB, VARB, and RMSB of the triceps.

2.3. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) adopts an orthogonal transformation to transform a set of ob-
servations of possibly correlated variables into a set of linearly uncorrelated values of variables which
were called principal components. And the number of the principle components is less than or equal to
the number of original variables. The largest possible variance is the first principal component of PCA,
and each succeeding component in turn has the highest variance possible under the constraint that it is to
the preceding components. Although four features in time-domain were selected to represent the SEMG
of the biceps and triceps, an 8-dimension matrix still lead to a relatively large amount of calculation.

In the study, the PCA method was utilized to reduce the dimension of the Feature matrix (expression
(5)) which is an 8-dimension matrix. A lower dimension feature matrix was achieved after the analysis,
Fig. 3 shows the analysis result of PCA. It indicated that the 4-dimension, 3-dimension, 2-dimension,
1-dimension principal components respectively reflected the 8-dimension features almost completely
under different data analysis results. In Fig. 3a—d, x-axis represented the principal component num-
ber after the analysis; y-axis represented the percentage of information of each principle components,
equivalently, the information contained in each principal component accounts for the proportion of all
information. It can be seen that the result of the percentage of the 4 or 3 or 2 or 1 principle components
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Fig. 3. PCA analysis results.
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add together can almost completely represented the 8-dimendion features. Figure 4 shows the features
after PCA analysis, which corresponds to the PCA results of Fig. 3, and the Fig. 4a—d shows the princi-
pal components of the different sets of data after analysis, which respectively is a linear combination of

the old 8-dimension features.

3. BP model and RBF model of SEMG-angle

The model accuracy R,, was achieved as an average accuracy of the six sets of data, and the model
accuracy R, of each experiment was calculated as follows:

D,—D
R, = (1—M) x 100%
D,

1 12
Rav = E Zl Rai
1=

2

3)

Where, R, is the model accuracy of each experiment, D, is the predict angle value of model output,
D, is the actual angle value, R,,, is the average model accuracy.

3.1. SEMG-angle model of BP neural networks

Figure 5 shows the structure of BP network model, and the method was used to determine the
model parameters. The SEMG features of biceps and triceps was the input information which was a
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Table 1
The accuracy of BP model
Experiment 1 R, Experiment2 R, Experiment 3 R, BP Ru»
Subject 1 86.328% 88.141% 88.068% 88.180%
Subject 2 88.655% 89.663% 86.667%
Subject 3 87.121% 89.242% 88.339%
Subject 4 87.204% 86.621% 87.802%
Subject 5 88.163% 88.104% 87.321%
Subject 6 89.086% 89.972% 90.008%
Subject 7 87.399% 89.002% 88.511%
Subject 8 88.633% 88.001% 88.267%
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Fig. 4. Features after PCA analysis.

respectively entered into the BP network.

To avoid the excessive repeatability, take a set of four subjects’ modeling results for instructions.
Figure 6 shows the results of predict angle and actual angle based on BP model. After extracting the
features by applying a rectangular to the 8000 data points, each set has a total of 5000 data points.
Each set of data is divided into two parts, one for establishing the SEMG-angle and the other for angle

prediction.

The average accuracy of BP model was 88.180%, which is shown in Table 1. There are a total of 24
sets of test data with eight subjects, and three experiments per person. Where, R,, is the model accuracy

of each experiment, BP R,,, is the average accuracy of BP model.
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Fig. 6. SEMG-angle model of BP neural networks.
3.2. SEMG-angle model of RBF neural networks

Figure 7 shows the structure of RBF network model, the function applied between the input layer and
radial base artificial neural layer (hidden layer) was Gaussian function, and linear transformation was
applied between the output layer and radial base artificial neural layer (hidden layer).
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Fig. 8. SEMG-angle model of RBF neural networks.
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Table 2
The accuracy of RBF model

Experiment 1 R, Experiment2 R, Experiment3 R, RBF Ry,

Subject 1 88.684% 88.253% 87.892% 88.752%
Subject 2 89.021% 88.717% 88.545%
Subject 3 88.337% 88.700% 89.301%
Subject 4 88.986% 89.019% 89.113%
Subject 5 89.106% 87.998% 88.529%
Subject 6 88.667% 88.693% 89.009%
Subject 7 88.233% 88.958% 88.771%
Subject 8 89.215% 89.097% 89.200%

Fig. 9. Structure of Hidden Markov Model.

The predict results of predict angle and actual angle based on RBF model were shown in Fig. 8. Data
used in RBF neural networks modeling is the same as the BP neural network. 5000 data points for each
set of experiment are divided into two parts, one for establishing the SEMG-angle and the other for angle
prediction.

The RBF model average accuracy was 88.752%, which is shown in Table 2. There are a total of eight
subjects, three experiments per person. Where, R, is the model accuracy of each experimental data for
the corresponding subject. RBF R, is the average accuracy of RBF model.

4. HMM of SEMG-angle

The structure of Hidden Markov Model (HMM) is shown in Fig. 9. HMM is a statistical model, used
to describe a hidden unknown parameters of the Markov process. The state in HMM is invisible, and
what can be seen is the probability function of the observed value and the state. The HMM model is a
double stochastic process in which the observed value is a stochastic process with respect to the state,
and the state is a stochastic process with respect to time.

There are N states in Markov process. The transfer of each state only depends on the states before it,
this process is known as a model of order NV, where NV is the influence on number of the transfer state.
There is a transfer probability of each state. Markov chain is a column which includes random variables
X1, ..., Xy. The value of Xy is the state at time N, so the random variables are called state sequence.
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Fig. 10. SEMG-angle model of HMM.

The probability of transition from one state to another state is called state transition probability a;;, all the
probabilities are represented by the state transition matrix. B is the state observation probability matrix,
where b; (0) is the observation probability density function for state i. The observed state sequence and
the hidden state sequence is associated probability.

ail; a2 ... Q1N
A— 0.21 0‘22 aQ'N “
anN1 aN2 ... GNN
aij =P(q = jlg—1=1) 1<i,j<N )
where, a;; > 0,Vi, 7, Zjvzl aij = 1,Yi.
B = [b1(0) by (0) by (0)] ©

HMM is based on three assumptions: the state constitutes the first order Markov chain; state has
nothing to do with the specific time; the output is only relevant to the current state. HMM can solve the
problem of randomly generating surface events by potential causes.

Because of the serial number representation of the HMM model, the training and testing data were
numbered accordingly before entered into the model. The training data were applied to establish the
HMM model and identify the state transition probability a;; and B. The results of predict angle and
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Table 3
The accuracy of HMM model

Experiment 1 R, Experiment2 R, Experiment3 R, HMM R,,

Subject 1 90.802% 93.267% 93.159% 93.063%
Subject 2 93.222% 92.884% 92.467%
Subject 3 94.011% 93.977% 92.852%
Subject 4 92.993% 93.991% 93.878%
Subject 5 93.156% 91.898% 93.013%
Subject 6 93.211% 92.966% 93.257%
Subject 7 92.989% 93.051% 93.244%
Subject 8 93.111% 93.200% 92.907%
Table 4
Modeling results comparison of HMM BP and RBF neural networks
Modeling principles Average Offline Structure Others
accuracy  modeling
time
HMM  Probability problem of 93.063% 3-5s Discrete state, the input  Each state depends on the
stochastic process and output are previous state and the
statistical characteristics probabilistic transition probability
BP Solve the nonlinear 88.180% 1.5-3s 3 layers or more, local The activation function is the
mapping relationship optimum S function, and the learning
rate is fixed
RBF Solve the nonlinear 88.752% 5-8s 3 layers, global The activation function is a
mapping relationship approximation Gaussian function, and the

generalization ability is better
than BP network

actual angle based on the HMM model were shown in Fig. 10. Similarly, the training and testing data
used in HMM model are the same as the above two methods.

HMM model average accuracy can reach about 93.063% which is shown in Table 3. Where, R, is
the model accuracy of each experimental data for the corresponding subject. HMM R,,, is the average
accuracy of HMM model.

5. Discussion and conclusion

As it was mentioned above, HMM model accuracy of SEMG-angle achieved an average value of
93.063%, and it exceeded the BP method (88.180%) and RBF method (88.752%) applied before. A
comparison table was given to show the different performance of various EMG-angle model separately
based on BP, RBF and HMM model. The results were shown in Table 4. It can be seen in Table 4: all
three methods can be used to solve the nonlinear relationship modeling, BP network structure is simple
when solving this modeling problem, and has the similar performance compared with RBF model. Both
of the neural network can achieve a good prediction at the beginning, however the result was not very
stable with the increase of the data number. BP network training results can easily be limited to the local
minimum, while RBF can be globally approximated. Nevertheless, the performance of HMM model was
relatively stable and the predict angle with HMM model were closer to the actual elbow joint angle.

HMM method is different from neural network in principle, and it is suitable for solving the probability
mapping relationship between input and output of double random process. To a certain extent, HMM
method can be seen as a layer 2 network. The hidden layer and the output layer are visible, there is
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a state transition probability between each state, and there is a visible layer state probability observed
between the hidden layer and the output visible layer due to the hidden layer state. Because of the
inherent characteristic properties that current results and states are biased toward the previous results
and states in HMM method, the method can eliminate spurious misclassification and modeling [10]. The
application of HMM was mainly involved pattern recognition, and few studies about model based on
this method. In consideration of the similarity about pattern recognition and SEMG-angle modeling, an
SEMG-angle model based on HMM was proposed in this study.

The HMM training process developed an angle library and it can be built offline. The modeling and
training time of HMM method with fewer calculations and it is computationally comparable to BP
and RBF method, and also the HMM method proposes a massive computational savings on testing time
compared to BP and RBF method. The low computational overhead associated with HMM model makes
it is possible to predict the continuous angle.

In order to improve the accuracy of modeling prediction, we will conduct in-depth research on SEMG
signals with the study of different characteristics of SEMG which attempt to uncover the deeper relation-
ship between SEMG and joint angles. Additional work about the research on SEMG at the same joint
angles, combined some new algorithms to improve the accuracy of modeling prediction and real-time
prediction of joint angle in HRI for rehabilitation exoskeleton system will be our future work.
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