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Abstract.
BACKGROUND: Knowledge of the location of sensor devices is crucial for many medical applications of wireless body
area networks, as wearable sensors are designed to monitor vital signs of a patient while the wearer still has the freedom
of movement. However, clinicians or patients can misplace the wearable sensors, thereby causing a mismatch between their
physical locations and their correct target positions. An error of more than a few centimeters raises the risk of mistreating
patients.
OBJECTIVE: The present study aims to develop a scheme to calculate and detect the position of wearable sensors without
beacon nodes.
METHODS: A new scheme was proposed to verify the location of wearable sensors mounted on the patient’s body by inferring
differences in atmospheric air pressure and received signal strength indication measurements from wearable sensors. Extensive
two-sample t tests were performed to validate the proposed scheme.
RESULTS: The proposed scheme could easily recognize a 30-cm horizontal body range and a 65-cm vertical body range to
correctly perform sensor localization and limb identification.
CONCLUSIONS: All experiments indicate that the scheme is suitable for identifying wearable sensor positions in an indoor
environment.

Keywords: Barometric altimetry, health monitoring system, location verification, medical monitoring, received signal strength
indication, wearable wireless sensors, wireless body area network

1. Introduction

Wireless body area networks (WBANs) are also called body sensor networks and can also be used
widely in military, sports, medicine, and other fields. In military, especially along borders where ter-
rorists attack at any time, WBANs are a good fit. In sports, the physical fitness of an athlete can be
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Fig. 1. An example of WBAN platform illustrating possible on-body sensor types and its environment [3].

Fig. 2. Two algorithms of the proposed scheme.

checked using the WBAN technology. In medicine, WBANs have emerged as a vital technology capable
of providing better methods to diagnose various hazardous diseases [1]. This technology can be used for
patients suffering from asthma, heart problem, diabetes, Alzheimer’s disease, Parkinson’s disease, and
others. Handicapped people can benefit from this technology if they are blind, as retina prosthesis chips
can be implanted within the human eye to improve the vision quality [2]. Nano and microdevices are
developed and implanted in, on, or around the human body to measure different physiological signals.
Different heterogeneous sensors, for example electrocardiogram sensors, electroencephalogram sensors,
and blood pressure measuring sensors, could be used to monitor different body parameters.

WBANs typically consist of a group of collaborating wearable sensors placed on near or within several
locations of the human body, individually or through a combination (Fig. 1) [3,4].

Wearable sensors are vital in on-body medical applications. They can be worn attached to the body
in the form of adhesive pads, armbands, and leg straps, and removed for daily activities such as bathing
or swimming, where sensors may get damaged. However, this flexibility enhances the opportunity of
misplacement of sensors. For instance, a clinician, who detected dyskinesia symptoms in a patient with
Parkinson’s disease, might obtain conflicting information if the physical placement of a sensor mis-
matches with its true target position. This mismatch might arise from wrong placement by patients or
skilled medicine personnel. However, research on detecting node placement is still limited.

Motivated by the aforementioned observation, this study focuses on designing a new scheme to cal-
culate and detect the positions of wearable sensors without beacon nodes know their own locations.
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Wearable sensors worn around the body can consist of identical hardware to minimize the design and
manufacturing cost. Once the location of the wearable sensor is known, the examination can be car-
ried out by using the corresponding programs. Each diagnosis need not be designed and programmed
differently. As illustrated in Fig. 2, the proposed scheme is composed of two algorithms: Barometric
altimetry verification (BAV) and received signal strength indication (RSSI)-based left or right identifica-
tion (RBLRI). In BAV, the instantaneous air pressure at the location of each wearable sensor is measured
and analyzed to calculate the vertical location of the sensor on a scale relative to the wearer. RBLRI
demonstrates that each wearable sensor is capable of detecting distance changes sufficient to distinguish
between the relative location of the patient’s left and right limb, thus making it possible to recognize
which wearable sensor is placed on which limb.

The air pressure remains relatively stable in the horizontal direction with distance, but is quite sensitive
to changes in the vertical direction. BAVBAV uses instantaneous air pressures to eliminate measurement
errors arising from the irregular changes of atmospheric pressure. However, RSSI is dependent on the
environment. In indoor environments, the wireless channel is quite noisy, and the radio frequency signal
can suffer from reflection, diffraction, and multipath effect [5]. These factors can make the RSSI values
fluctuate. To address the problem, the present study performs the RSSI treatment processing under a
clear line of sight to determine the best area for the location verification of wearable sensors. RSSI is
measured in the selected optimal areas by analyzing and optimizing the measurements. Such a scheme
would, once per sensor placement, automatically calculate the sensor locations and provide immediate
self-compensates.

The proposed scheme contains the following general features:
(1) It determines the vertical arrangement of wearable sensors mounted along the height of a patient’s

body using the barometric height formula and measuring instantaneous air pressures at sensors.
(2) It distinguishes the horizontal location of wearable sensors by employing the ranging model and

measuring RSSI values at sensors. Considering the effect of the working environment on the rela-
tionship between RSSI and distance, it determines the patient’s standing position to improve RSSI
measurement accuracy.

(3) It performs two-sample t tests to experimentally infer the differences in pressures and RSSI values
from wearable sensors.

The organization of the rest of the study is as follows. Section 2 describes related studies about limb
position recognition. Section 3 describes the system structure. Section 4 introduces the barometric height
formula and experimentally verifies the BAV approach. Section 5 introduces the RSSI ranging model and
the effect of the working environment on signal strength measurements, and experimentally verifies the
proposed RBLRI method. Section 6 provides the conclusion.

2. Related work

Previous studies referenced in this field focus on WBANs measurements based on costly pieces of
equipment, either for channel-modeling purposes [6] or for the validation of on-body localization algo-
rithms based on impulse radio [7–10]. A previous study presents a technique to capture motion data to es-
timate the positions of sensors on the user’s body, employing mixed supervised and unsupervised learn-
ing approaches [11]. It can achieve 89% accuracy in determining the location of the device. However,
this technique needs off-body processing and 30-min motion information, which makes it unsuitable
for real-time limb monitoring. Moreover, the obtained accuracy greatly depends on the measured limb.
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Fig. 3. Topology of WBAN platform.

Another study proposes an automatic identification method (AIM) enabling unassisted sensor nodes to
continuously monitor node locations [12]. However, the scheme merely addresses the verification prob-
lem of the vertical location of the sensor, which limits the scope of application of the scheme.

RSSI has the advantages of low cost, low power, and accessibility; therefore, it becomes the most
used technology in a diverse range of systems [13]. Even for noisy indoor environments, an average
positioning error of 50 cm on an area of 3.5 × 4.5 m2 is possible by choosing the radio frequency
and algorithm parameters carefully based on empirical studies [14]. However, introducing the RSSI
localization technology into the localization of sensors for WBANs remains unexplored.

Motivated by the aforementioned observation, the present study used air pressures and RSSI mea-
surements to determine the positions of wearable sensors, without the help of stationary hardware. The
present study is novel in combining the barometric altimetry technology with RSSI localization technol-
ogy to present a verification scheme that can distinguish which wearable sensor is placed on which limb
(especially, identifying the left or right limb).

The proposed scheme contains the following obvious advantages:
(1) It is capable of monitoring distance changes to recognize which wearable sensor is placed on which

limb. By this scheme, individual elements of the sensor can be easily replaced or compensated for
to allow further operation.

(2) It can distinguish between different wearable sensors attached at the same altitude on the patient’s
body.

(3) It can improve the security of wearable sensors for medical applications, as it guarantees the correct
localization of each node mounted on the patient’s body.

(4) It depends neither on considerable sensors to execute localization nor on beacons that know their
own locations to execute distance measurement.

(5) It can be easily extended to more than four wearable sensors for medical applications.

3. System architecture

The prototype system consists of four wearable sensors, two RSSI transmitters, a base station (BS),
and a personal computer (PC), as illustrated in Fig. 3. The Crossbow TelosB sensor node is employed in
this study because of its ready-to-use format. Moreover, each wearable sensor on the patient’s limb has an
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Fig. 4. Trend of altitude with air pressure.

Fig. 5. The barometric altimetry verification method.

added high-precision and low-power air pressure sensor, Bosch BMP180. RSSI transmitters periodically
send singles to wearable sensor nodes. One RSSI transmitter is placed on the floor and the other at the
height 0.8 m above the floor. Wearable sensors transmit the measured data to BS, which in turn forwards
this data to the PC connected to it.

4. Barometric altimetry verification

In this section, we develop a barometric altimetry verification to verify the vertical location of the
sensor placed on the body.

4.1. Barometric height formula

Barometric altimetry is a traditional method to measure the altitude [15]. According to the theory of
atmosphere physics [16], the vertical movement of the atmosphere is small and can be estimated in a
static equilibrium state. Therefore, force in the horizontal direction cancels the net upward pressure in the
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Table 1
BAV algorithm

Algorithm 1. barometric altimetry verification
1. Initialize.
2. Read the received pressures from wearable sensors placed at the reference height.
3. Calculate the offset of each sensor and calibrate to the reference pressure data.
4. Read the received pressures from wearable sensors placed on the patient’s limb.
5. Calculate the pressure data by using the stored offset of each sensor.
6. Calculate the vertical arrangement of sensors by performing the two-sample t tests.

vertical direction and reaches equilibrium with its own gravity. According to the standard atmospheric
regulations [16], the air temperature varies linearly with height in a polytropic atmosphere. The height
can be calculated as a function of the pressure under standard atmospheric conditions:

h = 44331

[
1−

(
P

1013.25

)0.19
]
, (1)

where P0 is the atmospheric pressure at sea level with a value 1013.25 hPa. The relationship between
air pressure and altitude is illustrated in Fig. 4. The BAV is based on the theory that pressures decrease
exponentially with increasing altitude.

To minimize the pressure variations resulting from various factors, such as time and weather, the
instantaneous pressures are measured to identify the vertical locations of the sensors on a scale relative
to the patient, as described in Fig. 5.

4.2. Calibration

Generally, a principle of “uncertainty” is reflected in the measurement of air pressure. During the
initial stages of the experiments, the sensors placed near one another yielded different air pressure val-
ues at the same altitude. The sensors still yielded different values after being moved the same distance
vertically. This indicated that the differences in pressure readings resulting from factory calibration co-
efficients differ for each sensor. The differences do not change over time. Therefore, a constant offset
calibration procedure is significant to enable a reliable barometric-based WBAN location verification.

The proposed scheme is calibrated by obtaining a number of samples at a reference position (altitude
h = 0 m). The offset of each sensor is determined using differences between its own and the average
pressure. This offset is stored for further elevation measurement. Because the deviation in sensors is
considered to be nonlinear, the calibration process is repeated at different pressure measurement experi-
ments to improve the accuracy of pressure data. The BAV algorithm is described in Table 1.

4.3. Air pressure measurement and results

The proposed method mainly utilizes differences among air pressures worn on the patient’s limbs,
to obtain the precise altitudes of wearable sensors, with the help of calibration process. The detailed
measurement process is as follows:
(1) Calibration: Sensor nodes are placed on the same reference position (i.e., floor) to ensure consis-

tency. Software requests 100 samples of atmospheric pressure data from each device. Figure 6a
displays the measurement results at the same reference position and the deviation errors among
sensors. In Fig. 6b, the offset of each sensor is calculated, and the deviation correction of sensors
1, 2, 3 and sensor 4 measurement data is performed.
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Table 2
Comparison of means and standard deviations for the two methods

Sensor BAV AIM
M (Pa) SD M (Pa) SD

Sensor 1 101129.61 4.08 101131.11 4.67
Sensor 2 101120.72 3.75 101121.99 4.26
Sensor 3 101121.09 3.52 101118.00 5.95
Sensor 4 101129.02 3.42 101129.18 3.74

Fig. 6. (a) Air pressure measurements at the same reference position. (b) Deviation correction to the measurements. (c) Air
pressure measurements for the patient’s limb. (d) Deviation correction to the measurements.

(2) Measurement: The sensor nodes are placed on the patient’s limbs, and 100 measurement data are
collected from each wearable sensor in this step. Pressure readings at each wearable sensor are
taken simultaneously. Figure 6c illustrates the pressure measurements obtained from air pressure
sensors. Deviation corrections of all pressure data, taking into account the calibration performed,
are illustrated in Fig. 6d.

The proposed method was compared with the automatic identification method (AIM) [12] to evaluate
the effectiveness of BAV. First, the performance of two methods in terms of the mean (M ) and standard
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Table 3
Comparison of significant differences for the two methods

Group Sensor BAV AIM
∆P ∆P (95%CI) P ∆P ∆P (95%CI) P
(Pa) (Pa), (Pa) (Pa) (Pa), (Pa)

1 Sensor 1 8.90 7.80, 9.98 0.00 9.12 7.87, 10.37 0.00
Sensor 2

2 Sensor 1 8.52 7.46, 9.58 0.00 13.12 11.63, 14.61 0.00
Sensor 3

3 Sensor 1 0.59 −0.46, 1.64 0.27 0.93 0.55, 2.11 0.17
Sensor 4

4 Sensor 2 −0.37 −1.39, 0.65 0.47 2.16 1.56, 3.44 0.09
Sensor 3

5 Sensor 2 8.30 7.30, 9.30 0.00 −7.19 −8.31, −6.07 0.00
Sensor 4

6 Sensor 3 7.93 6.96, 8.90 0.00 −11.19 −12.58, −9.8 0.00
Sensor 4

deviation (SD) are investigated. Table 2 indicates that the performance of the proposed method is ob-
viously better than those in previous studies. AIM has a large fluctuation in the pressure measurement.
BAV achieves an SD of 3.42–4.078, while it is 3.74–5.95 for AIM.

The significant difference of the present approach is compared with AIM through two-sample t tests
to accurately identify the locations of nodes.

Table 3 reveals that except for groups 3 and 4, all P values are below 0.05 for the two methods.
This indicates that pressure differences between sensors are statistically different enough to distinguish
heights of sensors, confirming that the two positions are indeed different with > 99.9% confidence
interval (CI). Except for groups 3 and 4, BAV has an estimated difference of 6–9 Pa with a 95% CI,
while it is 6–14 Pa for AIM. This is mainly because BMP085 can detect air pressure differences of 3 Pa,
which for the BMP180 is 2 Pa. So 2 Pa. Therefore, AIM has a larger difference range.

In groups 3 and 4, the P values > 0.05 indicate that the data cannot be used to statistically reject
sensors 1 and 4 at different heights, and thus, sensors 1 and 4 may be the leg nodes or the wrist nodes
at the same time, so do sensors 2 and 3. Besides, the lower the air pressure, the higher the altitude.
Consequently, both sensors 1 and 4 are the leg nodes, as well as both sensors 2 and 3 are the wrist nodes.
Moreover, two P values of BAV are bigger than those of AIM. This also indicates that the average height
difference of BAV is smaller than that of AIM. Therefore, the proposed BAV outperforms AIM in terms
of pressure accuracy.

Therefore, BAV can achieve a much better performance on the vertical arrangement verification with
very delectable results.

5. RSSI-based left or right identification

The proposed RBLRI is based on the distance estimation between the RSSI transmitter and the wear-
able sensor to recognize whether the sensor is placed on the left limb or the right limb.

5.1. Ranging model

The power of a signal traveling between sensors is the signal parameters, which include the informa-
tion that reflects the distance [17]. At present, wireless signal transmission uses the theoretical shadowing
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Fig. 7. An RSSI value between sensors under different heights.

Fig. 8. An RSSI value between sensors under different transmitting powers.

model widely [18]. The theoretical model is shown in [19]:

P = P0 − 10n lg

(
d

d0

)
+Xσ (2)

where d0 is the reference distance, P0 is the radio power at the distance d0, and n is the path loss
coefficient related to the environment Generally n = 2–6 [20]. Xσ ∼ (µ2) is a Gaussian distributed
random variable. Let d0 = 1 m, and ignore Xσ in the actual localization measurement Therefore, the
shadowing transmission model can be written as:

RSSI = −(A+ 10n lg d) (3)

where RSSI is the received signal strength indication at a distance d from the transmitter and A is an
empirical parameter, which is determined by measuring the RSSI value of 1 m from the transmitter [21].
The attenuation is somehow coherent with the general philosophy of the log-normal shadowing the
propagation model. RSSI decreases as a function of the log of the distance [22]. Hence, the identification
problem can be simplified to evaluate the RSSI values from the wearable sensors.
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Table 4
RBLRI algorithm

Algorithm 2. RSSI-based left or right identification
1. Initialize.
2. Set RSSI transmitters to periodically transmit a broadcast message to wearable sensors under the selected transmitting

power.
3. Calculate the RSSI value of each sensor using the received messages from the nearer RSSI transmitter.
4. Calculate the horizontal locations of sensors by performing the two-sample t tests.

5.2. Analyzing and optimizing RSSI measurements

The wireless signal is always disturbed by unstable factors in practical applications. When the distance
between nodes increases to a certain extent, the intensifying interferences of radio signals make RSSI
measurements appear to jump. At this point, the error is serious and the measured RSSI becomes an
invalid value. Hence, the effect of the working environment on the RSSI and the distance need to be
considered In a real context, the sensor deployment and the output power of the transmitter will influence
RSSI accuracy.

Therefore, two significant analyses are performed under different conditions to improve RSSI accu-
racy. First, the transmitting power of the RSSI transmitter is set to its highest level (0 dBm), the height
of the transmitter and receiver is adjusted, and the meaningful range of RSSI values is analyzed when
the distance between transmitter and receiver is varied. Second, the height of the RSSI transmitter and
receiver is set to 0.8 m above the ground, the transmitting power is adjusted, and the relationship be-
tween the RSSI values and the distance is figured out. One sensor may be picked up from four wearable
sensors to receive radio signals.

5.2.1. Sensor deployment
The core of the experiment is to determine the relationship between RSSI and distance under different

deployment rules. At each distance d, 100 RSSI values, which are then averaged to calculate the recorded
RSSI. Height interval is 0.5 m, and the highest height is 1.5 m. The relationship between RSSI and
distance is obtained by repeating the aforementioned step, as shown in Fig. 7.

Generally, the RSSI attenuation increases with distance. The attenuation increases fast as the distance
increases from 1 to 2 m, when the transmitter and receiver are simultaneously placed at a height h (h =
0, 0.5, or 1 m) above the floor. Especially, the attenuation increases rapidly when the height increases
from 0 to 0.5 m. This is because when the transmitter and receiver are both placed on the floor, almost
all the received signals are reflected, the signal propagation delays are larger, and the attenuations of the
received signals are comparatively strong. As the deployment height increases, the attenuation becomes
gentler.

Moreover, RSSI values will show an attenuation trend as distance increases, but it dodoes not ex-
tremely decrease progressively. In Fig. 7, the relationship between RSSI and distance is not a rigid
straight line, as there is a degree of fluctuation. The closer the transmission distance, the faster the de-
crease in RSSI value, causing a larger difference of RSSI between the left and right the limbs. This
contributes to distinguishing which sensor is placed on which limb. Therefore, RSSI values can obtain a
higher accuracy in shorter distances.

5.2.2. Transmitting power
Transmission tests are performed to understand the meaningful range of RSSI under different trans-

mitting powers. The recorded RSSI is also given the average of 100 times for test data. For various power
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Table 5
Comparison of means and standard deviations in three sensor deployments

Sensor First deployment Second deployment Third deployment
M (dBm) SD M (dBm) SD M (dBm) SD

Sensor 1 −40.41 0.49 −46.35 1.24 −40.41 0.49
Sensor 2 −46.99 0.73 −41.93 0.79 −41.93 0.79
Sensor 3 −47.53 3.02 −47.58 1.07 −47.58 1.07
Sensor 4 −49.04 0.80 −46.71 3.25 −49.04 0.80

Table 6
Comparison of the significant differences among three deployments

Group Sensor First deployment Second deployment Third deployment
∆P ∆P (95%CI) P ∆P ∆P (95%CI) P ∆P ∆P (95%CI) P

(dBm) (dBm), (dBm) (dBm) (dBm), (dBm) (dBm) (dBm), (dBm)
1 Sensor 1 8.63 8.44, 8.81 0.00 0.36 −0.33, 1.05 0.30 8.63 8.44, 8.81 0.00

Sensor 4
2 Sensor 2 0.54 −0.08, −1.16 0.09 5.65 5.39, 5.91 0.00 5.65 5.39, 5.91 0.00

Sensor 3

levels (0, 1, 2, 3, 6, 9, 15, 21, 27 and 31) equal to (−25, −20, . . . , 0 dBm) [23], tests are performed in
an indoor environment. The RSSI transmitter is placed at a height of 0.8 m above the floor.

As illustrated in Fig. 8, when the sensor transmitting power is −25 or 0 dBm, the RSSI attenuation
increases fast as the distance increases. When the sensor transmitting power is from −5 to −15 dBm,
the attenuation increases moderately with the increasing distance. However, a lower transmission power
may result in a high packet loss.

The relationship between RSSI and distance conforms to the channel model. When sensors have a
short distance, the RSSI attenuation is linear. Conversely, when the distance between sensors increases
to a certain extent, the RSSI is affected by a large disturbance. At this point, the calculated distance error
is serious. The uncertainty of RSSI increases as the receiver moves further away from the transmitter.
Therefore, RSSI values can obtain a higher accuracy in shorter distances. The RBLRIRBLRI algorithm
is described in Table 4.

5.3. RSSI measurement and results

From the aforementioned BAV experiment, both sensors 1 and 4 are the leg nodes and sensors 2 and
3 are the wrist nodes. Hence, the RSSI difference between sensors 1 and 4, and between sensors 2 and 3
need to be considered.

Extensive simulations were performed under different conditions to evaluate the performance of BAV.
First, the results from different sensor deployments were compared and analyzed. Then, the identifica-
tion results under different transmitting powers were compared. Every experiment collects 100 RSSI
measurements in each wearable sensor. The transmitting power of the RSSI transmitter is set to 0 dBm.

Figure 9 indicates the RSSI measurements for three sensor deployments. Sensor 3 in Fig. 9a and
sensor 4 in Fig. 9b have a larger fluctuation. This is consistent with the aforementioned idea that the
farther the transmission distance is from the transmitter to the receiver, the more the RSSI fluctuates.
Moreover, the body interference might be also a reason.

Subsequently, the mean M and SD of RSSI reading among three sensor deployments are investigated,
as shown in Table 5. In the first deployment, sensor 3 has a larger SD, and in the second deployment,
sensor 4 has also a larger SD, consistent with the aforementioned analysis.
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Fig. 9. RSSI measurements under different sensor deployments. (a) Two RSSI transmitters are placed on the floor. (b) Two
RSSI transmitters are placed at a height of 0.8 m above the floor. (c) One transmitter on the floor and the other one at a height
of 0.8 m above the floor.

The significant difference among three sensor deployments is compared through two-sample t tests,
to accurately determine the horizontal position of sensors, as shown in Table 6. The third deployment
outperforms other deployments in terms of identification accuracy.

Table 6 reveals that in the first deployment, the P value of group 2 is above 0.05, and in the second
deployment, the P value of group 1 is also above 0.05. This indicates that the data cannot be used to
statistically reject sensors 2 and 3 at different locations. The same can be concluded for sensors 1 and 4
in the second deployment.

In the third deployment, group 1 (between sensors 1 and 4) has an RSSI difference measurement
of 8.63 dBm on an average, with a measured difference of 8.44–8.81 dBm with a 95% CI; group 2
(between sensors 2 and 3) has an RSSI has different measurement of 5.65 dBm an average, with a
measured difference of 8.44–8.81 dBm with a 95% CI. Moreover, two-sample t tests return P values
of 0 for two groups, demonstrating that the RSSI measurement of sensor 1 is statistically different from
that of sensor 4, and the RSSI of sensor 2 is statistically different from that of sensor 3, with > 99.9%
CI. These results strongly imply that the values from sensor 1 differ sufficiently from sensor 4 to enable
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Table 7
Comparison of means and standard deviations among the three transmitting powers

Sensor 0 (dBm) −5 (dBm) −10 (dBm)
M (dBm) SD M (dBm) SD M (dBm) SD

Sensor 1 −40.41 0.49 −51.02 0.67 −56.69 0.53
Sensor 2 −41.93 0.79 −49.12 0.87 −53.87 0.77
Sensor 3 −47.58 1.07 −53.26 1.11 −57.92 1.05
Sensor 4 −49.04 0.80 −51.25 0.88 −56.87 0.86

Table 8
Comparison of significant differences among the three transmitting powers

Group Sensor 0 (dBm) −5 (dBm) −10 (dBm)
∆P ∆P (95%CI) P ∆P ∆P (95%CI) P ∆P ∆P (95%CI) P

(dBm) (dBm), (dBm) (dBm) (dBm), (dBm) (dBm) (dBm), (dBm)
1 Sensor 1 8.63 8.44, 8.81 0.00 0.23 0.01, 0.45 0.04 0.18 −0.02, 0.38 0.08

Sensor 4
2 Sensor 2 5.65 5.39, 5.91 0.00 4.14 3.86, 4.42 0.00 4.05 3.79, 4.31 0.00

Sensor 3

Fig. 10. The proposed setup.

the identification of the horizontal locations of sensors, on the basis of the theory that the lower the RSSI
value, the longer the distance.

Therefore, sensor 1 is the right leg node, sensor 2 is the right wrist node, sensor 3 is the left wrist node,
and sensor 4 is the left leg node. The proposed setup is illustrated in Fig. 10.

Besides, the performance of RBLRI is examined using three transmitting powers. The 0, −5 and
−10 dBm transmitting powers are considered. The sensor deployment is set to the optimal model where
one RSSI transmitter is placed on the floor and the other one at a height of 0.8 m, 8 m above the floor.

Figure 11 indicates the RSSI measurements for three sensor deployments. All RSSI measurements are
quite close in the −10 dBm transmitting power. This observation is also not surprising as the lower the
transmitting power, the slower the decrease in the RSSI measurement.

The M and SD of RSSI readings among three transmitting powers are investigated. Table 7 reveals
that the RSSI difference of the 0 dBm transmitting power is greater than others, contributing to locating
the position of the sensor. For instance, in 0 dBm transmitting power, the difference of mean is 8.63,
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Fig. 11. RSSI measurements of four sensors under transmitting powers. (a) The 0 dBm transmitting power. (b) The −5 dBm
transmitting power. (c) The −10 dBm transmitting power.

which for the −5 dBm and −10 dBm transmitting powers are 4.14 and 4.05, respectively.
Further, the significant difference among three transmitting powers through two-sample t tests, is

compared to investigate the effectiveness of RBLRI, as presented in Table 8. Clearly, the performance
in the 0 dBm transmitting power outperforms others in terms of identification accuracy.

Table 8 reveals that in the −10 dBm transmitting power, the P value of group 1 is above 0.05. This
means that the data cannot be used to statistically reject sensors 1 and 4 at different locations. Moreover,
in the −5 dBm transmitting power, a larger P value is obtained. This indicates that RSSI measurements
are fairly close, insufficient to differentiate the location of the senor.

6. Conclusion and future work

Sensor misplacement could obtain the inconsistent data with the desired patterns at the designated
location. This study proposes a new scheme to enable WBANs to instantly recognize which wearable
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sensor is placed on which limb of the patient. Hypsometry information is employed in the air pres-
sure distribution to determine the vertical location of the wearable sensors. Moreover, the present study
demonstrates the meaningful range of the RSSI for identifying the horizontal positions of wearable sen-
sors. To validate the proposed scheme, comprehensive statistical analyses are conducted. This scheme
is applicable to home-based old people and patients with tremors or dyskinesia symptoms without the
help of the caregiver.

The most important steps, which should be further investigated in the future, are to test the proposed
scheme in a large-scale study and expand the types of contextual information from wearable sensors, for
instance, by adding heart rate sensors to further monitor body states.
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