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Structural analysis of a rehabilitative training
system based on a ceiling rail for safety of
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Kyong Kima, Won Kyung Songb, Woo Suk Chongc and Chang Ho Yud,∗
aDepartment of Medical and Electronic Device, Chungbuk Provincial College, Chungbuk, Korea
bTranslational Research Center for Rehabilitation Robots, Research Institute, National Rehabilitation
Center, Seoul, Korea
cR&D Division, CAMTIC Advanced Mechatronics Technology Institute for Commercialization, Jeonju,
Jeonbuk, Korea
dDivision of Convergence Technology Engineering, Chonbuk National University, Jeonju, Jeonbuk,
Korea

Abstract. The body-weight support (BWS) function, which helps to decrease load stresses on a user, is an effective tool for gait
and balance rehabilitation training for elderly people with weakened lower-extremity muscular strength, hemiplegic patients,
etc. This study conducts structural analysis to secure user safety in order to develop a rail-type gait and balance rehabilitation
training system (RRTS). The RRTS comprises a rail, trolley, and brain-machine interface. The rail (platform) is connected to
the ceiling structure, bearing the loads of the RRTS and of the user and allowing locomobility. The trolley consists of a smart
drive unit (SDU) that assists the user with forward and backward mobility and a body-weight support (BWS) unit that helps
the user to control his/her body-weight load, depending on the severity of his/her hemiplegia. The brain-machine interface
estimates and measures on a real-time basis the body-weight (load) of the user and the intended direction of his/her movement.
Considering the weight of the system and the user, the mechanical safety performance of the system frame under an applied
250-kg static load is verified through structural analysis using ABAQUS (6.14-3) software. The maximum stresses applied on
the rail and trolley under the given gravity load of 250 kg, respectively, are 18.52 MPa and 48.44 MPa. The respective safety
factors are computed to be 7.83 and 5.26, confirming the RRTS’s mechanical safety. An RRTS with verified structural safety
could be utilized for gait movement and balance rehabilitation and training for patients with hemiplegia.
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1. Introduction

Gait refers to ambulatory movements that involve locomotion from one place to another, which in-
volves maneuvering of various joints and the hip and continuous movement of muscles for propelling
the body’s center of gravity forward [1]. Hence, gait is one of the most fundamental human body move-
ments for executing daily activities. Owing to the changing social structure and the resulting aging of
societies, the elderly population with weaker lower-extremity musculature and musculoskeletal systems
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is growing while the number of people with disabilities owing to various accidents and other factors
is increasing. The majority of the foregoing populations experience difficulties with gait. Locomobility
challenges limit the social engagement of the elderly and disabled, thus leading to a falling index of
quality of life in these populations despite quality of life being essential for them [2].

The body weight support system (BWS) that allows a patient to support his or her body weight in step-
wise fashion, depending on their physical condition, is an important intervention that assists individuals
with gait disabilities in their gait rehabilitation. The literature reports that Visintin applied a new gait
training method to stroke patients using BWS and treadmill simulations [3], while Hesse investigated
the effects of partial BWS as well as treadmill gait training in hemiplegic patients [4,5]. Working with
patients with Parkinson’s disease, Miyai studied the effects of BWS along with treadmill training [6].
Werner compared the effects of a treadmill gait training scheme for subacute stroke patients that incor-
porated gait training equipment and BWS [7]. Of note, treadmill gait training involves gait movements
to be executed on a motorized treadmill where the position of the trainee is fixed within a designated
space and achieving natural gait movements is difficult. In that sense, treadmill gait differs greatly from
over-ground gait. Numerous studies have compared kinematic factors to verify differences in joint an-
gle between treadmill and over-ground gaits, kinetic factors to verify differences in forces (joint torque,
etc.), and other related factors [8–10]. Of particular note, a number of studies have targeted patients with
stroke or incomplete spinal cord injuries, comparing the effects of BWS-based treadmill gait training
and over-ground gait training [11–13].

Hidler developed a ceiling-rail-based, zero-G, over-ground gait and balance rehabilitation training
system [14]. The developed system is currently subject to various research efforts in clinics in the U.S.
which target metabolism, muscle use patterns, etc. in patients with stroke-induced hemiplegia or in-
complete spinal cord injuries [15,16]. The developed system, however, is connected to a power cable in
order to allow motor operation, and thus suffers limitations in space use. For problem solving, Kim con-
ducted basic research on the design of a cable-free, battery-operated, on-rail over-ground gait training
system [17–19]. The use of a battery, however, limited the maximum allowable dynamic load (weight
support) to 68 kg.

This study aims to design a gait and balance rehabilitation training system using a rail platform con-
nected to a power cable in order to allow extended range of locomobility, including indoor hallways.
Furthermore, the study aims to examine the verification of mechanical safety of the system under a
static gravity load of 250 kg.

2. System setup

2.1. Overview of the rail-type rehabilitation training system

The rail-type rehabilitation training system (hereinafter the RRTS) is a gait and balance training sys-
tem using rails that are installed into the ceiling structure. As shown in Fig. 1, the RRTS consists of a
rail unit to be installed into the indoor ceiling structure; a trolley unit that offers an automated smart
drive and body weight support (BWS) for rehabilitation training; and a harness unit to be worn by the
patient. Specifically, the RRTS includes smart driving which assists the patient with his/her forward and
backward driving; the BWS is connected via cord to a harness worn by the patient for controlling BWS
steps; and a brain-machine interface that measures and estimates the direction of the user’s movement/
locomobility and measures real-time weight information. Figure 1a and b shows a drawing of an RRTS
design that offers smart driving and BWS functionality. The gait rehabilitation system has dimensions of
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Fig. 1. Design of the gait rehabilitation system.

565 mm (length) × 300 mm (width) × 277 mm (height) and weighs 51 kg, including the motor, driver,
battery, and control unit.

2.2. Tunnel-type rail design

As shown in Fig. 1, the tunnel design allows the drive rollers to be positioned on the rail. As a por-
tion of the rail is inserted into the ceiling structure, the smart driving unit connected to the rail is fixed
directly onto the surface of the ceiling. This configuration allows for easy installation even onto a low
ceiling. The mentioned rail design is complete, and takes into consideration frame removal and bending
manufacture needed for the bent section as well as the subsequent mass production of the developed
design. Furthermore, curve drive simulations were performed to ensure smooth driving not only in the
linear driving section but in the curved driving section, as well. The radius of curvature of the designed
rail was established at between 720 and 1,000 mm to ensure that the radius of curvature can be accom-
modated by narrow hallways found in clinical institutions.

2.3. Design of the smart driving unit

The smart driving unit (hereinafter the SDU) is capable of forward and backward maneuvering move-
ments from the rail and is composed of (a) the main driving part, including the main roller connected
to the driving motor and (b) the assistive driving part that supports manual driving according to the
operation of the main driving unit.

The main roller connected to the main driving unit motor is designed such that the gap between the
underside of the rail and the main driving unit is adjusted by a tension coil spring to ensure consistent
contact between the underside and the unit. The main driving part and the assistive driving part each
have four linear-driving rollers and four curve-driving rotary guide rollers; hence, together there are in
total 16 rollers. The selected linear driving rollers are able to withstand a load of 35 kg in the direction
of gravity whereas the selected rotary guide rollers can each endure 8 kg of loading in the horizontal
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Fig. 2. Simplified model apparatus of the rail and the driving part.

direction. In other words, a 280 kg load in the direction of gravity and a 64 kg horizontal load can be
withstood by the design. The dimensions took into consideration the weight of the entire system to be
applied onto the tunnel-type rail and that of the patient.

As illustrated in Fig. 1c and d, the connection between the smart drive part and the BWS adopts a
rotation connector configuration composed of ball bearings (to secure against vibration, etc.) and thrust
bearings (to ensure smooth curved driving of the SDU) in order to ensure a rotary connection to the main
and assistive driving parts.

2.4. BWS unit design

The design of the RRTS ensures the security of left-right as well as front-rear balance by minimizing
the total weight of the RRTS and placing the key parts on both sides. The BWS consists of the BWS
motor and the brain-machine interface. The former is connected to the winch drum and allows the miti-
gation of body-weight loading through vertical movement of the harness worn by the user. The latter is
capable of estimating the direction of intended movement of the user and measuring his/her weight on a
real-time basis. The wires to be wound around the winch drum are connected to the four rollers, which
are in turn connected to the harness to be worn by the user. The BWS motor can lift a maximum load of
360 kg using a 40:1 gear ratio.

3. Method of structural analysis

3.1. Simplified model of the RRTS

The tunnel-type rail design utilizes a light-weight rail configuration to ensure mass production of the
design, and forms a 1-m-long rail model. This study investigated a structure capable of withstanding a
support load of 250 kg considering the SDU connected to the rail, the trolley including the BWS, and the
weight of the user. As shown in Fig. 2, a simplified version of the model was constructed for structural
analysis. In this simplified model, linear hexahedral elements of type and quadratic tetrahedral elements
of type were used, and total number of nodes and elements are 899,191 and 660,879, respectively.
Furthermore, safety factors were computed for the rail unit that statically supports trolley and user body
weight and with emphasis on the trolley frame that supports the load of the user only.
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Table 1
Material properties of the driving part

Property SUS304 S45C AL6063 AL5052
Young’s modulus, E 193 GPa 205 GPa 68.9 GPa 70.3 GPa
Poisson’s ratio, ν 0.29 0.29 0.33 0.33
Density, ρ 8,000 kg/m3 7,850 kg/m3 2,700 kg/m3 2,680 kg/m3

Yield strength, σY 215 MPa 343 MPa 145 MPa 255 MPa
Tensile strength, σT 505 MPa 569 MPa 186 MPa 290 MPa

Fig. 3. Load conditions for the driving part.

3.2. Material properties

The materials adopted for the unit frame and rollers utilized for the simplified modeling of the SDU
were stainless steels (S45C, SUS304) while the materials used for the remaining components (including
the rail) are aluminum alloys (AL6063, AL50502). Table 1 summarizes the applied properties of these
materials.

3.3. Conditions for structural analysis

The load conditions applied to structural analysis of the RRTS included gravitational acceleration,
which was implemented to apply self-weight owing to the effects of gravity. Furthermore, for increased
analysis efficiency, a total of 250 kg of loads (hypothesizing 50 kg for the SDU system weight and a
maximal value of 200 kg for the user body weight) were simplified using the point mass, as shown in
Fig. 3, with weighting implemented.

Figure 4 illustrates the boundary conditions: the region where the rail was inserted into the ceiling
structure was fixed by the guide connector on each side of the top of the rail.

4. Results of structural analysis

4.1. Structural analysis results for SDU

A 250 kg gravity support load was applied for analysis taking into consideration the total load of the
RRTS and the maximum load of the user.

Figure 5 shows the results of the deflection of the system brought on by the applied loading conditions.
The results showed no change in the deflection of the underside of the rail. As the maximum deflection
analyzed was 1.88 mm, it was ruled that there was no distortion in the unit for a 250-kg load.
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Table 2
Results of structural analysis in the driving part

Item Result Safety factor
Deflection (mm) 1.88 –

Max. stress (MPa) Rail 18.52 7.83
Roller for driving 150.0 1.43
Assistive driving 48.44 5.26

Fig. 4. Boundary conditions of the driving part.

Fig. 5. Deflection results for the rehabilitation training system.

Figures 6 and 7 illustrate the results of stress analysis on the rail and the driving part. When a 250-kg
support load was applied in the direction of gravity, the majority of the stresses on the rail were found to
have been applied to the main/assistive roller connector of the SDU (Fig. 5). The maximum stress applied
to the underside of the rail was calculated to be 18.52 MPa. The mechanical safety factor was computed
using Eq. (1) while the safety factor for the rail was calculated to be 7.83. The stress distributions of the
SDU’s main and assistive drive parts were obtained as shown in Fig. 7. The maximum stress and the
safety factor on the axis of the main drive part were calculated to be 150 MPa and 1.43, respectively.

When a load of 250 kg was applied through the wires of the BWS in the direction of gravity, the
concentration of stresses was confirmed to occur in the lower plate of the BWS, with the last roller that
connects to the winch drum (Fig. 8) as the focal point. The maximum stress value for the BWS was
estimated to be 48.44 MPa, and the calculated safety factor for the allowable strength criterion was 5.26.
The foregoing results were understood to indicate that, even when the maximum allowable load of the
user was applied, the trolley could still fully support the unit.
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Fig. 6. Results of stress contours in the rail part.

Fig. 7. Results of stress contours in the smart driving part.

Fig. 8. Result of deflection contours in the plate of the BWS.

Considering the load of the RRTS and the maximum load of the user, Table 2 summarizes the safety
factors (yield strength/max. stress values, Eq. (1)) based on the maximum stress load of each section of
the system and those based on the allowed strengths of the parts where the maximum stress was applied.
Since all of the calculated safety factors were found to be greater than 1, ranging between 1.43 and 7.83,
the system’s integrity is believed to have been secured.

Safety factor =
Yield Strength

Max. Stress
(1)
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Fig. 9. Apparatus of the first prototype of the gait rehabilitation system.

5. Discussion

The body-weight support function, which helps to decrease load stresses on a user, is important to
people with gait disorder. The rehabilitative training system based on a ceiling rail for weight supporting
of hemiplegia patients was designed and the mechanical safety performance of this system frame under
an applied 250-kg static load is verified through structural analysis in this system. Based on the results
of structural simulations performed on the rail and on the trolley (SDU and BWS), the system’s integrity
was judged to have been secured even when a maximum of 250 kg of loading was applied in the direction
of gravity. Based on this assessment, the system was constructed (Fig. 9) and tested for users. Figure 9
shows a user who was a healthy adult weighing 85 kg wearing the harness in dynamic motion, that
is, walking, stair climbing, sit-to-stand and stand-to-sit motion. With up to 30–50% of his load (body
weight) supported by the system, the user was instructed to walk, ascend and descend steps, sit, and
stand. As shown, the safety of the RRTS was verified during the actual movement tests conducted by the
user.

6. Conclusion

This study designed a rail-type rehabilitation training system (RRTS) for hemiplegic patients in order
to offer them gait and balance rehabilitation training. Static safety performance was examined for the
rail unit and the trolley (including the smart drive part or SDU and the body-weight support or BWS)
of the system. Considering the respective weights of the RRTS and the user, structural analysis simu-
lations were conducted to test if this system can withstand up to 250 kg, at which time the allowable
strength-based safety factors were estimated to range between 1.43 and 7.83, confirming the structural
safety of the system. Based on the design concept verified through the simulations described, a real-life
prototype was manufactured and subjected to testing of its smart driving and BWS functionality. The
test results confirmed that the system operated safely. The RRTS, whose clinical utility was confirmed
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by this study, is expected to function as an effective rehabilitative and training system for hemiplegic
patients who suffer from gait/ambulatory disorders. Effectiveness assessment and evaluation involving
lower-extremity movements is recommended for future studies that could target not only healthy adults
but relevant patients, as well.
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