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Abstract.
BACKGROUND: Deaf people use sign or finger languages for communication, but these methods of communication are
very specialized. For this reason, the deaf can suffer from social inequalities and financial losses due to their communication
restrictions.
OBJECTIVE: In this study, we developed a finger language recognition algorithm based on an ensemble artificial neural
network (E-ANN) using an armband system with 8-channel electromyography (EMG) sensors.
METHODS: The developed algorithm was composed of signal acquisition, filtering, segmentation, feature extraction and an
E-ANN based classifier that was evaluated with the Korean finger language (14 consonants, 17 vowels and 7 numbers) in
17 subjects. E-ANN was categorized according to the number of classifiers (1 to 10) and size of training data (50 to 1500). The
accuracy of the E-ANN-based classifier was obtained by 5-fold cross validation and compared with an artificial neural network
(ANN)-based classifier.
RESULTS AND CONCLUSIONS: As the number of classifiers (1 to 8) and size of training data (50 to 300) increased,
the average accuracy of the E-ANN-based classifier increased and the standard deviation decreased. The optimal E-ANN was
composed with eight classifiers and 300 size of training data, and the accuracy of the E-ANN was significantly higher than that
of the general ANN.
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1. Introduction

There are approximately 360 million deaf people in the world who use finger or sign languages to
communicate [1]. Most of them suffer from financial losses and social inequalities in different fields of
life, such as education, culture, arts, health, medical care and law, due to communication problems with
normally hearing people [2]. In addition, it is even more challenging to communicate internationally,
since each country uses its own finger or sign language.

Finger or sign language recognition systems translate hand gestures into voices or texts to facilitate
communication between a deaf person and a hearing person [3], and they can play an important role in
solving the language barrier caused by the use of different sign languages in each country. Many previous
studies [4–13] have been performed on the development of finger or sign language recognition systems.
Previous investigations of the systems can be categorized into two main groups: computer vision-based
and wearable sensor-based techniques.
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Fig. 1. An armband module with eight SEMG sensors.

First, a computer vision-based recognition system can track the position of bare hands and recognize
gestures. Singha and Das [4] reported on a recognition system based on Euclidean classifier for 24 In-
dian finger languages using histogram matching of the skin-colored regions from the background. The
accuracies for all of the finger languages were more than 96%. Dong et al. [5] classified 24 Ameri-
can finger languages by measuring the distance between a Kinect camera and the hand, and reported a
classification accuracy of more than 90%. The computer vision-based recognition system can recognize
gestures effectively without interferences like wearable gloves and bio-signal sensors. However, this
would have the disadvantages that image recognition is very sensitive to background illumination and
hand position [6]. In addition, the recognition method using video equipment would be not practical,
because it is expensive and less portable. Kadous [7] reported on a system based on glove-type fiber
optic sensors using a decision tree classifier to recognize 95 Australian Sign Language gestures with an
average classification rate of 80%. Fang et al. [8] reported on a two-glove type system of 10 bending
sensors and three electromagnetic sensors that used a fuzzy decision tree classifier to recognize 75 hand
shapes with an average classification rate of 92%. Glove-type wearable systems are more practical than
computer vision-based systems in terms of cost and can potentially be used without modification of the
environment [7]. However, they would have the limitations of impeded hand movements and discomfort
during daily life.

Differing from the approaches mentioned above, many studies on the use of non-invasive bio-signal
sensors have been recently suggested. Most of these have used surface electromyography (SEMG) sen-
sors for finger or sign language recognition [10–15]. They would be less sensitive to environments and
more practical. In addition, electromyography (EMG), when measured with multiple sensors, could rec-
ognize various movements of the human upper limbs [9]. Zhang et al. [11] classified 40 Chinese finger
languages using five channels of SEMG and hidden Markov model (HMM) classifier with an accuracy
of 93%. Wu et al. [13] also classified 40 American finger languages using four channels of SEMG and
support vector machine (SVM) classifier with an accuracy of 96%. Likewise, many studies involving a
variety of classifier types and feature vectors of EMG have been performed. However, the sensors used
in the previous studies did not maintain the performance and were easily detached, because they require
expertise to use.

To distinguish the hand shapes in the finger languages effectively, EMG signals obtained in forearm
muscles should be classified with the minimum error rate. There have been various kinds of pattern
recognition techniques for classifying data such as decision tree [7], SVM [13] and HMM [14]. It has
also been common to use artificial neural network (ANN) [17–20]. However, a single classifier model
would be not appropriate to classify many different signals, because all classifier models always have
an error rate. To minimize errors of the single classifier model, an ensemble learning algorithm to build
multiple classifier models and to determine the class with the highest likelihood has been used [21].
However, most of the previous studies regarding finger or sign language recognition systems applied a
single classifier.
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Fig. 2. The schematic of the armband system.

The purpose of the present study was to develop an armband-type wearable sensor consisting of multi-
channel SEMG sensors and to evaluate a finger language recognition system using an ensemble learning
algorithm based on an ANN classifier.

2. Hardware and software development

An armband module with eight SEMG sensors was developed in this study (Fig. 1). In each EMG
sensor, there were two silver plate-shaped electrodes with 10 mm × 10 mm contact area and 10-mm
electrode-to-electrode distance. Two 500-mAh lithium-ion batteries and a charging circuit were em-
bedded on the main board. A power circuit was also embedded on the main board. Eight sensors were
connected by a polyurethane strap so that it could be worn around the forearm. Low frequency noise was
removed through a 15-Hz second-order high-pass filter circuit, and an instrument amplifier with 1000
× gain was installed in the system. The SEMG sensors were designed to record SEMGs synchronously.
Because the main frequency band of EMG was from 15 Hz to 300 Hz, EMG signals from each chan-
nel were digitized at a sampling frequency of 600 Hz using an I2C-compatible 12-bit A/D converter
(ADC121C021, Texas Instruments, USA). Digitized signals were transmitted to the PC using radio fre-
quency wireless communications with a microcontroller (nRF52832, Nordic Semiconductor, Norway).
A graphical user interface was developed using LabVIEW (Version 2011, National Instruments, USA) to
measure and store multi-channel EMG signals and the battery level. Figure 2 shows the overall structure
of the developed armband system.

3. Pattern recognition algorithm

3.1. Signal acquisition and filtering

EMG signals measured around the forearm muscles using the armband module provided information
regarding wrist and finger movements. EMG signals were filtered with a 15–300 Hz 4th-order bandpass
filter.

3.2. Segmentation

The onset and offset of muscle activations were determined to extract each subword from a sentence.
Figure 3a shows filtered EMG signals that contain a lot of baseline noise. The segmentation of muscle
activity was difficult to distinguish correctly because the signal-noise ratio was small. In this study, to
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Fig. 3. Teager-Kaiser energy (TKE)-based muscle active segmentation process. (a) Filtered EMG signal; (b) TKE; (c) muscle
active segmentation and feature vectors acquisition section.

minimize baseline noise for better segmentation, the Teager-Kaiser energy (TKE) operator [22] was
applied, as shown in Fig. 3b. TKE was calculated as follows:

TKEchannel[n] = EMGchannel[n]
2 − EMGchannel[n+ 1]EMGchannel[n− 1] (1)

To smooth the TKE signals, the root mean square (RMS) at a 500-ms window length was calculated
and the sum of each RMS was obtained as follows:

RMS(i) =
8∑

channel

√∑L−1
i−L TKEchannel[n]

L
, L = 500 ms (2)

The amplitude of RMS was compared with the threshold to detect the onset and offset of active EMG
sections (Fig. 3c). Threshold value was experimentally determined because it differed per subject. The
signals were removed for one second after onset and before offset, since the hand shape was not complete
at those times. The extracted 8-channel EMGs in the feature acquisition section were used in the next
step to calculate feature vectors.

3.3. Feature vector extraction

The classification accuracy of the pattern recognition system based on EMG depends on the feature
vectors of measured signals [23]. The features of EMG can be obtained from time, frequency or wavelet
domains. However, according to Englehart et al. [24], frequency and wavelet domain feature vectors
were not suitable for real-time systems due to their computational complexity. For this reason, time
domain feature vectors were most appropriate when processing a large amount of data such as EMG
signals. Therefore, four features of EMG were selected in the time domain alone, and the window length
was 500 ms. Table 1 shows selected EMG features and their formulas. L is defined as the number of
samples in the window length (L = 300). A 32-dimension (8 channels × 4 features) feature vector of
EMG was obtained per window.
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Table 1
Feature vectors of EMG signals

Feature vector Formula

Mean of absolute value MAV =
L∑

i=1

EMGi

Root mean square RMS =

√∑L
i=1 EMG2

i
L

Variance VAR = 1
L−1

L∑
i=1

EMG2
i

Waveform length WL =
L∑

i=2

|EMGi − EMGi−1|

Fig. 4. Ensemble learning-based finger language recognition algorithm: (a) structure of artificial neural network; (b) ensemble
artificial neural network classifier structure.

3.4. Classifier training

Figure 4a shows the basic structure of an ANN used as a single pattern classifier in this study. The
ANN consists of three layers (input layer, hidden layer and output layer). The hidden and output layers
contain a weight matrix (W ) and bias vector (B) for the pattern classification of the feature vector. The
number of nodes in the hidden layer was selected as 50. The W and B of the multi-layer ANN classifier
were repeatedly trained using a scaled conjugate gradient backpropagation algorithm [25].

Ensemble learning is a method to analyze signal patterns by various results of two or more classifiers
and obtain more accurate classification performance than that attained by a single classifier [26]. A
random vector from the training data was used to create various ANN classifiers. An ensemble artificial
neural network (E-ANN) structure was generated by combining ANN classifiers (Fig. 4b).

4. Experiment

The performance of the finger language recognition using the armband-type sensor was evaluated
through classification accuracy verification. Right-handed subjects who had no musculoskeletal disor-
ders were recruited. The subjects were twelve males and five females with an average age of 25.21 ±
1.14 years. Each subject wore an armband sensor on the right forearm. A reference sensor was placed
at the belly of the flexor carpi radialis muscle, and the remaining sensors were positioned at regular
intervals by the strap (Fig. 5). Korean finger language symbols (14 consonants, 17 vowels, 7 numbers)
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Fig. 5. Armband sensor mounting position using reference sensor.

were selected as experimental hand gestures. The numbers zero, two and six of the finger language
were excluded because these were hand shapes similar to ‘g, k (q)’, ‘n (x)’, and ‘a (`)’. EMG signals
were measured for 15 seconds per selected finger language. To acquire a sufficient amount of feature
vectors, the finger gestures were maintained for a long time. Because the muscle structure and EMG
signals are measured differently in each subject, all sets of characteristic vectors are stored individually.
The acquired feature vectors were divided such that 80% were used for training and 20% were used for
classification evaluation. Signal pattern classification was performed using a five-fold cross validation.
Each subject was informed about the purpose of the study and the experimental protocol, and provided
written informed consent, which was approved by the Yonsei University Research Ethics Committee
(1041849-201704-BM-018-01).

Algorithm evaluation was performed in two steps. First, we optimized an ensemble artificial neural
network (E-ANN) classifier model. An optimal classifier structure should be selected, because the ac-
curacy of the E-ANN-based algorithm depends on the number of multiple classifiers and the size of
multiple data sets. Therefore, classification accuracies according to the number of ANN classifiers from
1 to 10 and multiple data set sizes from 50 to 1500 were compared. Second, we compared the perfor-
mances between a general ANN classifier and an E-ANN classifier. All of the signal processing was
performed using MATLAB (Version R2015a, Mathworks Inc., USA).

5. Statistical analysis

All values were expressed as means ± standard deviations. The statistical significance for each classi-
fication accuracy of E-ANN was analyzed using two-way (the number of multiple classifier and size of
multiple data sets) repeated measures analysis of variance. The significance of differences between the
general ANN and E-ANN groups was evaluated by paired t-tests. When a significant interaction between
two main factors was observed, a Tukey’s HSD post- hoc tests were carried out. All statistical analyses
were performed using SPSS Statistics (Version 24, IBM, USA). A p-value less than 0.05 was considered
statistically significant.

6. Results and discussion

6.1. E-ANN structure optimization

In the E-ANN-based finger language recognition (FLR) algorithm, the number of multiple classifiers
is proportional to the amount of computation in the pattern classification process. An excessive amount
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Fig. 6. Average recognition accuracy of finger language recognition classifiers according to the number of classifiers and size
of training data.

Fig. 7. Comparison between algorithms based on general ANN and E-ANN: (a) average classification accuracies for ANN and
E-ANN (N = 300); (b) standard deviations of ANN and E-ANN (N = 300); (c) comparison of classification accuracies using
optimal model E-ANN and general ANN.

of computation is a problem to be considered, because it is difficult to apply to a real-time system.
Increasing the size of multiple data sets means acquiring additional data unnecessary for the classifier
training, and it also requires unnecessary time to train the classifier. Therefore, the E-ANN structure
needs to be applied to the algorithm after these two factors have been optimized.

Figure 6 shows a graph of the mean accuracies of the FLR according to the number of classifiers and
the training data set size of the E-ANN-based algorithm. All of the trained classifiers showed accura-
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Table 2
Comparison of studies on finger language recognition

Author Sensor types Recognition targets (the number of targets) Classification accuracy
Singha and Das [4] Video camera American alphabet (24) 96.25%
Jiménez et al. [27] Glove Ecuadorian alphabet (30) 89.01%
Savur and Sahin [10] EMG sensor American alphabet (26) 91.73%
Our study Armband-type EMG sensor Korean finger language and numbers (38) > 97.40%

cies of more than 96.53%, and the classification accuracies tended to increase as the number of ANN
classifiers (ANN_NUM) and the size of the multiple data sets (N ) increased. Statistical analysis showed
that the accuracy was significantly affected by these two factors (ANN_NUM and N ; p < 0.05). With
ANN_NUM = 8 and N = 300, the accuracy of classification was more than 97.4%, and the accuracy
did not increase further (p > 0.05). Therefore, the optimal structure of the E-ANN-based FLR algorithm
was shown to be 8 ANN classifiers and 300 training data sets (500 ms).

6.2. Comparison of algorithms based on general ANN and E-ANN

Figure 7a and b show graphs comparing the mean classification accuracy and standard deviations
of the general ANN and E-ANN algorithms (N = 300). The classification algorithm based on E-ANN
showed that the average accuracy gradually increased and the standard deviation decreased as the number
of classifiers increased. In contrast, an ANN-based algorithm, which is a single classifier, showed low
accuracies and high standard deviations. Figure 7c is a graph comparing the classification accuracy of a
general ANN and E-ANN with eight classifiers. The optimal structure of E-ANN showed significantly
higher accuracy than the general ANN. The misclassification of the two algorithms may occur when
the hand shapes are similar or mainly when external noises, such as power noise, ambient noise, motion
artifact, etc., are measured in the process of calculating the feature vector. These two causes are inevitable
problems that affect the error rate of the classifier. It was shown that this problem can be minimized by
using a classification algorithm performed by an ensemble learning method.

6.3. Comparison with previous studies

Table 2 shows the results of previous studies on finger language or hand recognition technology, and
the previous studies were compared with our present study. Although the number of finger languages
in this study was larger than those in previous studies, the classification accuracy of the algorithm was
higher. Since the classifier based on ensemble learning was applied, it was expected to display a more
accurate and stable performance than other studies using a single classifier.

The armband type sensor that we developed is easy to wear and there are no spatial limitations, which
are a big problem with camera-based systems. Furthermore, it is not necessary to put this device directly
on a hand, and no interference in daily life is needed to recognize finger language. Furthermore, our
system can be applied to portable devices such as cell phones and tablets.

7. Conclusion

Using an armband-type wearable multi-channel electromyography sensor, we developed a finger
recognition system with a classification accuracy of more than 97.4%. A database containing EMG
feature vectors (mean of absolute value, RMS, variance and waveform length) was obtained in the active
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section, and a signal pattern classification algorithm based on an ensemble artificial neural network was
developed. The classifier structure was optimized by comparing the effects of two factors (the number
of classifiers and size of training data sets) on classification accuracy. We confirmed that the optimal
performance was achieved with 8 ANN classifiers and size of 300 training data. In addition, we verified
that the finger recognition algorithm of this study had a higher accuracy and more stable performance
than a general ANN by comparing the average accuracies of the classifiers and their standard deviations.
This armband-type wireless sensor system and finger language recognition algorithm have advantages
in portability, convenience and marketability compared to previous research methods. Furthermore, the
system developed in this study can be applied to various internet of things markets such as game inter-
faces, daily assistance systems, prostheses and machine control as well as finger language recognition
technology.
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