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Abstract. Biomarker selection or feature selection from survival data is a topic of considerable interest. Recently various
survival analysis approaches for biomarker selection have been developed; however, there are growing challenges to currently
methods for handling high-dimensional and low-sample problem. We propose a novel Log-sum regularization estimator within
accelerated failure time (AFT) for predicting cancer patient survival time with a few biomarkers. This approach is implemented
in path seeking algorithm to speed up solving the Log-sum penalty. Additionally, the control parameter of Log-sum penalty
is modified by Bayesian information criterion (BIC). The results indicate that our proposed approach is able to achieve good
performance in both simulated and real datasets with other `1 type regularization methods for biomarker selection.
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1. Introduction

Biomarker selection or feature selection from survival data is a topic of considerable interest. The
regularization methods are group of feature selection methods that embed different penalized methods
in the learning procedure into a single process. In this way, the regularization methods could reduce
the overfitting problem. The `0-norm is a total number of non-zero elements in a vector, but it faces
the problem of combinatory optimization, i.e., `0-norm is too complex and almost impossible to solve.
Thus, alternative sparsity-promoting functions which are more computationally efficient in finding the
sparse solution are desirable. The most popular alternative is to replace the `0-norm with the `1-norm
(or Lasso) penalty function that is the least absolute shrinkage and selection operator [1]. There are also
some `1 type regularizations can also take place of `0-norm, like smoothly clipped absolute deviation
(or SCAD) [2], minimax concave penalty (or MCP) [3], group lasso [4]. Moreover, the general sparse
representation method is to solve a linear representation system with the `p-norm minimization prob-
lem, especially p = 0.1, 1/2, 2/3 or 0.9 [5,6]. Recently, Candes et al. [7] proposed the Log-sum penalty
that approximated `0-norm much better than other penalties by reweighting the `1-norm of transformed
object. As shown in Fig. 1, these five states of art penalty methods satisfy properties of sparsity and con-
tinuity. Especially, the Log-sum penalty is sparser than other four penalty methods. Unlike Lasso and
Elastic net biased estimators, the `1/2, SCAD and Log-sum penalties have unbiasedness, i.e., they can
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Fig. 1. Various penalized function for orthonormal design: (a) Lasso, (b) `1/2, (c) Elastic net, (d) SCAD, (e) Log-sum.

easily construct unbiased estimators when the coefficient is large. Then, Chartrand and Yin [8] used this
iteratively reweighted `1 minimization algorithm in sparse signal recovery. Xia et al. [9] proposed mul-
tiple linear regression with Log-sum penalty in a thresholding representation theory for drug discovery.
We take the advantage of the Log-sum penalty in strong sparsity and employ it to select the key factors
without any prior information in survival data.

For survival analysis, there are mainly two types of survival model, namely Cox model or Cox pro-
portional hazards model [10] and accelerated failure time (AFT) model [11]. The Cox model usually is
used for predicting the hazard rate of a disease, whereas the AFT model is available to estimate survival
time of the patients with simply regressing the exponential over the key risk predictors [12]. Besides, the
physical interpretation of AFT model is similar with standard regression, so the AFT model comes out
as an attractive alternative to the Cox proportional hazard model for censored failure time data [12]. Fur-
thermore, the log-linear form of AFT model increases its robustness to the model misspecification and
yield narrower confidence interval for regression coefficients [13]. After the penalized Cox model with
`1-norm [14], Datta et al. [15] combined AFT model with `1-norm to predict failure time outcomes.
Other penalized AFT models aim to obtain more accurate and sparse predictor for survival analysis,
such as AFT via bridge penalization [16], `1/2-norm AFT model [17], etc. In this article, we employ
path seeking scheme to accelerate solving the Log-sum penalty for predicting patient survival time with
fewer biomakers.

The rest of this article is organized as follows: Section 2 introduces the Log-sum penalized AFT
model. In Section 3, we implement our proposed novel Log penalty in path seeking scheme. Finally, we
discuss the experimental results in Section 4 and make some conclusions in Section 5.

2. Log-sum penalized AFT model

Suppose the survival data have h patients (τi, δi, . . . Xi)
h
i=1, where the sample vector of a survival

times T = (τ1, τ2, . . . τh)T and τi = min(ti, ci), here ti is the true survival time and ci is the time to the
first censoring event (e.g., study conclusion, date of final follow up) for each sample i. The δ indicates
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the censoring time, i.e.,

δi =

{
0, the right censoring time
1, the completed time .

Xi denotes the gene expression data of i-th patient, i.e., Xi = (xi1, xi2, . . . xik), where k is the number
of genes.

The accelerated failure time (AFT) model is used to define the survival time τi as follows:

τi = exp
(
β0 +Xiβ

T + εi
)

(1)

where β ⊆ Rk is the coefficient vector of k variables, β0 is the intercept, and εi ∼ N(0, 1) is independent
random error. In this article, we employ the mean imputation method [15] that converts the censoring
survival time τi to the estimated survival time G(τi) as the following estimated function:

G (τi) = δi log (τi) + (1− δi) {Ŝ(τi)}−1
∑
t(r)>ti

log(t(r)∆Ŝ(t(r))) (2)

where r is the amount of individuals at risk of failing just before time t(i) that are different censored
survival times in an ascending order, and ∆Ŝ(t(r)) is the step of Kaplan-Meier estimator Ŝ at time
t(r) [18]. Then, we can directly using AFT model via standard least squares approach to minimize the
loss function L(β) as follows:

L (β) =
1

h

h∑
i=1

yi − k∑
j=0

βjxij

2

(3)

where yiis replaced by the estimated survival time G(τi) in Eq. (2), i.e., the survival times τi logarithmi-
cally transformed into yi.

3. Implementation of Log-sum penalized AFT model

The regularization methods are used to reduce the overfitting problem of learning procedure through
adding the penalty term, therefore the general regularization can be modeled as:

β̂ (λ) = argmin
β
{L (β) + λP (β)} (4)

where β ⊆ Rk is the coefficient of covariate, λ > 0 is a control parameter, L(β) represents the loss term
and P (β) is the penalty term. Larger values of λ exert higher penalties on regression coefficients, result-
ing on inclusion of fewer variables in the model and vice versa. The generalized cross-validation [19]
has been widely used for given an appropriate value of the control parameter. Huang et al. [20] used a
modified Akaike’s information criterion (AIC) for choosing tuning parameter. Wang and Song [21] used
Bayesian information criterion (BIC) for tuning parameter selection under AFT model with adaptive
Lasso. Friedman [22] obtained the control parameter by solving the component ratios of the gradient of
the loss function and regularization term that is called generalized path seeking scheme. This scheme is
much faster than general convex optimizers for squared-error loss.

For the regularization term P (β), many penalties are proposed to bridge the gap between the `0 and
`1 minimization. Such a Log-sum penalty function was originally introduced in [23] for basis selection
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which indicates that Log-sum based methods present uniform superiority over the conventional `1-type
methods. The Log-sum sparsity-encouraging functional for survival analysis leads to:

β̂= argmin
β

L (β) +λ

k∑
j=1

log( |βj |+ξ)

 (5)

where ξ > 0 is a positive parameter to ensure that the function is well-defined. Especially, the Log-
sum penalty function behaves like the `0-norm when ξ→0 [24]. In this article, we employ the path
seeking method [22] to solve the Log-sum penalized AFT model through constructing a path directly
and successively in parameter space. Let υ measure length along the path and the step size ∆υ > 0 can
be calculated by

L
(
β̂(υ)

)
−L

(
β̂(υ+∆υ)

)
L
(
β̂(υ)

) = 0.01 (6)

Define

ϕj (υ) =−
[
∂L (β)

∂βj

]
β=β̂(υ)

=−

∂ 1
h

∑h
i=1

(
yi−

∑k
j=0 βjxij

)2
∂βj


β=β̂(υ)

(7)

=

2

h

h∑
i=1

xij

yi− k∑
j=0

βjxij


β=β̂(υ)

φj (υ) =

[
∂
∑k

j=1 log (|βj |+ξ)
∂ |βj |

]
β=β̂(υ)

=

[
∂log (|βj |+ξ)

∂ |βj |

]
β=β̂(υ)

(8)

=

[
1

|βj |+ξ

]
β=β̂(υ)

λj (υ) =
ϕj (υ)

φj (υ)
(9)

where λj(υ) is the value of λ in Eq. (4) corresponding to υ, and is also the ratio of loss functiongradient
φj(υ) for L (β) in Eq. (3) and penalty function gradient ϕj(υ) with respect to |βj |. Without estimating
λ, this path seeking scheme can accelerate solving the Log-sum penalty. Besides, ξ is chosen by ten-fold
cross-validation. The details of the achievementfor Log-sum penalty are represented in Algorithm 1.

At first, we initialize the path, and then compute the vector λ(υ) by Eqs (7)–(9) in each step. Sub-
sequently, the non-zero coefficients β̂j(υ) are recognized. Those β̂j(υ) have a sign opposite to that of
their corresponding λj(υ). Generally there are non the coefficient corresponding to the largest compo-
nent of λj(υ) in absolute value is selected. If one or more λj(υ)·β̂j(υ)<0, then the coefficient with
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Algorithm 1 The algorithm of Log-sum penalty

1. Initialize:υ= 0, {β̂j (0) = 0}
k

1
2. repeat
3. Compute {λj (υ)}k1
4. S ={j|λj (υ) ·β̂j (υ)<0}
5. ifS = empty then
6. j∗= argmaxj |λj (υ)|
7. else
8. j∗= argmaxj∈S |λj (υ)|
9. end if

10. β̂j∗ (υ+∆υ) =β̂j∗ (υ) +∆υ·sign(λj∗ (υ) )

11. {̂βj (υ+∆υ) =β̂j (υ)}
j 6=j∗

12. υ←υ+∆υ
13. until λj (υ) = 0

corresponding large |λj(υ)| within this subset is instead selected. The selected coefficient β̂j∗(υ) is then
incriminated through a small amount in the direction of the sign of its correspond λj∗(υ) with all other
coefficient residual unchanged, producing the solution for the next path point υ+∆υ. Iterations continue
until all components of λ(υ) are zero.

4. Numerical experiments

4.1. Simulated datasets

In order to simulate the high-dimensional and low-sample property of gene expression data, we as-
sumed that 20 nonzero factors among k = 2000 variables with different fraction and sample size h =
90, 300 respectively based on the following model:

Y =

20∑
u=1

βuXu+σε (10)

where Y denotes the vector of survival times logarithmically transformed yi= log(τi) in Eq. (3) without
censored data, i.e., Y = (y1, y2,. . .,yh), ε is an independent random noise that is generated from a normal
distribution N(0, 1), σ controls the noise strength and the coefficients of relevant features are specified
as

β= ( 2, . . . , 2︸ ︷︷ ︸
5

,−2, 1.5,−1.7, 2.5,−1.8, 4, . . . , 4︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
1980

)

The X value is simulated from an array tmpi0,...,ik, (i = 1, . . . , h) of independent standard normal
distribution:

xij=
√
%×tmpi0+

√
(1−%)×tmpij (11)

where the correlation coefficient % are 0.1 and 0.3 respectively in our experiment.
Additionally, the both sensitivity and specificity for each procedure are calculated as follows:

sensitivity =
# correctly selected genes

#non – zero in β (12)
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Table 1
The results of different penalized methods in simulated data

σ % Penalty h = 90 h = 300
Sensitivity Specificity MSE CI Sensitivity Specificity MSE CI

1.0 0.1 Lasso 0.758 0.896 87.924 0.808 0.850 0.971 74.175 0.908
`1/2 0.856 0.908 57.750 0.863 0.900 0.978 29.825 0.913
Elastic net 0.782 0.731 149.340 0.638 0.800 0.754 117.393 0.720
SCAD 0.845 0.891 67.254 0.792 0.900 0.977 43.502 0.872
Log-sum 0.902 0.953 54.615 0.871 0.950 0.986 23.845 0.928

0.3 Lasso 0.684 0.786 98.183 0.782 0.762 0.864 64.536 0.858
`1/2 0.793 0.894 62.786 0.809 0.850 0.935 59.747 0.872
Elastic net 0.912 0.726 174.570 0.800 0.999 0.757 141.602 0.722
SCAD 0.760 0.882 74.009 0.765 0.800 0.945 47.681 0.885
Log-sum 0.841 0.931 58.892 0.847 0.872 0.978 46.893 0.918

1.5 0.1 Lasso 0.721 0.860 71.004 0.643 0.800 0.967 54.601 0.762
`1/2 0.840 0.903 63.549 0.725 0.910 0.972 40.219 0.887
Elastic net 0.750 0.683 198.627 0.569 0.850 0.705 179.118 0.641
SCAD 0.767 0.889 69.073 0.703 0.850 0.965 51.669 0.847
Log-sum 0.880 0.935 62.720 0.804 0.950 0.982 38.358 0.915

0.3 Lasso 0.617 0.756 119.453 0.691 0.650 0.861 95.235 0.811
`1/2 0.750 0.857 82.944 0.714 0.800 0.928 60.812 0.849
Elastic net 0.860 0.605 213.905 0.571 0.959 0.621 185.917 0.645
SCAD 0.751 0.879 86.892 0.609 0.800 0.937 68.816 0.638
Log-sum 0.800 0.917 65.092 0.784 0.850 0.974 48.973 0.890

=
# correctly selected genes

20

specificity =
# correctly rejected genes

# zero in β (13)
=

# correctly rejected genes
1980

The optimal combination of ξ is selected under ten-fold cross-validation by minimizing the Bayesian
information criterion (BIC) defined as

BICξ= −
2

h
log (mse (β)) − log(h)

2
dfξ (14)

where h is the total number of observations; dfξ is the number of nonzero parameters; and mse(β)
measures the mean square error that is defined by

mse (β) =
1

h

h∑
i=1

(τi−τ̂i)2 (15)

where the predicted value τ̂i= exp(
∑k

j=0 βjxij). In our simulations and application, the optimal ξ is
searched on grid points.

We also employ the concordance index (CI) to evaluate the predictive accuracy of survival models. CI
or c-index can be interpreted as the fraction of all pairs of subjects whose predicted survival times are
correctly ordered among all subjects that can actually be ordered. Therefore, it can be written as:

ci (β) =

∑
i

∑
j 1 (τ̂i<τ̂j and δi= 1)∑

i

∑
j 1 (τi<τj and δi= 1)

(16)
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Table 2
The results in the GSE22210

Penalty # Selected genes MSE CI
Lasso 46 21.023 0.776
`1/2 23 25.271 0.783
Elastic net 159 33.331 0.809
SCAD 33 22.754 0.791
Log-sum 15 16.814 0.821

Table 3
The selected genes of different penalized methods in the GSE22210

Lasso `1/2 Elastic net SCAD Log-sum
1 XIST IL1B SERPINB2 IL1B XIST
2 LAT XIST XIST XIST LAT
3 IL1B HLA-DQA2 IMPACT CCND1 DNASE1L1
4 DNASE1L1 TGFA IL1B HLA-DQA2 IL1B
5 NFKB1 CDKN1A LAT NFKB1 BCL2L2
6 HDAC9 GNMT CCND1 PTHR1 MEST
7 BCL2L2 LAT NFKB1 GNMT NFKB1
8 ESR2 BCL2L2 TGFA LAT DAB2IP
9 AFP HDAC9 HLA-DQA2 CD44 ESR2

10 LAMC1 CD44 RASGRF1 ESR2 APC

The simulated experiments are repeated 100 times. From Table 1, we can conclude that the Log-sum
penalty using the path seeking algorithm can achieve lower MSE with higher CI than other penalties.
Furthermore, this Log-sum penalty results in higher sensitivity for identifying correct genes compared
to the other four algorithms. With increasing sample size, the performance of Log-sum penalty is better.
For example, when σ = 1.0, % = 0.1, the performance of Log-sum in h = 300 has lower MSE with
higher CI than in h = 90. The Elastic Net with `2-norm selected the largest number of genes within the
synthetic data with poor performance, e.g., when σ = 1.0, % = 0.3, h = 300 Elastic Net nearly selected
20 non-zero coefficients (i.e., 20× 0.999), but it selected 481 irrelevant coefficients (i.e., 1980× 0.243).
With the correlation % increasing among genes for various noise levels σ, the `1-norm (Lasso) cannot
distinguish the key genes very well, while other `1 type penalties performed effectively, especially the
Log-sum penalty.

4.2. Real datasets

To further demonstrate the performance of these regularization methods, we compare our proposed
method with other four penalties on GSE22210 microarray expression data from NCBI’s gene expression
omnibus (GEO). This breast cancer dataset includes 1,452 genes and 167 samples [25]. We divide the
data set at random two-thirds samples (117 samples) are training set and the remainders (50 samples)
are used to test. Table 2 shows that the Log-sum penalty achieves best predicting survival time just with
fewer genes than other `1 type regularization methods.

As see from the Table 3, some genes are selected by all methods such as XIST, LAT and IL1B. Miss-
ing from XIST RNA, the X chromosome causes the basal-like subtype of invasive breast cancer [26].
Furthermore, LAT is short for Linker for Activation of T cells that plays a crucial role in the TCR-
mediated signaling pathways. The adoptive transfer of T cells appears to be a promising new treatment
for various type-s of cancer [27]. Collado-Hidalgo et al. [28] provided evidence that polymorphisms
in IL1B increase the production of proinflammatory cytokines triggered by the treatment, which sub-
sequently affects persistent fatigue in the aftermath of breast carcinoma. There are some unique genes
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selected by Log-sum, such as MEST, DAB2IP, APC, etc. MEST is also known as paternally expressed
gene 1 (PEG1) that are often detected in invasive breast carcinomas [29]. The DAB2IP as a bona fide
tumor suppressor that frequently silenced by promoter methylation in aggressive human tumors [30].
Furthermore, aberrant methylation of the APC gene is frequent in breast cancers [31].

5. Conclusion

In this paper, we propose a novel Log-sum regularization estimator with the AFT model in the path
seeking scheme. Comparing with other `1 type penalties, the results in both simulated and real datasets
indicate that our proposed Log-sum penalty can effectively predict patient survival time with fewer
biomakers. Thus, we believe it will be an effective tool for gene selection on high dimensional biological
data.

Acknowledgments

The authors thank Dr. Zi-Yi Yang for excellent technical assistance. This work was supported by the
Macau Science and Technology Develop Funds (Grant no. 003/2016/AFJ) of Macao SAR of China and
China NSFC project (Contract no. 61661166011).

Conflict of interest

None to report.

References

[1] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B (Method-
ological). 1996; 267-288.

[2] Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American
Statistical Association. 2001; 96(456): 1348-1360.

[3] Zhang CH. Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics. 2010; 38(2):
894-942.

[4] Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical
Society: Series B (Statistical Methodology). 2006; 68(1): 49-67.

[5] Lyu Q, Lin Z, She Y, Zhang C. A comparison of typical Lpminimization algorithms. Neurocomputing. 2013; 119:
413-424.

[6] Xu Z, Chang X, Xu F, Zhang H. L1/2regularization: A thresholding representation theory and a fast solver. IEEE Trans-
actions on neural networks and learning systems. 2012; 23(7): 1013-1027.

[7] Candes EJ, Wakin MB, Boyd SP. Enhancing sparsity by reweighted L1 minimization. Journal of Fourier Analysis and
Applications. 2008; 14(5): 877-905.

[8] Chartrand R, Yin W. Iteratively reweighted algorithms for compressive sensing. In: Acoustics, speech and signal pro-
cessing, 2008; ICASSP 2008. IEEE international conference on. IEEE; 2008. pp. 3869-3872.

[9] Xia LY, Wang YW, Meng DY, Yao XJ, Chai H, Liang Y. Descriptor Selection via Log-Sum Regularization for the
Biological Activities of Chemical Structure. International Journal of Molecular Sciences. 2017; 19(1): 30.

[10] Cox DR. Regression models and life-tables. In: Breakthroughs in statistics. Springer; 1992; p. 527-541.
[11] Kalbfleisch JD, Prentice RL. The statistical analysis of failure time data. vol. 360; John Wiley & Sons; 2011.
[12] Wei LJ. The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Statistics

in Medicine. 1992; 11(14-15): 1871-1879.



S. Wang et al. / A novel Log penalty in a path seeking scheme for biomarker selection S93

[13] Hutton J, Monaghan P. Choice of parametric accelerated life and proportional hazards models for survival data: asymp-
totic results. Lifetime Data Analysis. 2002; 8(4): 375-393.

[14] Tibshirani R. The lasso method for variable selection in the Cox model. Statistics in Medicine. 1997; 16(4): 385-395.
[15] Datta S, Le-Rademacher J, Datta S. Predicting patient survival from microarray data by accelerated failure time modeling

using partial least squares and LASSO. Biometrics. 2007; 63(1): 259-271.
[16] Huang J, Ma S. Variable selection in the accelerated failure time model via the bridge method. Lifetime Data Analysis.

2010; 16(2): 176-195.
[17] Chai H, Liang Y, Liu XY. The L1/2 regularization approach for survival analysis in the accelerated failure time model.

Computers in Biology and Medicine. 2015; 64: 283-290.
[18] Datta S. Estimating the mean life time using right censored data. Statistical Methodology. 2005; 2(1): 65-69.
[19] Craven P, Wahba G. Smoothing noisy data with spline functions. Numerische Mathematik. 1978; 31(4): 377-403.
[20] Huang J, Ma S, Xie H. Regularized Estimation in the Accelerated Failure Time Model with High-Dimensional Covari-

ates. Biometrics. 2006; 62(3): 813-820.
[21] Wang X, Song L. Adaptive Lasso variable selection for the accelerated failure models. Communications in Statistics-

Theory and Methods. 2011; 40(24): 4372-4386.
[22] Friedman JH. Fast sparse regression and classification. International Journal of Forecasting. 2012; 28(3): 722-738.
[23] Coifman RR, Wickerhauser MV. Entropy-based algorithms for best basis selection. IEEE Transactions on information

theory. 1992; 38(2): 713-718.
[24] Rao BD, Kreutz-Delgado K. An affine scaling methodology for best basis selection. IEEE Transactions on Signal Pro-

cessing. 1999; 47(1): 187-200.
[25] Holm K, Hegardt C, Staaf J, Vallon-Christersson J, Jönsson G, Olsson H, et al. Molecular subtypes of breast cancer are

associated with characteristic DNA methylation patterns. Breast Cancer Research. 2010; 12(3): R36.
[26] Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, et al. X chromosomal abnormalities in basal-like

human breast cancer. Cancer Cell. 2006; 9(2): 121-132.
[27] June CH. Adoptive T cell therapy for cancer in the clinic. The Journal of Clinical Investigation. 2007; 117(6): 1466-1476.
[28] Collado-Hidalgo A, Bower JE, Ganz PA, Irwin MR, Cole SW. Cytokine gene polymorphisms and fatigue in breast cancer

survivors: Early findings. Brain, Behavior, and Immunity. 2008; 22(8): 1197-1200.
[29] Pedersen IS, Dervan PA, Broderick D, Harrison M, Miller N, Delany E, et al. Frequent loss of imprinting of PEG1/MEST

in invasive breast cancer. Cancer Research. 1999; 59(21): 5449-5451.
[30] Di Minin G, Bellazzo A, Dal Ferro M, Chiaruttini G, Nuzzo S, Bicciato S, et al. Mutant p53 reprograms TNF signaling

in cancer cells through interaction with the tumor suppressor DAB2IP. Molecular Cell. 2014; 56(5): 617-629.
[31] Virmani AK, Rathi A, Sathyanarayana UG, Padar A, Huang CX, Cunnigham HT, et al. Aberrant methylation of the

adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clinical Cancer Research. 2001;
7(7): 1998-2004.


