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Abstract.

BACKGROUND: Wet age-related macular degeneration (Wet AMD) has been treated clinically by intravitreal injection of
bevacizumab, which is a kind of the anti-VEGF antibody drug. Nevertheless, because of the short half-life and frequent injec-
tions, the use of this treatment is limited.

OBJECTIVE: To confirm whether mPEG-PLGA-BOX can be considered as a VEGF drug delivery system to inhibit retinal
angiogenesis.

METHODS: A thermo-responsive hydrogel of methoxy-poly (ethylene glycol)-block-poly (lactic-co-glycolic acid) (mPEG-
PLGA-BOX) was synthesized. The thermo-responsive hydrogel mPEG-PLGA-BOX was able to have sol-gel phase transition
upon stimulation by the body temperature with improved biocompatibility and biodegradation. The bevacizumab released from
mPEG-PLGA-BOX inhibited RF/6A cells according to a JC-1 assay, which indicated that the released bevacizumab was active
to be able to suppress the growth of new blood vessels. In an animal study, retinal laser photocoagulation was performed to
induce angiogenesis in the eyes of Rex rabbits using an 810-mm laser.

RESULTS: The retina was penetrated when the laser power was more than 500 mW and the exposure time was more than
500 ms. New blood vessels were created at the 28th day after retinal laser photocoagulation. At this time, intravitreal 0.05-mL
injections of mPEG-PLGA-BOX (bevacizumab) solution were administered. The bevacizumab released from mPEG-PLGA-
BOX (bevacizumab) solution suppressed the angiogenesis. In an in vivo study, the histomorphology of the rabbit retina also
indicated that mPEG-PLGA-BOX after intravitreal injection is not toxic to the rabbit retina.

CONCLUSIONS: Bevacizumab released from mPEG-PLGA-BOX (bevacizumab) solution suppressed angiogenesis, and
mPEG-PLGA-BOX can be considered as a novel thermo-responsive hydrogel with potential as a gelling carrier for extended
bevacizumab drug release to treat intraocular neovascular diseases.
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1. Introduction

The exudative form of AMD (wet AMD) is caused by an increase of vascular endothelium growth
factor (VEGF). Among elderly people in developed countries, irreversible vision loss (even blindness)
is primarily caused by AMD [1,2]. In the past decade, intravitreal injections of anti-VEGF agents have
been an effective main clinical treatment that is widely used for neovascular AMD. Such agents include
bevacizumab and ranibizumab [3-5].

Bevacizumab must be stored at temperatures of 2 to 8°C and kept away from light [6]. The activity
of anti-VEGEF in bevacizumab may degrade gradually due to the body temperature after intravitreal in-
jections and even when stored at 4°C [7]. The anti VEGF method to treat AMD is limited due to the
degradation of anti-VEGF activity at body temperature, which may shorten the half-life of bevacizumab.
Because of the very short half-life (4.25 days) [8], the major concern of anti-VEGF drugs for treating
neovascular AMD is frequent intravitreal injections [9]. The development of an effective drug carrier to
make bevacizumab delivery long lasting and less invasive could enhance a safer and more effective clin-
ical application in the current therapy for wet AMD and other neovascular retinal disorders. Swellable
polymeric nanomaterials such as nanogels and liposomes have been widely investigated as carriers for
drug delivery systems and are widely applied in medicine [10-12].

Biodegradable thermo-sensitive polymers that have sol-gel-sol transition characteristics with increas-
ing temperature have been widely studied for drug delivery [13]. These polymers have several advan-
tages compared to other biodegradable polymers [14,15], such as high drug-encapsulation efficiency,
longer period of drug release, and easy preparation. Appropriate sol-gel transition behavior is requested
in an ideal biodegradable thermo-sensitive hydrogel for drug delivery, which means an ideal biodegrad-
able thermo-sensitive must be in a solution phase at room temperature and in a gel phase at body tem-
perature.

Since 2012, an amphiphilic and biodegradable thermo-sensitive PEOz-PCL-PEOz triblock copolymer
has been applied to carrier and release bevacizumab in the intravitreal injections [16]. In 2014, another
amphiphilic thermo-sensitive nanogel was used as a drug delivery system to carry bevacizumab for
intravitreal injections. In our previous research, we have confirmed that bevacizumab is captured in
the thermo-sensitive hydrogel mPEG-PLGA-BOX when the operation temperature is above the lower
critical solution temperature (LCST). We also conformed bevacizumab is released after the intravitreal
injection [17]. mPEG-PLGA-BOX was proven to be a suitable thermo-sensitive nanogel system. The
bioactivity of bevacizumab was also evaluated upon release using the human umbilical vein endothelial
cells and the rhesus choroids-retina endothelial cell line. In an in vitro study in 2015, the release rate of
bevacizumab in mPEG-PLGA-BOX was also confirmed [18].

Poly (-ethylene glycol) diacrylate hydrogels (PEGDA) can be designed to provide exhibit patterned
strain and anisotropic structures under mechanical loading. PEGDA hydrogels with photolithographic
patterning techniques and varying polymer chain length were used to render substrates with tunable
mechanical properties and spatially patterned. PEGDA can also be applied to study the cell response to
substrate rigidity in two and even three dimensions [19]. The purpose of this study is to find out the effect
of angiogenesis inhibition for bevacizumab released from mPEG-PLGA-BOX. This was done through
an in vitro study in which rhesus choroid-retina endothelial cells and human fibroblasts were cultured in
PEGDA. The apoptosis of the rhesus choroids-retina endothelial cells was examined using a JC-1 assay.
An in vivo animal study was also done to investigate whether the released bevacizumab still suppressed
angiogenesis.
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Scheme 1. Synthesis scheme of mPEG-PLGA-BOX.

2. Materials and methods
2.1. mPEG-PLGA-BOX diblock copolymer preparation

A thermo-responsive hydrogel of methoxy-poly (ethylene glycol)-block-poly (lactic-co-glycolic acid)
(mPEG-PLGA-BOX) was synthesized through three steps (Scheme 1). For the first step, mPEG solu-
tion was mixed with glycolide (GA), D, L-lactide (LA), and 0.5 mL of a 0.1 M solution of tin (II) 2-
ethylhexanoate in dried toluene under nitrogen at room temperature. The reaction of copolymer mPEG-
PLGA proceeded at the temperature 160°C for 9 hours. For the second step, the mPEG-PLGA was
dissolved in dimethyl sulfoxide (DMSO). The further dialyzed was performed for purification at the
temperature 4°C for 7 days. Then with lyophilization for 2 to 3 days after dialysis, the mPEG-PLGA
was dried.

DMSO (200 mL) and the copolymer mPEG-PLGA were put into a three-neck reactor with mechanical
stirring and distilled to a final volume of 90 mL. The mPEG-PLGA solution was mixed with succine
anhydride (SA) under nitrogen at room temperature. The reaction of mPEG-PLGA-SA proceeded at
the temperature 180°C for 3 hours. For the final step, BOX (2, 2’-Bis (2-oxazoline)) was added to a
reactor as a linker. The temperature for the reactor was 180°C for 6 hours. The resulting copolymer
mPEG-PLGA-BOX was dialyzed for purification for 4 to 5 days at the temperature 4°C. Then with
lyophilization for 7 days, the mPEG-PLGA-BOX was dried.

2.2. Preparation of extracts of mPEG-PLGA-BOX (bevacizumab) solution

On day 1, with a 0.22-mm filter, 1 mL 50 wt% mPEG-PLGA-BOX hydrogel was filtered for steriliza-
tion. Next, 1 mL 50 wt% mPEG-PLGA-BOX aqueous solutions was blended with 1 mL bevacizumab
solution (25 mg/mL) (1:1 v/v ratio) to obtain 2 mL mPEG-PLGA-BOX (bevacizumab) solution. The
final concentration for mPEG-PLGA-BOX hydrogel was 25 wt%. The final concentration for beva-
cizumab was 12.5 mg/mL.
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The mPEG-PLGA-BOX (bevacizumab) solution was then shaken at the temperature 4°C for 5 minutes
to homogenize it, and 1 mL mPEG-PLGA-BOX (bevacizumab) solution was subsequently added to a
10-mL vial which contains a flat-bottomed tube. Next, the 1 mL solution was formed into a hydrogel
by putting the vial into the thermostatic water bath at the temperature 37°C under mild agitation for
5 minutes, and then 4 mL. PBS was added into the vial. The PBS media was replaced with fresh media
every day during the first two weeks. Similarly, the PBS media was replaced with fresh media every two
days during the 3" to 6 week. The collected PBS media were called the extracts of the mPEG-PLGA-
BOX hydrogel. The extract contained the released bevacizumab. Via a BIO-RAD 500-0006 kit (Bio-Rad
Labs, Richmond, CA), the concentration of released bevacizumab in the extracts was measured.

2.3. RF/6A cells in PEGDA hydrogel

Next, 80 mg of PEGDA (3400 Da; Nektar Therapeutics, Huntsville, Al) and 0.1 wt% photoinitiator
(Irgacure 2959; Ciba, Tarrytown, New York) was added into 20 mg sterile PBS to prepare as 80 wt%
PEGDA hydrogel solution. To prepare PRP-PEGDA hydrogel, 100 mg of platelet-rich plasma (PRP) was
added to 100 mg of 80 wt% PEGDA hydrogel solution. The final concentration of PRP-PEGDA hydrogel
was 40 wt%. Rhesus choroids-retina endothelial cells (RF/6A), human fibroblasts (HS68) (RF/6A:HS68
=4:1), and VEGF were added to the 40 wt% PRP-PEGDA hydrogel. Finally, the PRP-PEGDA hydrogel
contained a total of 1.5 x 107 cells/mL of RF/6A and HS68, as well as 10 ng/mL of VEGFE.

For in vitro culture, 170 pL. of PRP-PEGDA hydrogel containing RF/6A cells, HS68, and VEGF were
put into a disk-shaped mold. Then, photopolymerization was then carried out with 365-nm UV light
with 300 mW of power for 90 sec to generate a cell-polymer cup (PRP-PEGDA-RF/6A-HS68). For 2
weeks, the cup was incubated in the 24 well culture plate.

2.4. Viability assay

By using a L-3224 kit (Molecular Probes, Eugene, Ore), the cell viability was determined to confirm
that the cell-polymer cups were non-toxic to RF/6A cells. The cell-polymer cups (PRP-PEGDA-RF/6A-
HS68) were washed 4 to 5 times by using PBS, and then all samples were stained with a 500 ml reagent
which consisted of 4 uM calcein acetoxymethyl, 2 uM of ethidium homodimer-1, and PBS. After in-
cubating at the temperature 37°C for 45 minutes, all samples were observed under a confocal laser
scanning microscope (TCS SP2; Leica Microsystems, Wetzlar, Germany).

2.5. Cell apoptosis

By using JC-1 Mitochondrial Membrane Potential Assay Kit (Cayman Chemical Company, Ann Ar-
bor, Michigan, USA), an angiogenesis assay was used to investigate whether the released bevacizumab
had the effect for angiogenesis inhibition. The samples of cell-polymer cups (PRP-PEGDA-RF/6A-
HS68) were incubated in the 24 well culture plate for two weeks, and then the medium was removed.
Next, the samples were incubated for 24 hours with new culture media containing different additives.
There were 5 different types of media: (a) normal medium, (b) extract with bevacizumab released on
4™ day, (c) extract with bevacizumab released on 12" day, (d) and medium with free-bevacizumab
(12.5 mg/mL of bevacizumab). In media (b) and (c), the extract from the 25 wt% mPEG-PLGA-BOX
(bevacizumab) solution was mixed with normal medium (1:1 volume). In medium (d), bevacizumab
was mixed with normal medium (1:1 volume). After incubation for 24 hours, the samples were washed
with PBS. The samples were incubated with 500 pL JC-1 stock solution (3 mM JC-1 in DMSO) at the
temperature 37° for 25 minutes. The samples were then examined using fluorescence microscopy.
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2.6. Laser-induced angiogenesis in the retina in vivo

A study was conducted on animals to create blood vessels on the retina. All animal study for the use
of Rex rabbits in ophthalmic and vision research complied with the provisions from the Fu Jen Catholic
University Institutional Animal Care and Use Committees. The study used 11 pigmented Rex rabbits.
An intramuscular injection of xylazine (3 mg/kg) and ketamine (50 mg/kg) was used for anesthesia.

An 810-mm laser system (Iridex, Mountain View, CA) with a panfundus contact lens was used for
retinal laser photocoagulation on the right eyes of the rabbits. An experienced retina specialist performed
all operations carefully to make laser lesions on the nonvascularized portion of the retina using the
laser (500-700-ms exposure time, 200-um spots, 300-500-mW power settings). The rabbits’ retinas
were funduscopically examined every 7 days with a direct ophthalmoscope (Horus Eye-Fundus Camera,
Medimaging Integrated Solution Inc., Taiwan).

2.7. Intravitreal injection of mPEG-PLGA-BOX (bevacizumab) solution

The rabbits were divided into 2 groups at 4 weeks after laser photocoagulation. In group I, intravitreal
injections of 0.05 mL of mPEG-PLGA-BOX (bevacizumab) solution were administered in both eyes
using a 27-gauge needle. Under an operating microscope, the needle was injected toward the optic disc
through a wound located 2.5 mm posterior to the limbus to a depth by 1 mm. The rabbit’s retinas
were funduscopically examined every 7 days with a direct ophthalmoscope (Horus Eye-Fundus Camera,
Medimaging Integrated Solution Inc., Taiwan). In group II, the rabbits received intravitreal injections in
both eyes of 0.05 mL of sterile balanced salt solution (BSS) (Alcon, Fort Worth, Texas, USA).

2.8. Histopathology

At 21 and 42 days after the intravitreal injections, the rabbits in groups II and III were euthanized. Rex
rabbit’s eyes were enucleated. The eyes were fixed with a fixative solution of 10% paraformaldehyde
for three days. The RPE-choroid complex and retina were gingerly isolated. The sectioned pieces were
embedded in paraffin. To hydrate and deparaffinize, the sectioned pieces were immersed in xylene and
graded alcohol solutions. Half of the sectioned pieces were fixed in 10% formalin with cacodylate buffer.
Then the sectioned pieces were embedded in paraffin wax. The sectioned pieces were stained with hema-
toxylin and eosin for light microscopy observations. All sectioned pieces were observed independently
using microscopes.

3. Results
3.1. Cytotoxicity of the cell-polymer cup (PRP-PEGDA-RH/6A-HS68)

Cell-polymer cups (PRP-PEGDA-RH/6A-HS68) were prepared by photopolymerization with 365-
nm ultraviolet light at 300 mW of power for 90 sec (Fig. 1). After the cell-polymer cups (PRP-PEGDA-
RH/6A-HS68) were cultured in the 24 well culture plate for two weeks, a live/dead viability/cytotoxicity
kit, with which HS68 and RF/6A cells were stained, is used to determine the cell viability of the RF/6A
cells. Figure 2A (20X) and B (40X) show fluorescence images of the cells from a confocal laser scanning
microscope. Live cells showed green fluorescence, while dead cells showed red fluorescence. The results
show that the majority of the HS68 and RF/6A cells were green, indicating that the cell-polymer cups
(PRP-PEGDA-RH/6A-HS68) were non-toxic for both types of cells.
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Fig. 2. Live/dead cell viability of HS68 and RF/6A cells indicated that the cell-polymer cups (PRP-PEGDA-RH/6A-HS68)
were non-toxic for both HS68 and RF/6A cells.

3.2. Cell apoptosis

The BIO-RAD 500-0006 kit was used to determine the concentration of the released bevacizumab. The
concentrations of released bevacizumab were 0.74 mg/mL and 0.82 mg/mL in the 4" day and 12" day
extracts, respectively. Figure 3 shows the resulting fluorescence images for the HS68 and RF/6A cells
incubated with free-bevacizumab medium (25 mg/mL of bevacizumab) and the released bevacizumab
in the JC-1 assay. The majority of the HS68 and RF/6A cells was red in both the free-bevacizumab and
released bevacizumab samples, which indicated that both free-bevacizumab and released bevacizumab
suppressed the growth of HS68 and RF/6A cells.

RF/6A cell line is the most analogous cell to human choroidal endothelial cells, since the RF/6A cell
line comprises both choroidal and retinal endothelial cells and is from rhesus monkeys. The released
bevacizumab was able to suppress HS68 and RF/6A cells, which indicated the released bevacizumab
was active to be able to suppress the growth of new blood vessels.

3.3. Laser-induced angiogenesis in the retina and angiogenesis inhibition assay in vivo

An 810-mm laser system with a panfundus contact lens was used for retinal laser photocoagulation on
the right eyes of the rabbits. Figure 4A shows the fundus before laser treatments, and Fig. 4B shows the
results after laser photocoagulation from fundus observations with a direct ophthalmoscope. Four laser
spots were created on the retina. The laser exposure time and power setting for the four spots are shown
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Table 1
Settings of retinal laser photocoagulation

Power (mW)  Exposure time (ms)

Spot A 500 500
Spot B 300 500
Spot C 500 700
Spot D 400 700

Fig. 3. Live/dead cell viability of HS68 and RF/6A cells in (a) Normal medium, (b) 4th day extract of released bevacizumab,
(c) 12th day extract of released bevacizumab, and (d) Medium with free-bevacizumab (12.5 mg/mL of bevacizumab). After
staining with the JC-1 assay, live cells showed green fluorescence and dead cells showed red fluorescence color.

Fig. 4. Fundus images of the Rex rabbit: (A) before laser photocoagulation and (B) after laser photocoagulation. Four spots
were created by laser light.

in Table 1. Bleeding at spots A and C indicated that the retina was penetrated by laser light, but the laser
light did not penetrate the retina at spots B and D. The results show that the retina was penetrated when
the laser power was greater or equal to 500 mW and the exposure time was greater or equal to 500 ms.

The fundus image showed that a blood vessel was created at the 28" day after retinal laser photocoag-
ulation (Fig. SA). The branches of the vessels were named as branch 1, branch 2, and branch 3. On the
same day, intravitreal injections of 0.05 mL of mPEG-PLGA-BOX (bevacizumab) solution were admin-
istered in right eye (Fig. 6A). Figure 6B shows that the color of the mPEG-PLGA-BOX (bevacizumab)
solution became white and was located in the upper portion of the rabbit’s eye.

At the 7" day after intravitreal injections, the fundus image showed that branch 1 was obviously
shorter (Fig. 5B). Figure 5C shows that branch 2 tended to shrink at the 14" day after the injections.
Figure 5D and E show the fundus images for the 21% day and 28" day after the injections. All branches
tended to shrink. At the 35" day after injections, all branches were hard to find in the fundus image
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Fig. 5. Fundus images: (A) 28th day after retinal laser photocoagulation, (B) 7th day after intravitreal injections, (C) 7th day
after intravitreal injections, (D) 14th day after intravitreal Injections, (E) 21th day after intravitreal Injections, and (F) 28th day
after intravitreal injections.

(Fig. 5F). Hence, the released bevacizumab obviously suppressed the growth of blood vessels, presum-
ably because it still maintained a high anti-angiogenic effect.

3.4. Histopathology

Figure 6A and B show the histopathology results for the untreated group (intravitreal injections of 0.05
mL of sterile balanced salt solution) and the treated group (intravitreal injections of 0.05 mL of mPEG-
PLGA-BOX (bevacizumab) solution). The H&E staining confirmed the inner neuroretinal layer and
outer photoreceptor were normal and there were no differences in the both groups. Also, no infiltration
of inflammatory cells was found for both groups, which means the intravitreal injections of 0.05 mL
mPEG-PLGA-BOX (bevacizumab) solution did not harm the ocular tissue, and the degradation products
of mPEG-PLGA-BOX were non-toxic to the ocular tissue.
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Fig. 6. (A) Intravitreal injection of mPEG-PLGA-BOX (bevacizumab) solution at superior position. (B) mPEG-PLGA-BOX
(bevacizumab) solution became white and resided at the superior position of the rabbit’s eye.

Fig. 7. Histology results: (A) untreated group (0.05 mL sterile balanced salt solution for intravitreal injections) and (B) treated
group (05 mL mPEG-PLGA-BOX (bevacizumab) solution for intravitreal injections).

4. Discussion

Bevacizumab is a recombinant humanized monoclonal IgG1 antibody that can inhibit human VEGF.
The intravitreal injection of bevacizumab is widely and effectively used to treat neovascular AMD [20].
Although intravitreal therapy with bevacizumab is an extremely optimistic therapy, the main disadvan-
tage is that the intravitreal injection must be repeatedly done every 4 to 6 weeks because the anti-VEGF
activity may degrade minimally over time at body temperature and even during storage at 4°C [21].
There is no alternative method for the delivery of bevacizumab into the eye to protect its anti-VEGF
activity. Therefore, there is a quite desire and demand to develop an effective drug carrier to make beva-
cizumab delivery long lasting and less invasive compared to the current clinical method.

Hu et al. [18] developed thermo-responsive mPEG-PLGA-BOX hydrogels, which is characterized
of appropriate sol-gel transition behavior and is able to carry and release bevacizumab. This hydrogel
was proven to be an extremely optimistic minimally invasive drug carrier for intravitreal injection to
prolong drug delivery. In an in vitro study, the release rate of bevacizumab entrapped in the hydrogel
was also confirmed. The release profiles indicated that mPEG-PLGA-BOX hydrogels is characterized
of sustaining release for approximately 30 days.

Hu et al. [17] also proved that the mPEG-PLGA-BOX hydrogel is not toxic to the rabbit’s retina in
a in vivo study and that, during the release process, the bioactivity of released bevacizumab didn’t loss.
Furthermore, the released bevacizumab was able to suppress the growth of retina epithelial cells from
Macaca mulatta and HUVEC. In our study, we confirmed that the bioactivity of released bevacizumab
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was maintained in the mPEG-PLGA-BOX hydrogel during the release process in vivo, and the released
bevacizumab was able to suppress the growth of blood vessels.

The outer retina and retina pigment epithelium (REP) may be injured after laser photocoagulation.
Ogata et al. [22] demonstrated the expression of VEGF and cytokines in photocoagulated RPE. Just
within 72 hours after laser photocoagulation in retina, VEGF was expressed. Similarly, Itaya et al. [23]
used RT-PCR, ELISA, and immunohistochemistry in vivo to confirm that the expression of VEGF was
found in murine choroid- retinal pigment epithelial complex and retina within 7 days after laser injury
in retina. The mRNA level of VEGF was confirmed to increase within 24 hours after retinal photocoag-
ulation, and the highest mRNA level of VEGF was observed within 2 days after laser photocoagulation.
Since the mRNA level correlated with the VEGF level, the evidences that VEGF level in retina is pro-
moted after laser photocoagulation is obvious. Similarly, in our study, we confirmed that blood vessels
in the retina of Rex rabbits grow from RPE-choroid within 4 weeks after laser injury.

In the past, a variety of retina diseases is treated by laser photocoagulation. Laser photocoagulation has
been an effective therapy for central retinal vein occlusion and diabetic retinopathy [24,25]. However,
our in vivo study showed that inappropriate laser energy during photocoagulation may induce some
unwanted complications, such as hemorrhage and choroidal neovascularization. Intravitreal injection of
bevacizumab has been proven to be a successful and achieving therapy to prevent the development of
CNV and to treat neovascular AMD since 2006 [26]. Since laser photocoagulation is proven to increase
VEGF levels and inappropriate laser photocoagulation is prone to induce complications, intravitreal
injection of bevacizumab is a better approach to treat CNV and neovascular AMD.

5. Conclusion

In this study, angiogenesis in retina of Rex rabbits was successfully created by laser photocoagulation
of using an 810-mm laser system. The results showed that the bevacizumab released from thermal-
responsive mPEG-PLGA-BOX hydrogel suppressed angiogenesis both in vivo and in vitro. The results
also proved that the mPEG-PLGA-BOX hydrogel had good cytocompatibility and no negative effect
on retinal tissue. The mPEG-PLGA-BOX hydrogel is proven to be an extremely optimistic intravitreal
injectable drug carrier for the delivery of bevacizumab.
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