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Abstract.
BACKGROUND: Many studies have been done on the emotion recognition based on multi-channel electroencephalogram
(EEG) signals.
OBJECTIVE: This paper explores the influence of the emotion recognition accuracy of EEG signals in different frequency
bands and different number of channels.
METHODS: We classified the emotional states in the valence and arousal dimensions using different combinations of EEG
channels. Firstly, DEAP default preprocessed data were normalized. Next, EEG signals were divided into four frequency bands
using discrete wavelet transform, and entropy and energy were calculated as features of K-nearest neighbor Classifier.
RESULTS: The classification accuracies of the 10, 14, 18 and 32 EEG channels based on the Gamma frequency band were
89.54%, 92.28%, 93.72% and 95.70% in the valence dimension and 89.81%, 92.24%, 93.69% and 95.69% in the arousal
dimension. As the number of channels increases, the classification accuracy of emotional states also increases, the classification
accuracy of the gamma frequency band is greater than that of the beta frequency band followed by the alpha and theta frequency
bands.
CONCLUSIONS: This paper provided better frequency bands and channels reference for emotion recognition based on EEG.
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1. Introduction

Human emotion includes not only the psychological reaction of a human being to the external world
or self-stimulation but also the physiological reaction to these psychological reactions. Human emotion
is a combination of human thinking, feeling and behavior.

The role of emotion is ubiquitous in people’s daily lives and work. Analyzing and estimating emo-
tions has become an important interdisciplinary research topic in the fields of psychology, neuroscience,
computer science, cognitive science and artificial intelligence.

∗Corresponding author: Shengfu Lu, Department of Automation, Beijing University of Technology, Ping Le Yuan 100,
Chaoyang District, Beijing 100124, China. Tel.: +86 10 6739 6464; Fax: +86 10 6739 6295; E-mail: lusf@bjut.edu.cn.

0928-7329/18/$35.00 c© 2018 – IOS Press and the authors. All rights reserved
This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-
Commercial License (CC BY-NC 4.0).



S510 M. Li et al. / Emotion recognition from multichannel EEG signals using KNN classification

In recent decades, researchers in multiple fields have proposed various methods for emotion recog-
nition. They can be divided into three main methods. One is based on the study of non-physiological
signals such as facial expressions [1] and speech [2]. The advantage of emotion recognition using non-
physiological signals is that it is easy to perform and does not require special equipment. The disad-
vantage is that people can disguise their true emotional states by disguising their facial expressions and
phonetic intonations. Thus, the reliability of emotion recognition is not ensured. Moreover, the non-
physiological signal recognition method cannot be used for people with disabilities or special diseases.
The second approach is the study of physiological signals such as electroencephalogram (EEG) [3],
electromyography (EMG) [4], electrocardiogram (ECG) [5], skin resistance (SR) [6], heart rate, pulse
rate [6] and so on. These physiological indicators are intrinsic manifestations that are independent of
the individuals’ control. Therefore, they are more appropriate and effective for emotion recognition.
Unlike other physiological signals, EEG is a noninvasive technique with good temporal resolution and
acceptable spatial resolution. Therefore, EEG may play a major role in detecting emotions directly in
the brain at higher spatial and temporal resolutions [7]. The third method is emotion recognition based
on multimodal fusion. For example, Busso et al. identify four emotions (sadness, anger, happiness and
neutrality) by blending facial expressions and speech. Liu et al. fuse EEG signals and EMG signals
with the highest classification accuracy of 91.01% [8]. Koelstra and Patras fuse facial expression and
electroencephalogram (EEG) signals in the valence and arousal dimensions for emotion classification
and regression. And the valence is the pleasure degree of the individual, and the value of valence is
changed from small to large, indicating that the emotion is changed from negative to positive. Arousal
indicates the degree of activation of the emotion, and the change of arousal from small to large indicates
the change of emotion from calm to excitement.

2. Related research

Although different methods are used in emotion recognition with EEG, the ultimate goals of the re-
search are the same. One of the goals is to find suitable features for emotion recognition through different
analytic methods and use an optimized classification model to classify and improve the accuracy of emo-
tion classification. Another goal is to identify the most relevant frequency bands and brain regions for
emotion recognition activities and provide a solid physiological basis for EEG-based emotion recogni-
tion research. In the study of EEG emotion recognition, the EEG time-domain, frequency-domain and
time-frequency-domain features are widely used. Zhang et al. [9] use three methods to select the best
channels to classify the four emotions (joy, fear, sadness and relaxation) using SVM classifier, and the
best classification accuracy over 19 channels is 59.13% ± 11.00%. Mert and Akan explore the advanced
features of EMD and its multivariable extensions (MEMD) in emotion recognition, the multi-channel
IMFs extracted by MEMD are analyzed by a variety of time-domain and frequency-domain features such
as power ratio, power spectral density, entropy, Hjorth parameters and correlation. The classification ac-
curacies in valence and arousal dimensions are 72.87 ± 4.68% and 75.00 ± 7.48%, respectively [10].
Atkinson and Campos improve the accuracy of emotion classification by combining feature selection
method based on the mutual information with the kernel classifier. The accuracy rates of emotion classi-
fication using an SVM classifier in the valence and arousal dimensions are as follows: two classification
(73.14%, 73.06%), three classification (62.33%, 60.70%) and five classification (45.32%, 46.69%) [11].
Li and Lu propose a frequency band search method to select the best frequency band and use linear
SVM to classify two emotions (happiness and sadness) in EEG signals. The mean accuracy of the three
experiments is 93.5%, and the gamma frequency band is considered suitable for EEG-based emotion
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classification [12]. Thammasan et al. use DBNs to improve emotion recognition in music listening,
the results of their subjects’ dependence show that DBNs can improve the classification performance
of fractional dimension (FD), power spectral density (PSD) and discrete wavelet transform (DWT) in
the valence dimension, and improve the classification performance of FD and DWT in arousal dimen-
sion [13]. Li et al. propose a preprocessing method for encapsulating multi-channel neurophysiological
signals into grid-like frames by wavelet and scale transformation. They further devise a hybrid deep
learning model that combines “Convolutional Neural Networks (CNN)” and “Recursive Neural Net-
works (RNNs)” to extract task-related features, the classification results of the two types of emotions on
the valence and the arousal dimensions are 74.12% and 72.06% [14]. Cheng and Liu use the discrete
wavelet transform to decompose EMG signals and extract the maximum and minimum wavelet coeffi-
cients as the features. Then, an artificial neural network is used to classify the five emotions. The correct
classification rate is 82.29% [15]. Kyamakya et al. propose an EEG-based emotion recognition method
to detect the patient’s emotional states for Ambient Assisted Living (AAL) and decompose EEG signals
into five frequency bands using discrete wavelet transform techniques and extract the wavelet energy,
modified energy, wavelet entropy and statistical features of each frequency band as the inputs of the
classifier. The average classification accuracy of the four types of emotions using the SVM classifier is
83.87% [16].

Although excellent temporal resolution and acceptable spatial resolution make EEG a suitable choice
for emotion recognition systems, a few EEG channels have poor spatial resolution which has a signif-
icant impact on the accuracy of emotion recognition. To overcome this problem, multi-channel EEG
signals are often used. In channel selection, many studies choose channels empirically. Mert and Akan
select EEG signals from 18 channels (eight pairs of left and right symmetric channels and two central
channels in the frontal lobe) for emotion recognition in the valence and arousal dimensions [10]. Nat-
tapong et al. [13] select the 12-channel EEG signals near the frontal lobe for identifying emotion states.
These channels are thought to play a major role in emotion recognition [17]. The EEG channels that are
selected in these papers mainly correspond to specific scalp positions with specific functions. Some stud-
ies suggest exploring the correspondence between emotional states and the entire brain [18]. However,
the traditional research methods usually only explore EEG emotions in either specific scalp positions or
the whole brain area. The influence of the number of EEG channels on EEG emotion recognition has
not been systematically studied.

Based on the DEAP data set, this paper discussed the influence of the 10-channel, 14-channel and
18-channel EEG signals based on experience selection and the 32-channel EEG signals of the whole
brain on emotion recognition accuracy. The EEG signals were divided into multiple time windows.
Each time window was transformed into several frequency bands by discrete wavelet transform (DWT).
We extracted entropy and energy as features from each frequency band and the KNN classifier was used
to identify the emotional states. In addition, the classification effects using different frequency bands
were discussed.

The goal of this paper is to explore the influence of the emotion recognition accuracy of EEG signals in
different frequency bands (gamma, beta, alpha and theta) and different number of channels (10-channel,
14-channel, 18-channel and 32-channel), to provide better frequency bands and channels reference for
emotion recognition based on EEG.

3. Preliminaries

In this section, we systematically describe the model of emotion, the classification method and the
selection of time windows.
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3.1. Model of emotion

The research on emotion classification has been controversial and inconclusive. People’s emotions
are ever-changing. Whether each emotion exists independently or there are correlations among different
emotions is a question that scholars still discuss.

Two types of models are used to describe the general state of emotion: One is the discrete emotion
model, which includes the basic emotions such as sadness, anger, fear, surprise, disgust and happiness.
However, there is controversy regarding the selection of basic emotions. Different researchers have dif-
ferent views. The other is a multi-dimensional emotional model. Initially, it is a two-dimensional model
of valence and arousal. Valence represents the degree of delight of the individual and varies from negative
to positive. Arousal represents the degree of activation of emotions and varies from calm to excitement.
Later, a three-dimensional emotional model appears, which include valence, arousal and preference.
For example, Xu and Plataniotis [19] identify two categories of emotion in each dimension of a three-
dimensional model. Four-dimensional (valence, arousal, dominance and preference) emotional models
have also been applied. For example, Liu et al. [8] identify two types of emotion in each dimension of
four-dimensional emotion.

3.2. KNN classifier

The K-nearest neighbor (KNN) method is a simple statistics-based classification method, which is
commonly used in mature classification algorithms. Its core strategy is to identify the K samples that are
closest to the unknown sample points and determine the category information of the unknown samples
from the majority of the K samples.

3.3. Temporal window

The EEG acquisition time is usually longer than the accurate recognition time of the emotional state.
To accurately identify the emotional state, EEG signals are usually divided into segments by windows.
However, the length of the windows is a controversial topic. Kumar et al. [20] use a window length of 30 s
for EEG signals. Thammasan et al. test the emotion recognition performance with 1–8 s EEG windows.
The results show that smaller windows (1–4 s) achieve higher performance than larger windows (5–
8 s) [13]. Levenson et al. determine that the emotional hold time is to be 0.5–4 s [21]. Mohammadi et
al. [23] test window lengths of 2 s and 4 s and find that the window length of 4 s yield a better emotional
classification result. Zhang et al. also select the temporal window size of 4 s for classifying the four types
of emotion [9].

4. Materials and methods

4.1. Data acquisition

In this paper, we used data from the DEAP dataset that have been post-processed in MATLAB. In
this dataset, 32 subjects viewed 40 clips of video that could stimulate various emotions. The length
of each video is 60 s. Each subject provided a personal rating in the valence-arousal-dominance-liking
four dimensions, ranging from 1 to 9, 1 is the smallest, and 9 is the largest. Emotional states in the
four dimensions are shown in Fig. 1. emotional state changes with the increase of personal ratings from
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Fig. 1. Emotional state: a Valence, b Arousal, c Dominance and d Liking [22,26].

left to right, for example, Fig. 1a shows the change of valence (degree of pleasure) from small to large
(from negative to positive), and Fig. 1b shows the change of arousal (degree of activation) from small
to large (from calm to excited). This dataset recorded seven physiological modalities of the participants,
including 32-channel EEG signals and other peripheral physiological signals of 8 channels. During the
pre-processing phase, a preparation time of 3 s was added to each video, thereby changing the total time
of each video to 63 s. EOG interference was removed from the original signal and a bandpass filter was
also applied. The sampling frequency of the original signal was reduced from 512 Hz to 128 Hz. In
practice, we removed the first 3 seconds of all data and analyzed the remaining 60 s of data. This paper
analyzed the emotion in the valence and arousal dimensions. If an individual’s score is greater than 4.5,
the level of arousal/valence is classified as high, whereas if the individual’s score is less than 4.5, the
level of arousal/valence is classified as low [22,23].

4.2. Channel selection

This paper discussed the emotional classification of EEG in 10 channels, 14 channels, 18 channels
and 32 channels. Of these, 10, 14, and 18 channels were selected based on experience of others and 32
channels used all EEG channels data on the DEAP dataset. According to Mohammadi et al., positive
emotions are related to the left frontal area of the brain, and negative emotions are related to the right
frontal area of the brain [24]. The positions of our 10 channels in the brain are: FP1-FP2, F3-F4, F7-F8,
FC5-FC6 and FC1-FC2 [23]. 14 channels are composed of 10 channels plus AF3-AF4, C3-C4 [11].
Eighteen channels are composed of 14 channels plus T7-T8, Fz and Cz.

4.3. Preprocessing

We used the average mean reference (AMR) [23,24] method to pre-process the EEG data. Then, to
eliminate individual differences and channel differences, we normalized the EEG signals for each chan-
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Table 1
Decomposition of EEG signal into different frequency bands using DWT

Frequency band Frequency range (Hz) Frequency bandwidth (Hz) Decomposition level
Theta 4–8 4 D4
Alpha 8–16 8 D3
Beta 16–32 16 D2
Gamma 32–64 32 D1

nel of each person to [0, 1] using the min-max normalization method, thereby reducing the computational
complexity.

4.4. Feature extraction

In this paper, we used discrete wavelet transform (DWT) to extract EEG features. A series of wavelet
coefficients were obtained by stretching and shifting the EEG signals using the mother wavelet function.
Different researchers select different mother wavelet functions, and different mother wavelet functions
have different emotion classification effects. In our study, the window of 4 s was used for each EEG
channel and each window overlaps the previous one by 2 s, for a total of 29 windows. Then, the data
of each window were decomposed 4 times by using db4 DWT and extracting all the high frequency
components as four frequency bands, namely, gamma, beta, alpha and theta, as listed in Table 1. Finally,
the entropy and energy of each frequency band were calculated as features. Thus, there are 2 features in
each band for each channel. There are 20 (2 × 10) features in 10 channels, and the numbers of features
are 28, 36 and 64 in 14, 18 and 32 channels, respectively.

4.4.1. Entropy
Entropy represents the degree of disorder of the signals. The greater the entropy, the higher the degree

of disorder of the signals. It can be used to analyze time series signals. The entropy of each band is
calculated as follows:

ENTj = −
N∑
k=1

(Dj(k)
2) log(Dj(k)

2) = 1 . . . . . . N

4.4.2. Energy
The energy for each band is calculated as follows:

ENGj =

N∑
k=1

(
Dj(k)

2
)
, k = 1 . . . . . . N

where j represents the level of wavelet decomposition and k represents the number of wavelet coeffi-
cients.

4.5. Classification

We used KNN to classify the emotion in the valence and arousal dimensions, for 32 subjects, each
subject watched 40 videos, and we divided the data generated by viewing each video into 29 windows,
and the total number of samples is 37120 (32 × 40 × 29). We used 10-fold cross validation method for
classification, taking the average of 10 tests as the final classification results. The training and testing
process is as follows: First, we divided the total samples equally into 10 parts, of which 9 parts were for
training and 1 part for testing. 1 part sample for each test is different, the remaining 9 parts were used
for training, and the total training and test were 10 times, and the samples of training and test were not
overlapped each time. In addition, the value of K was set 3 [23].
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Table 2
All frequency bands classification of each channel combination

Emotion dimensions No. channels
10 14 18 32

Valence 82.48% ± 0.53% 84.53% ± 0.66% 85.74% ± 0.53% 87.03% ± 0.88%
Arousal 83.27% ± 0.80% 85.26% ± 0.56% 86.46% ± 0.41% 87.90% ± 0.62%

Table 3
Difference verification between different channels in full band (1 = valence, 2 = arousal)

10 14 18 32
10 1** 1** 1**
14 2** 1* 1**
18 2** 2* 1**
32 2** 2** 2**

**, p < 0.001; *, p < 0.05.

Fig. 2. Accuracies of different EEG frequency bands and different channel combinations in the (a) valence and (b) arousal
dimensions.

5. Results and discussion

5.1. Different channel combinations of full frequency bands

We compared the emotion recognition accuracies of 10 channels, 14 channels,18 channels and 32
channels of EEG signals in the valence and arousal dimensions. As shown in Table 2, we find that
the valence and arousal dimensions of all channel combinations have similar classification accuracies.
In both emotion dimensions, the classification accuracy of the emotional state increases with the in-
crease of the number of channels. The highest classification accuracies of 87.03% (valence) and 87.90%
(arousal) were obtained when using 32-channel EEG signals. Paired sample T-tests for different channel
combinations are shown in Table 3, and all differences are significant (p < 0.05 or p < 0.001), regardless
of valence or arousal.

5.2. Varying the EEG frequency bands and channel combinations

We compared the classification accuracies of different frequency bands (gamma, beta, alpha and theta)
and channel combinations (10, 14, 18 and 32) in the valence and arousal dimensions. According to
Figs 1b and 2a, and Table 4, the classification accuracies of the gamma and beta frequency bands are
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Table 4
Accuracy of different EEG frequency bands and different channel combinations

Emotion dimensions Frequency bands No. channels
10 14 18 32

Valence Gamma 89.54% ± 0.81% 92.28% ± 0.62% 93.72% ± 0.48% 95.70% ± 0.62%
Beta 87.64% ± 0.49% 90.21% ± 0.30% 92.23% ± 0.41% 94.44% ± 0.38%
Alpha 73.91% ± 0.92% 77.14% ± 0.70% 79.08% ± 0.73% 81.99% ± 0.61%
Theta 69.67% ± 0.64% 71.93% ± 0.62% 74.01% ± 0.72% 76.81% ± 0.65%

Arousal Gamma 89.81% ± 0.46% 92.24% ± 0.33% 93.69% ± 0.30% 95.69% ± 0.21%
Beta 88.17% ± 0.60% 90.67% ± 0.30% 92.59% ± 0.31% 94.98% ± 0.34%
Alpha 75.31% ± 0.42% 78.19% ± 0.46% 80.41% ± 0.42% 83.47% ± 0.61%
Theta 71.52% ± 0.81% 74.16% ± 0.82% 76.05% ± 0.80% 78.92% ± 0.67%

Table 5
Difference verification between different channel combinations of each frequency band (1 = valence, 2 = arousal)

Gamma 10 14 18 32
10 1** 1** 1**
14 2** 1* 1**
18 2** 2* 1**
32 2** 2** 2**

Beta 10 14 18 32
10 1** 1** 1**
14 2** 1* 1**
18 2** 2* 1**
32 2** 2** 2**

Alpha 10 14 18 32
10 1** 1** 1**
14 2** 1* 1**
18 2** 2* 1**
32 2** 2** 2**

Theta 10 14 18 32
10 1** 1** 1**
14 2** 1* 1**
18 2** 2* 1**
32 2** 2** 2**

**, p < 0.001; *, p < 0.05.

Table 6
Difference verification between different frequency bands of each channel combination (1 = valence, 2 = arousal)

10 Gamma Beta Alpha Theta
Gamma 1* 1** 1**
Beta 2** 1** 1**
Alpha 2** 2** 1**
Theta 2** 2** 2**

14 Gamma Beta Alpha Theta
Gamma 1** 1** 1**
Beta 2** 1** 1**
Alpha 2** 2** 1**
Theta 2** 2** 2**

18 Gamma Beta Alpha Theta
Gamma 1** 1** 1**
Beta 2** 1** 1**
Alpha 2** 2** 1**
Theta 2** 2** 2**

32 Gamma Beta Alpha Theta
Gamma 1* 1** 1**
Beta 2** 1** 1**
Alpha 2** 2** 1**
Theta 2** 2** 2**

**, p < 0.001; *, p < 0.05.

far higher than those of the alpha and theta frequency bands, regardless of the combination of chan-
nels or whether the valence or the arousal dimension is considered. The classification accuracy of the
gamma frequency band is higher than that of the beta frequency band and the classification accuracy of
the theta frequency band is the lowest. The results show that the higher-frequency band is more closely
associated with arousal/valence than the lower-frequency band. For different channel combinations, the
classification accuracy increases with -the number of channels, and the highest classification accuracies
are 95.70% (valence) and 95.69% (arousal) in the gamma band using 32-channel EEG signals. In dif-
ferent frequency bands, the classification accuracies of EEG in the valence and arousal dimensions still
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Table 7
Accuracy comparison of different studies

Reference DEAP dataset and Classifier No. Accuracy Accuracy
feature channels (Valence) (%) (Arousal) (%)

[25] (2014) Raw data bandpower fea-
ture of 4 frequency bands

SVM (32-fold cross-validation
of 32 subjects)

10 64.90 64.90

[22] (2016) Raw data and individula
normalization Entropy
and Energy of gamma
frequency band

KNN (10-fold cross-validation
of all samples)

10 86.75 84.05

[11] (2016) Preprocessed data statisti-
cal features, band power,
Hjorth parameters and
fractal dimension

SVM (8-fold cross-validation
of all samples)

14 73.14 73.06

[10] (2016) Preprocessed data power
ratio, power spectral den-
sity, entropy, Hjorth pa-
rameters and correlation

ANN (leave-one-out cross-
validation of each subject)

18 72.87 75.00

[8] (2016) Preprocessed data PSD
and DE

SVM (90% for training and
10% for testing of all samples)

32 85.20 80.50

[18] (2016) Raw data Narrow-band
PSD

DBN (5-fold cross-validation
of each subject)

32 88.59 88.33

Our
research
(2018)

Preprocessed data and
channel normalization
Entropy and Energy of
gamma frequency band

KNN (10-fold cross-validation
all samples)

10 89.54 ± 0.81 89.81 ± 0.46

14 92.28 ± 0.62 92.24 ± 0.33
18 93.72 ± 0.48 93.69 ± 0.30
32 95.70 ± 0.62 95.69 ± 0.21

depend on the number of EEG channels. Paired samples T-test for differences between different channel
combinations (10, 14, 18, 32) in each band and for the differences between the different frequency bands
(Gamma, Beta, Alpha, Theta) for each channel combination are shown in Tables 5 and 6.

5.3. Comparison of results

In this section, our results are compared with results of other’s studies on the DEAP dataset. In Table 7,
the results of this comparison are listed, which indicate that the classification accuracy of our study on
different channel combinations (10, 14, 18 and 32) are superior to results of other studies.

6. Conclusions

In the emotional classification of EEG, the methods of EEG data preprocessing, the features of EEG,
the feature selection method used (if present), the number and location of channels, the classification of
EEG data and the choice of classifier affect the correct rate of EEG emotional classification, It is very
difficult for us to simply evaluate the effect of a certain factor on the accuracy of EEG classification in
different papers unless the treatment of EEG data is exactly the same among other factors. In general,
each paper contains a comparison of the effect of one or more of the above factors on the accuracy of
EEG classification. We can discuss the impact of a single factors or a combination of multiple factors
on the correct rate of affective classification in a paper, for example: reference [25] aims to study vari-
ous feature extraction techniques for EEG signals, extract bandwidth power and power spectral density
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(PSD) features of four frequency bands as features, which are trained and tested on SVM with 40-fold
cross-validation (for video selection) and 32-fold cross-validation (for person selection), respectively.
The results show that the better classification accuracy is obtained by using the bandwidth power of the
four frequency bands and 32-fold cross-validation. Different methods of using dataset have an impact
on the classification accuracy. The reference [22] compares the window differences between 2 s and
4 s of EEG, the differences of different frequency bands, and the differences between SVM and KNN
classifiers, the results show that 4 s window, gamma band, KNN classifier has a good effect on EEG
emotion classification. The reference [11] evaluates the accuracy rate of affective classification of EEG
signals using different feature selection methods (minimum redundancy maximum relevance mRMR
and genetic algorithm (GA) under different SVM parameters, the results show that mRMR results in a
higher classification accuracy with fewer features, and SVM has better classification results using RBF
kernels and γ = 0.05.

This paper explores the influence of 10-channel, 14-channel, 18-channel and 32-channel EEG signals
on classification accuracy. A normalization method was used to preprocess data from the DEAP dataset.
Data from windows of 4 s are divided into four frequency bands (gamma, beta, alpha and theta) using
db4 DWT 4-time decomposition. Then, the entropy and energy of each band are calculated as the input
features of a KNN classifier. The results show that the classification accuracy of the gamma frequency
band is the highest, regardless of the valence or arousal dimension. Based on the gamma frequency band,
the classification accuracies of valence of 10, 14, 18, and 32 channels reached 89.54%, 92.28%, 93.72%
and 95.70%, respectively, and the classification accuracies of arousal were 89.81%, 92.24%, 93.69%
and 95.69%. This shows that the gamma frequency band is more relevant to the emotional state in the
valence and arousal dimensions compared to the low frequency band. In addition, it also shows that
increasing the number of EEG channels can improve the classification accuracy of emotional states. Our
research provides a reference for the selection of EEG channels for emotion recognition.
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