Technology and Health Care 25 (2017) S337-S344 S337
DOI 10.3233/THC-171337
IOS Press

Cellular neural network modelling of soft
tissue dynamics for surgical simulation

Jinao Zhang®*, Yongmin Zhong?, Julian Smith® and Chengfan Gu®

aSchool of Engineering, RMIT University, Bundoora, Australia

YDepartment of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton,
Australia

Abstract.

BACKGROUND: Currently, the mechanical dynamics of soft tissue deformation is achieved by numerical time integrations
such as the explicit or implicit integration; however, the explicit integration is stable only under a small time step, whereas the
implicit integration is computationally expensive in spite of the accommodation of a large time step.

OBJECTIVE: This paper presents a cellular neural network method for stable simulation of soft tissue deformation dynamics.
METHOD: The non-rigid motion equation is formulated as a cellular neural network with local connectivity of cells, and thus
the dynamics of soft tissue deformation is transformed into the neural dynamics of the cellular neural network.

RESULTS: Results show that the proposed method can achieve good accuracy at a small time step. It still remains stable at a
large time step, while maintaining the computational efficiency of the explicit integration.

CONCLUSION: The proposed method can achieve stable soft tissue deformation with efficiency of explicit integration for
surgical simulation.
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1. Introduction

Simulation of soft tissue deformation is a fundamental research topic in the development of a surgical
simulator [1]. In the early work of soft tissue simulation, static solutions of deformation were sought
considering the balance of force at given external conditions, without taking into account the dynamic
effects in the temporal domain [2]. Since the pioneering work by Terzopoulos et al. in the simulation of
elastically deformable models [3], simulating the dynamics of soft tissue deformation in the temporal
domain has become widely recognized for achieving physically correct and visually realistic simula-
tions [4].

The discretised physical model of soft tissues leads to a set of ordinary differential equations that
needs to be solved at each time step during the simulation [5]. Explicit time integration [6,7] and implicit
time integration [8,9] are the two popular numerical methods to evolve model dynamics in the temporal
domain. In the explicit integration, variables in the next state are determined from their current state of
known values via time steps. The explicit integration is easy to implement and computationally efficient,
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but the time step is limited by a critical value for the solutions to be stable [10]. Due to the stiff equations
raised from the nearly incompressibility of soft tissues, this critical value is restricted to be very small.
This is inefficient, as it requires a large number of iterations when simulating large deformation of soft
tissues. The implicit integration does not suffer from the stability problem since variables in the next
state are determined by considering the variables both in the current and next states, leading to a system
of equations that need to be satisfied. As a result, the solutions are always stable for any chosen time step.
Owing to this, the implicit integration is favoured in the surgical simulation since a large time step can
be used without loss of numerical stability; however, with the implicit integration, solving the system
equation greatly increases the computational cost.

Neural network is a dynamic system, and it has been applied to the modelling of many dynamic
systems, such as the mechanical vibration systems and nonlinear dynamic systems [11]. Given its time-
continuous dynamics and fast computation, which would be able to satisfy the real-time requirement of
surgical simulation, neural network has been used for modelling of soft tissue deformation. Zhong et al.
reported a cellular neural network model [12] and a Hopfield neural network model [13] for modelling
of soft tissue deformation; however, these neural networks were mainly used for solving the distribu-
tion of potential energy in the soft tissue for internal elastic forces, rather than simulating the dynamic
behaviours of soft tissues for surgical simulation.

This paper presents a cellular neural network method for stable simulation of soft tissue deformation
for surgical simulation. It formulates the dynamics of soft tissue deformation as the neural dynamics
of a cellular neural network to achieve time evolution in the temporal domain. The local connectivity
of cells in the cellular neural network is formulated according to the spatially discretised constitutive
equation that governs the mechanical behaviours of soft tissues. To the best of our knowledge, this study
is the first to directly use neural network techniques to model the mechanical dynamics of soft tissue
deformation for stable dynamic simulation.

2. Dynamics of soft tissue deformation

Soft tissues are essentially dynamic systems, and their behaviours are governed by the principles of
mathematical physics to react to the applied force in a natural manner. Biologically, a living tissue can
change its shape, grow or shrink in size, and modify its chemical, cellular, and extracellular structures
under stress [14]. For the modelling of soft tissue deformation, it is essential to identify the dynamic
changes of soft tissues as a function of time. Based on the Newton’s second law of motion, the equation
governing the dynamics of soft tissue deformation can be written as

mi = f (D

where w is the displacement vector of a point whose components representing the displacement in x, y
and z directions,  is the acceleration vector, m represents the mass density of the point, and f represents
the net force applied to the point.

It has been shown that soft tissues are complex in material compositions and they exhibit viscoelastic
behaviours [15]. Hence, the net force f in Eq. (1) consists of viscous force f< and elastic force f€. If
the soft tissue is further subject to an externally applied force f¢, Eq. (1) may be further written as

mii + f%+ fé = f° )

It can be seen from Eq. (2) that the external force f is balanced against the force terms on the left
hand side of Eq. (2). In biomechanics, the soft tissue is considered as a continuum medium, through
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which constitutive equations governing the force-displacement relationship are employed to account
for the mechanical behaviours of soft tissues. Since the governing equation of motion, i.e. Eq. (2),
and the soft tissue constitutive equations are continuous in the spatial domain, it is usually subdivided
the spatial domain into a number of finite elements with masses lumped at nodes, through which the
governing equation of motion is approximated with respect to each node. Physically assembling the
discrete governing equation of motion with respect to all of the nodes in the object results in a system of
equations that can be written as

MU + FP + FE - A (3)

where M is the mass matrix with m as diagonal components, U is the acceleration matrix with i as
components, F'P is the viscous force matrix, F'F is the elastic force matrix, and F'4 is the applied force
matrix which may be either constant or variable with time.

When the constitutive equations are employed in Eq. (3) to govern the mechanical behaviours of soft
tissues, the discrete constitutive equations transform Eq. (3) into

MU + DU + KU = F 4)

where U is the displacement matrix with « as components, and U is the velocity matrix; D is the
damping matrix and K is the stiffness matrix whose components encode material properties of the soft
tissue based on the soft tissue constitutive equations, and F' is the force matrix.

3. Formulation of soft tissue dynamics as neural dynamics
3.1. Neural dynamics

Equation (4) is usually evolved in time by a numerical time integration scheme, such as the explicit
or implicit integration. The drawbacks of the numerical time integration are that the solutions are only
stable under a small time step in the explicit integration, and the computation of solutions is expensive
in the implicit integration. Comparing to the numerical time integration, cellular neural network (CNN)
is stable with time evolution. A CNN is a dynamic processor array made of cells [16]. Each cell is a
nonlinear dynamic processing unit consisting of linear capacitors, linear resistors and linear or nonlinear
current sources. Cells are locally connected and interact only with their nearest neighbours [17]; cells
that are not directly connected affect each other indirectly via the global propagation effect of CNN [18].

Both discrete equation of motion and CNN have time-continuous dynamics, and they share the same
property that their dynamic behaviours depend on the local interactions. It has been evident that CNN
represents excellent approximations to many dynamic systems, such as the mechanical vibrating sys-
tems, which can be efficiently and effectively solved by CNN [11].

The CNN can be applied to any type of geometric grid of any dimension. For the sake of simplicity
without loss of generality, we consider a rectangular grid with M rows and N columns. Each node on
the grid is occupied by a cell. The dynamics of the augmented CNN [11] are described by the following
equations and conditions:

dvx,-- (t) 1 .o ..
C# =g Vi GRS N Al jik Do () + > N B (i, j ko ) vau + L
C(k,l)EN,(i,5) C(k,l)EN,(i,5)
(Jvej + Ql = |vg; — Q)

duyij

dt

N | =

= f (ve) 3 f (vng) =
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v (0)] < Qs |vw] < Q,Q > 1 )
N, (i,7) = {(a,b) |max {|la —i|,|b—j|} <7 1<a<M1<b< N}
(1<i<M;1<j<N)

where (i, j) refers to the cell C (7, j) associated with the node under consideration, (k,!) to the cell
C (k,1) in the neighbourhood of cell C (3, j), namely N, (i, ), within a radius 7 of cell C' (7, j) (r is
1 in our case); C' is the capacitance of cell capacitor, which can be set to 1 for simplicity; R, is the
resistance of cell resistor; ;; is the current source of cell C (4, j); A (4, j; k, 1) is the feedback template
which defines the interactions between neighbouring cells, whereas B (i, j; k, ) is the control template
which characterizes the influence of input on the cell; v, (£), vy; () and vy;; (t) denote the input, state
and output of cell C (4,7) at time ¢; f (vy;) is a nonlinear function in the voltage-controlled current
source [16], df (vyj) /dvg; = 1if |vg| < @ and df (vyj) /dvg; = 0 if |vg| > @Q, where @ is the
saturation voltage [19].

It can be seen that there is a damping component 1/R, in Eq. (5). For the sake of accommodat-
ing general damping components, the 1/ R, is augmented by a new template named C (i, j; k, 1) [11].
Therefore, Eq. (5) may be further written as

Loll) S gk O+ Y Ak v

dt C(k,))EN,(i,5) C(k,1)EN,.(1,5)
o (6)
+ Z B(Zaj?kvl) lekl+Iij
C(k,1)EN(i,5)
3.2. Mapping soft tissue dynamics onto CNN array
Equation (4) may be rearranged and written as
U=-M"'KU-M'DU+ M 'ForU =AU - CU + BF (7)

For the sake of simplicity without loss of generality, consider a simple case where mass points in the
soft tissue have only one degree of freedom and they are modelled by a single-layer CNN. We associate
the output vy;; (¢) of cell C (4, j) to be the displacement, the state v,;; (t) of cell C (i, j) to be the velocity,
and the input v,; (t) of cell C (4, j) to be the external force in the proposed CNN. In the A template, the
elements of A = — M~ K, whereas the template elements are B = M~ and C = M ' D in the B
and C' templates, respectively. The current source I;; = 0 at all mass points. The saturation voltage ()
controls the nonlinear function in the voltage-controlled current source, and its value is set according to
the stiffness of the material. In the general case where the displacement of a mass point has three degrees
of freedom representing the displacement in z, y and z directions, a three-layer CNN is constructed to
compute the z, y and 2z components of the displacement vector.

3.3. Initial and boundary conditions

In the proposed CNN, three initial conditions need to be specified, i.e. vy;j (0), vy;j (0) and v,; (0)
corresponded to the initial velocity, displacement and external force at mass point (i, 7). The boundary
condition is the Dirichlet boundary condition which enforces fixed positions to the related mass points
of the solution domain. In this case, the velocities and displacements are zero at all times, i.e. vy; (t) =
Vyij (t) =0.
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Fig. 1. (a) A one mass-spring-damper system, (b) solutions of the explicit integration with different time steps.
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Fig. 2. (a) A comparison between the explicit integration and CNN, (b) solutions of the CNN remain stable at a large time step.

4. Examples
4.1. A one spring-damper system

To demonstrate the performance of the proposed CNN model, we first consider a mass-spring-damper
system illustrated in Fig. 1a: a weight with mass m connected to the origin by a spring with stiffness &
and a damper with damping coefficient d, and rest length /g undergoes a damped vibration. The param-
eters were set to m = 0.1, £ = 100, d = 1, [p = 1 and initial velocity 7y . = —35. Figure 1b illustrates
the reference solution and the solutions calculated by the explicit integration with different time steps.
The explicit integration can achieve a good approximation at a small time step (e.g., ¢ = 0.001) which is
almost identical to the reference solution. However, the solutions become unstable and diverge at a large
time step (e.g., t = 0.015 and ¢ = 0.02).

With the above same time steps, the CNN solutions shown in Fig. 2a are better than those of the explicit
integration. At a small time step (e.g., ¢ = 0.001), the CNN solution is almost identical to the reference
solution. At a large time step (e.g., £ = 0.015 and ¢t = 0.02), unlike the unstable behaviour of the explicit
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Fig. 3. Comparisons between different values of Q in the proposed CNN at (a) a small time step and (b) a large time step.

integration, the CNN solution remains stable. A more clear illustration can be seen from Fig. 2b, which
demonstrates that the CNN solution is stable whereas the solution of the explicit integration is divergent
at a large time step.

Trials with three different values of () have also been conducted to examine the effect of () on the
CNN solution. As illustrated in Fig. 3a, the CNN solutions are converged for various values of () at a
small time step and they all have a good approximation to the reference solution. Among them, the CNN
solutions with @@ = 4 and ) = 3.2 are the best. This is because the cell states v, (¢) are always in the
region df (vy;) /dvy; = 1 of the nonlinear controlled source. With a smaller value of @ = 2, the cell
states v, (t) could fall into the region df (vy;j) /dvy; = 0 of the nonlinear controlled source, resulted in a
damped velocity for displacement calculation. Hence, the results are affected at a small time step with a
smaller displacement than the reference solution (red line in Fig. 3a). However, as shown in Fig. 3b, at a
large time step, the smaller the value of @ is, the better the CNN solution is, and thus the better the soft
tissue deformation is. The above demonstrates that the value of () controls the maximum displacement
at each time step, and a smaller value of () is preferred to ensure the accuracy while maintaining the
stability at a large time step.

4.2. Soft tissue deformation

Trials have also been conducted on a cubic volumetric model of 1331 mass points and 6000 tetra-
hedrons, with side faces fixed (Fig. 4a) subjected to an applied force on the top surface in the normal
direction, to evaluate the performance of the proposed CNN in terms of simulating soft tissue deforma-
tion. The mass matrix M, damping matrix D and stiffness matrix K were initialized according to the
formulation proposed by Duan et al. [20], where the mass density p and Young’s modules E were set
to 1,060 kg/m? [21] and 3.5 kPa [22] of the soft tissue material properties. Both CNN and explicit inte-
gration were conducted under the same conditions with @ = 4 used in the CNN. As shown in Fig. 4b,
both methods yield identical results at the small time step ¢ = 0.001. However, as shown in Fig. 4c, the
solution of the explicit integration become unstable at the large time step ¢ = 0.02 whereas the CNN
solution remains stable in Fig. 4d. This demonstrates that the CNN not only inherits the accuracy of
the explicit integration at small time steps but also overcomes the unstable problem of the explicit inte-
gration at large time steps. It should be mentioned that the computational time of one iteration for both
CNN and explicit integration are similar which is around 2 ms.
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Fig. 4. Comparison between the proposed CNN and explicit integration at a small and large time step.

5. Conclusion

S343

This paper presents a cellular neural network method for stable simulation of soft tissue deformation
for surgical simulation. This method models the dynamic behaviours of soft tissues via the nonlinear
neural dynamics of CNN by formulating the local connectivity of cells as the discrete non-rigid mo-
tion equation. Experimental results demonstrate that the proposed method can achieve good accuracy
at a small time step and still remains numerically stable at a large time step while maintaining the
computational efficiency of explicit integration. Future research work will focus on the use of nonlin-
ear strain-stress relationship to formulate the local connectivity of cells to further improve modelling
realism.
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