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Abstract. Combining stem cells with biomaterial scaffolds serves as a promising strategy for engineering tissues for both
in vitro and in vivo applications. This updated review details commonly used biomaterial scaffolds for engineering tissues
from stem cells. We first define the different types of stem cells and their relevant properties and commonly used scaffold
formulations. Next, we discuss natural and synthetic scaffold materials typically used when engineering tissues, along with
their associated advantages and drawbacks and gives examples of target applications. New approaches to engineering tissues,
such as 3D bioprinting, are described as they provide exciting opportunities for future work along with current challenges that
must be addressed. Thus, this review provides an overview of the available biomaterials for directing stem cell differentiation
as a means of producing replacements for diseased or damaged tissues.
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INTRODUCTION

Since the initial publication of our STEMBOOK
chapter in 2008 [1], the field of stem biology has
advanced rapidly as such regenerative medicine
strategies move into clinical trials for a variety of
health disorders [2]. Stem cells possess two novel
properties – the ability to produce additional stem
cells and the capacity to become multiple cell types
[3]. Table 1 lists the major types of stem cells
and their associated properties. These types include
adult, embryonic, fetal, induced pluripotent, and
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mesenchymal stem cells. In particular, the discov-
ery of induced pluripotent stem cells (iPSCs) in 2006
catalyzed the fields of tissue engineering and regener-
ative medicine as they represented a major advance in
stem cell technology [4]. These iPSC lines can be gen-
erated from patient-derived cells, making it possible
to obtain personalized stem cell lines.

Tissue engineering combines biomaterial scaffolds
with these different types of cells to replace damaged
organs. The differentiation potential of stem cells
makes them a valuable tool for such applications.
In 1987, a group of experts defined the word bio-
material as “a non-viable material used in a medical
device, intended to interact with biological systems”
[5]. This definition reflected the state of the field
at the time, which focused on the development of
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Table 1
Different types of stem cells and their associated properties

Type of Stem Cells Source Differentiation potential

Adult stem cells Tissues including nerve, skin,
cardiac, bone, blood, gut,
liver, and teeth

Limited to the tissue from
which they were derived

Embryonic stem cells Derived from the inner cell
mass of a blastocyst

Can become any cell type
from the organism from
which they were derived

Fetal stem cells Derived from the tissues of
fetuses

Limited to the tissue from
which they were derived

Induced pluripotent stem
cells

Adult cells reprogrammed
back into a pluripotent state

Can become any cell type
from the organism from
which they were derived

Mesenchymal stem cells A variety of sources
including bone marrow, fat,
and peripheral blood

Can differentiate into bone,
cartilage, and adipose
tissue

materials and coatings to prevent the rejection of
implantable medical devices. Since 1987, this field of
study has expanded to include the design and develop-
ment of implantable scaffolds with defined properties
produced from a wide variety of biomaterials. Such
biomaterial scaffolds promote the viability and dif-
ferentiation of stem cells seeded inside depending
on the intrinsic properties of the material as well as
the incorporation of specific chemical and physical
cues into the material. A wide range of natural and
synthetic biomaterials have been evaluated as sub-
strates for controlling stem cell behavior. First, the
different types of scaffold formulations are defined
and critically analyzed. Next, specific examples will
be discussed for the three major categories of bio-
materials: natural, synthetic, and ceramic-based. The
advantages and drawbacks of each material type will
be detailed along with relevant examples of how
such scaffolds can influence stem cell behavior. This
review focuses on three-dimensional (3D) scaffolds
as they mimic the environment found in the human
body, making them highly relevant when engineer-
ing tissues, including the use of 3D printing tissues
using biomaterial-based inks. This review summa-
rizes the current knowledge of using biomaterials in
combination with stem cells for tissue engineering
applications, including cell delivery to repair dam-
aged regions of the body.

TYPES OF SCAFFOLD FORMULATIONS

Both natural and synthetic biomaterials can serve
as the starting point for generating bioactive scaf-
folds for controlling stem cell differentiation into the
desired tissue type. These scaffolds can take several
different forms, which in turn have unique features.

This section will detail the properties of the following
types of scaffolds: hydrogels, micro and nanofibers,
and micro and nanospheres (Fig. 1). Each type of
scaffold formulation possesses certain advantages
and disadvantages, which will be discussed. These
scaffolds can also be combined to yield novel hybrid
materials as often certain formulations enable better
cell survival with others providing a more desirable
time course for drug delivery.

Hydrogels

Hydrogels consist of cross-linked hydrophilic
polymer networks that swell upon exposure to water
– hence the name [6]. The extracellular matrix (ECM)
serves as a complex naturally occurring hydrogel
that provides the microenvironment that supports
the stem cells found resident in tissues, making
this scaffold formulation highly desirable for tis-
sue engineering applications using stem cells. Many
different factors play roles in determining the prop-
erties of these hydrogels, including the properties of
the polymer, degree of cross-linking, chemical func-
tionalization, and other parameters. Hydrogels are
often modified to incorporate drug delivery systems,
which can enhance the survival and differentiation of
the stem cells seeded inside [7–9]. They also have
been used successfully to deliver stem cells in vivo
and they can often be formulated to be injectable,
which is highly desirable for clinical applications
[10]. Recent reviews have summarized the wide body
of work detailing how hydrogels have been used to
successfully deliver stem cells in vivo for a vari-
ety of applications, including vascularization, tendon
repair, healing kidney damage, and for neural regen-
eration [11–14] Ensuring long-term stability can be
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Fig. 1. Commonly used scaffold formulations for engineering tissues from stem cells include hydrogels, electrospun scaffolds, and
nano/microspheres.

challenging as well as matching the desired release
rate for molecules embedded in the hydrogel matches
the desired degradation rate. However, both natu-
ral and synthetic hydrogels remain popular tools for
engineering tissues from stem cells.

Electrospun scaffolds

Electrospun scaffolds serve as another popular
option as scaffolds for promoting the culture and
differentiation of stem cells into tissues as detailed
in a recent book [15]. The process of electrospin-
ning requires the application of a high voltage field
to a polymer solution, which draws out thin fibers
that are collected in a specialized fashion. Electro-
spinning set-ups are often inexpensive to implement
and thus it has become an increasingly popular
scaffold fabrication technique. Different parameters
including the polymer solution being spun, the col-
lection distance and method, the applied voltage field,
and the ambient conditions all influence the size,
topography, and consistency of the fibrous scaffolds
produced when electrospinning [16]. The properties
of these fibrous scaffolds can influence how stem cells
behave, including their topography and their ability
to generate controlled release of biomolecules [17].
Electrospinning can generate fibrous scaffolds rang-
ing in size from nanometers to micrometers and the
size and orientation of these fibers play an important
role in controlling the behavior of the cells seeded
upon such scaffolds [18]. Such topography can direct
stem cells to form functional tissues, including car-
diac, bone, and nerve [19–21]. Bioactive factors, such
as small molecules, polysaccharides, and growth fac-
tors, can be added to the solution being spun to
generate controlled release for directing stem cell
behavior [22, 23]. Topography, fiber size, and fab-
rication parameters can all affect the release rate of

such molecules and these factors can be tuned accord-
ingly to generate a desirable release course necessary
for achieving the desired effect on stem cell behav-
ior. Some limitations of electrospinning include the
reproducibility of these scaffolds as fiber size can vary
significantly even within a scaffold and scale-up [20].
In conclusion, electrospun scaffolds can serve as mul-
tifunctional scaffolds for generating tissues from a
variety of stem cells.

Nano and microparticles

Particles ranging in size from the nanoscale to
microscale can serve as effective tools for drug deliv-
ery for a number of reasons [24, 25]. The use of
such particle-based drug delivery system has several
advantages. The ability to tune the encapsulation effi-
ciency of the drug contained in the particles and the
number of particles used for a particular application
enables a high degree of control over the concen-
tration and time course of the target molecule being
delivered. Their size also means they can be delivered
in vivo through injections and certain formulations
of nanoparticles can even cross the blood-brain bar-
rier to provide controlled drug release [26]. Such
particles are often combined with hydrogels [27]
and electrospun scaffolds [28] to provide additional
bioactivity and deliver additional factors when engi-
neering complex tissues. Accordingly, drug-releasing
particles on both the nano and micro scale can be
used to control stem cell differentiation – both alone
and in combination with other scaffold formula-
tions [29]. Different combinations of drug-releasing
particles can be incorporated into such systems to
yield a multifunctional construct for promoting stem
cell differentiation into specific types of tissues.
Such particles can also be directly incorporated into
stem cell aggregates to ensure more homogenous
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differentiation as well [30]. While these applications
highlight the desirable properties of drug-releasing
particles, they also have certain issues associated with
their use. These issues include determining proper
dosage to ensure the desired effect on stem cell
behavior. Also, controlling the size distribution and
morphology of the particles produced depends on the
method of fabrication and large variations can be
observed, which is similar to limitations associated
with electrospun scaffolds. However, such particle
distributions can be adjusted using sieving.

NATURAL BIOMATERIALS

The proteins and polysaccharides found in the
ECM provide an obvious starting point when devel-
oping scaffolds derived from natural biomaterials.
These bioactive molecules perform many roles in
vivo, and often contain sites for cellular adhesion
while displaying inherent biocompatibility. These
materials can exhibit variability depending on their
source and may induce an immune response if not
properly purified. These scaffolds often exhibit a lim-
ited range of mechanical properties and often their
scaffold formulations need to be optimized for stem
cell culture. The following sections will first focus
specifically on scaffolds made from purified proteins
or polysaccharides and then highlight the emerging
area of using decellularized ECM for directing the
differentiation of stem cells.

Protein-based biomaterials

Proteins play an important role in providing struc-
ture to tissues, making them a logical choice for tissue
engineering applications requiring stem cell differ-
entiation and transplantation. This section highlights
some of the most commonly used protein-based bio-
materials, including collagen, fibrin, silk, fibronectin,
and vitronectin, and their application to engineering
tissues from stem cells. Proteins can be isolated from
human or animal sources and care must be taken to
ensure that animal-derived proteins do not trigger an
immune response if clinical translation remains the
end goal. For example, collagen, a commonly used
biomaterial, can be isolated from a variety of tissues,
including skin, tendon, or bone. It can also be pro-
cessed into other forms, including gelatin and gelatin
methacrylate. The protein fibrin plays an essential
role in the blood clotting process. It can be isolated
from blood, and it is commonly used as a surgi-
cal sealant in clinical studies and as a biomaterial

scaffold. Insects and worms secrete silk, which is
another protein commonly used for generating tissue-
engineered scaffolds. Scaffolds made of silk or silk
fibroin have slow degradation rates and desirable
mechanical properties, providing an alternative to
collagen and fibrin. Scaffolds made from silk fibers
can be fabricated into a variety of structures, such
as mats, sponges, meshes and membranes, expand-
ing the possible applications. We will also discuss
the use of other proteins found in the ECM as scaf-
folds materials for directing stem cell differentiation,
including fibronectin, vitronectin, and laminin. The
following sections will highlight specific examples
of these scaffolds being used in combination with
stem cells for a range of different tissue engineering
applications.

Collagen
Collagen comprises 25% of the total protein found

in the human body, making it a logical choice for tis-
sue engineering applications [31]. Collagen contains
sites for cell adhesion and its natural materials prop-
erties are similar to that of soft tissue [32]. It comes in
several types with Type 1 being the most commonly
used to form hydrogels as it is the most abundant
in tissues. Hydrogels made from collagen can be
modified to enhance their chemical and mechani-
cal properties, which can be tailored to the desired
tissue to be engineered [33]. 3D collagen hydrogels
can culture a wide variety of stem cells for different
tissue engineering applications, including neural tis-
sues, blood vessels, cardiac tissue, liver and cartilage
[34–44]. Collagen can also be denatured to produce
gelatin, which can be modified to produce gelatin
methacryloyl (GelMa) [45]. GelMA hydrogels can be
produced by photo-crosslinking and its mechanical
and chemical properties are easily tunable depend-
ing on the application. GelMa also exhibits decreased
antigenicity as it is denatured, enhancing its relevance
for clinical applications [46]. Engineering tissues by
combining stem cells with GelMa hydrogels has been
gaining in popularity recently, especially with 3D bio-
printing approaches using GelMa as a novel bioink
[47–49]. An interesting paper from the Khademhos-
seini lab showed how 3D printing different types of
GelMa-derived bioinks can serve as a valuable tool
for determining an optimal formulation for direct-
ing human mesenchymal stem cells (MSCs) to form
bone tissue [50]. The printing set-up and experimen-
tal design can be seen in Fig. 2.

The properties of collagen can be further manipu-
lated on the micro and nanoscale using techniques
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Fig. 2. A) A robotic microarray spotter was used to rapidly print droplets consisting of hMSCs, gelatin methacrylate (GE)-based prepolymer
solution and various ECM proteins on TMSPMA functionalized glass slide. The printing step was followed by a 15|sec UV light exposure to
form the miniaturized cell-laden constructs. Following printing, cell-laden gel microarrays were placed inside sealed chambers (Illustration
made by Jeffrey Aarons). B) Various combinations of ECM proteins and media formulations were used to conduct the microarrays experi-
ments. The concentration of LN and FN was selected to be 40|�g/ml while OCN was printed at two concentrations of 20|�g/ml and 40|�g/ml.
C) Fluorescence images of the encapsulated proteins within the hydrogel constructs after 24 hours in solution. D) hMSCs viability within 48
combinatorial 3D microenvironments in normal (control) media after 7 days of culture along with color-diagram displaying the quantified
cell viability (n = 3–9). This figure was reproduced under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
Taken from [50].

such as electrospinning and fabrication of micro-
spheres [51]. Electrospinning poses challenges in
terms of maintaining the bioactivity of the protein,
but it can be achieved under appropriate conditions
[52, 53]. Collagen is often added to synthetic poly-
mer scaffolds to enhance their bioactivity and enable
stem cells to bind to these scaffolds [54, 55]. Both
collagen and gelatin microspheres can be seeded with
stem cells as a novel approach to tissue engineering.

Collagen microspheres are commonly used to deliver
a variety of stem cells ranging from mesenchymal
stem cells to oligodendrocyte progenitors [56–58].
A recent study also highlighted how GelMa micro-
spheres containing bone marrow-derived stem cells
could be injected in vivo for bone tissue engineering
application [59]. Thus, collagen and the related poly-
mer – GelMa - serve as powerful tools for engineering
tissues from stem cells.
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Fig. 3. Genipin crosslinking influences the morphological and mechanical properties of fibrin scaffolds. The effect of genipin concentration
on fiber diameter (biological n = 3, technical n = 10, shown on the top left). The effect of genipin concentration on pore size of fibrin scaffolds
(biological n = 3, technical n = 30, shown on the top right). The effect of genipin on elastic modulus (shown on the bottom). The elastic
modulus for spinal cord tissue is taken from 37. Each group is represented by its mean average with error bars indicating the S.E.M. *Indicates
p < 0.05 compared to control (0 mM). This figure was reproduced under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License. Taken from [61].

Fibrin
Similar to collagen, fibrin exhibits natural bio-

compatibility and contains sites for cell adhesion
[60]. Accordingly, significant work has been per-
formed evaluating fibrin scaffolds for directing the
differentiation of different types of stem cells. As
mentioned earlier, fibrinogen circulates in the blood-
stream and becomes polymerized into fibrin clots
during the wound healing process [61]. Surgeons use
fibrin as surgical glue, making it a desirable mate-
rial for clinical translation [62]. It can be used to
generate hydrogels, electrospun scaffolds, and micro-
spheres that serve as cell carriers for a wide variety
of tissue engineering applications [63–65]. Addition-
ally, its mechanical properties can be manipulated
to ensure a proper environment for stem cell dif-
ferentiation as seen in Fig. 3 [66]. Many groups
have investigated a variety of fibrin hydrogel for-
mulations for engineering neural tissue from stem
cells, including both embryonic stem cells (ESCs)

and induced pluripotent stem cells (iPSCs), in vitro
and for delivering stem cells into the damaged ner-
vous system in vivo [67–77]. Other groups have
examined the behavior of MSCs seeded inside of fib-
rin clots and treated with growth factors for use in
engineering bone. In terms of other applications, fib-
rin scaffolds seeded with stem cells have also been
used for engineering cartilage [78, 79] and for pro-
moting vasculature formation [80–82]. This body of
work suggests that a variety of stem cell lines can
be cultured inside of fibrin scaffolds for many dif-
ferent tissue engineering applications. While fibrin
can be electrospun to generate scaffolds for cell cul-
ture, such scaffolds have not been evaluated for use
in combination with stem cells for tissue engineer-
ing applications [83, 84], providing an interesting
avenue for future work. Similarly, the use of fibrin
microspheres seeded with stem cells also provides an
opportunity for future investigation. Finally, hybrid
bioinks containing fibrin have shown promise for
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use in 3D printing functional tissues from stem cells
[85].

Silk
The secondary structure of silk can vary based

on the source, but in general it tends to contain a
number of � sheets, giving it crystalline properties
and relatively slow degradation rate in comparison to
mammalian ECM proteins, such as fibrin and col-
lagen [86]. Silk scaffolds can also be modified to
enhance their chemical properties and enable con-
trolled delivery of molecules [87, 88]. The properties
of silk make it attractive for engineering bone and
ligament tissue [89]. Extensive research has been
done using 3D silk scaffolds in conjunction with mes-
enchymal stem cells for these applications by David
Kaplan’s lab as well as others. [90–98]. Often these
silk scaffolds are electrospun to improve their ability
to form functional tissues from stem cells [99, 100].

Combining silk scaffolds with stem cells can pro-
duce replacements for damaged cartilage. Meinel and
colleagues showed that silk scaffolds promoted more
extensive chondrogenesis compared to collagen scaf-
folds when seeded with human mesenchymal stem
cells [96]. More recent efforts have used the combi-
nation of stem cells with silk scaffolds to engineer
skin as reviewed recently [101]. Silk offers superior
biocompatibility in comparison to other biomaterials
based on in vivo testing. An interesting study demon-
strated that silk microspheres could be combined with
a novel hydrogel as a novel injectable way to deliver
cardiac-derived stem cells [102]. This study opens
intriguing areas for future work. Silk has also recently
been evaluated as a potential bioink [103], making the
3D printing stem cell-derived tissues possible.

Laminin
Laminin, a high molecular weight protein ranging

in size from ∼400 kDa-900 kDa, contains numerous
sites for cell adhesion as it is found in the ECM [104].
It performs critical roles in several stem cell niches,
including neural, cardiac, and kidney [105–107].
While laminin is not often used in 3D hydrogel form,
it still can play a valuable role in controlling stem cell
behavior. For example, laminin-coated surfaces sup-
port the maintenance and differentiation of stem cells
[108]. Often times other scaffold materials are func-
tionalized with laminin-derived peptides to enhance
their ability to support stem cell adhesion and differ-
entiation [109]. Similarly, electrospun scaffolds can
be coated in different laminin fragments to enhance
stem cell binding and differentiation [110, 111].

Further application of self-assembling laminin-
derived peptides will be discussed in the section on
synthetic biomaterials.

Fibronectin
Another large glycoprotein found in the ECM is

fibronectin, which contains sites for both cells and
proteins to bind [112]. Fibronectin enhances the dif-
ferentiation of neural stem cells into mature neural
cells and it can serve as a scaffold for delivering stem
cells into the damaged nervous system [113, 114]. It
also plays an important role in chondrogenesis [115]
and the loss of fibronectin correlates with decreased
muscle regeneration capacity [116]. Another com-
mon strategy is to conjugate fibronectin or peptide
motifs derived from fibronectin to functionalize scaf-
folds to enable them to bind stem cells for tissue
engineering [117–119]. This strategy is often used
to functionalize electrospun scaffolds produced from
synthetic materials to enhance their bioadhesive prop-
erties, which enables them to support cell culture
[120, 121]. Thus, fibronectin serves as an important
tool for engineering a variety of tissues from stem
cells and it could serve as a valuable additive when
developing novel bioinks for printing stem cells.

Vitronectin
Another glycoprotein vitronectin can be found in

the serum and bone in addition to the ECM [122].
It often plays a role in tissue repair, including pro-
moting angiogenesis after injury. Similar to laminin
and fibronectin, vitronectin contains sites for inte-
grins expressed by cells to bind, as well as sites for
growth factors and other proteins to adhere [123].
Undifferentiated human pluripotent stem cells are
often cultured on vitronectin surfaces as it provides a
defined substrate in comparison with the tradition-
ally used Matrigel (a mixture of proteins secreted
by a mouse tumor cell line), reducing the possibil-
ity of immune response if these cells are transplanted
into human subjects [123]. It also plays a role in
promoting the differentiation of mesenchymal stem
cells into osteoblasts, indicating its potential for stem
cell applications [124]. While it tends not to be used
as the sole scaffold material, other synthetic scaf-
folds have been decorated with vitronectin and its
associated binding domains to produce engineered
tissues from stem cells, including bone and neural
tissue [125, 126]. Similar to fibronectin, the addition
of vitronectin enhances the ability of different types
of scaffolds to bind and influence stem cell behavior.
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Polysaccharide-based biomaterials

Polysaccharides consist of sugar monomers, and
these molecules perform important roles in main-
taining the structure and function of the ECM. The
structure and monomer composition contribute the
properties of the specific polysaccharides. These
polymers tend to be branched and they can be sourced
from plants or animals. The source and method of
isolation for a polysaccharide determines its level
of immunogenicity and thus must be carefully cho-
sen [127]. Polysaccharide-based scaffolds can often
be formulated to gel rapidly, allowing for injec-
tion into the injury site – a desirable feature when
engineering tissue and when delivering stem cells
for clinical applications. Accordingly, these mate-
rials have been investigated for use as a potential
scaffold material for stem cell transplantation. This
section will review some of the most commonly used
polysaccharide-based scaffolds, including agarose,
alginate, hyaluronan, and chitosan, that have been
used for the culture and differentiation of stem cells.

Agarose
Agarose, usually isolated from red algae and sea-

weed, consists of a galactose-based backbone and it
possesses several desirable properties as a bioma-
terial for tissue engineering applications including
being able to undergo reversible gelation in response
to temperature [128]. The stiffness of agarose can
be altered, allowing for tuning of the mechanical
properties of the scaffold to specific tissue engineer-
ing applications [129]. Agarose hydrogels have been
combined with stem cells for generating a variety
of applications, including cartilage, heart, and nerve
[130–134]. Bone and cartilage are commonly engi-
neered by combining agarose with different types
of stem cells. Stem cells can also be encapsulated
into agarose microwells to form structures known as
lockyballs where the interior of the structure con-
sists of an aggregate of stem cells that is surrounded
by a synthetic coating containing binding sites for
other lockyballs. These lockyball structures can then
be combined for tissue engineering applications as
seen in Fig. 4 [135]. Finally, agarose can serve as a
printable bioink with tunable properties for generat-
ing tissues from stem cells. Recent work illustrated
how MSCs could be printed using an agarose-based
bioink [136]. While some studies have explored elec-
trospinning agarose fibers, these materials have not
been evaluated in combination with stem cells [137].
In summary, agarose scaffolds and their different

formulations provide a versatile platform for tissue
engineering.

Alginate
The cell walls of brown algae contain the polysac-

charide alginate, a popular biomaterial that is often
used as a bioink for 3D printing tissues [138]. These
properties also have led to its application for microen-
capsulation of stem cells as alginate can be ionically
cross-linked, which can be used to expand and dif-
ferentiate these stem cells into a variety of tissue
types [139–142]. Similar to agarose, many studies
have combined both adipose-derived adult stem cells
(ASCs) as well as bone marrow-derived MSCs with
alginate hydrogels to generate replacement cartilage
[132, 143–145]. Alginate has also been used for
neural tissue engineering applications with a vari-
ety of stem cell types [146, 147]. Tunable alginate
scaffolds can be produced by incorporating enzyme
releasing microspheres to control scaffold degrada-
tion and these scaffolds were successfully combined
with neural stem cell progenitors to engineer neu-
ral tissues [148]. Alginate scaffolds have also been
combined with ESCs to generate hepatocytes and
vasculature [149, 150]. While alginate can be elec-
trospun, such scaffolds have not been evaluated for
their compatibility with stem cells [151]. The proper-
ties of alginate make it easy to bioprint. Accordingly,
several different 3D bioprinted tissues have been pro-
duced using alginate bioinks in combination with
stem cells, including neural tissue, cartilage, bone
and liver [152–155]. This body of work shows that
alginate serves as a highly desirable material for engi-
neering a wide variety of tissues due to its unique
properties.

Hyaluronan
Hyaluronan, also known as hyaluronic acid, serves

as one of the major components of the extracellu-
lar matrix, [156] containing numerous sites for cell
adhesion [156]. Hyaluronan also plays a key role in
various stem cell niches, suggesting its suitability as
a scaffold material for stem cell culture [157]. The
Langer lab demonstrated that such scaffolds could be
used for promoting both self-renewal of human ES
cells as well as vascular differentiation [158]. Also,
a recent review detailed how different hyaluronan
scaffolds can be combined with MSCs to engineer
a variety of tissues, including cartilage and bone
[159]. Work from the Woodhouse group has also
used such approaches to engineer adipose substi-
tutes from stem cells [160, 161]. Other approaches



S.M. Willerth and S.E. Sakiyama-Elbert / Constructing Tissues Using Stem Cells and Biomaterials 9

Fig. 4. Biofabrication of human adipose-derived stem cell (ASCs) spheroids. A) ASCs spheroid fabricated in a confined space (resection) of
micro-molded non-adhesive hydrogel has more regular shape and size than B) ASCs spheroid fabricated by the hanging drop method. Phase
contrast. Bar size: 100 micrometers. C) Graph showing major (blue bar) and minor (red bar) diameters of spheroids generated in hanging drop
and in resections of micro-molded non-adhesive hydrogel. Note that standard deviation in hanging drops is higher. A total of 45 spheroids
were measured randomly. Graph represents the mean ± standard error. D) Graph showing shape elongation coefficient (major/minor diameter
of each spheroid) distribution of spheroids biofabricated by the two techniques representative from 1 micro-molded non-adhesive hydrogel
and 1 petri-dish. (blue: spheroids fabricated in resections of micro-molded hydrogel; red: spheroids fabricated in hanging drops). This figure
was reproduced under a Attribution 4.0 International (CC BY 4.0). Figure taken from [135].

have combined hyaluronan scaffolds with stem cells
derived from keratinocytes and adipose for engi-
neering skin and bone respectively [162, 163]. Such
engineered tissues can be used as novel ways to pro-
mote wound healing as well as for repairing damaged
nerve tissues [164–166]. Encapsulating stem cells
into hyaluronic acid microcarriers is another popu-
lar tissue engineering strategy due to its ability to
provide a supportive environment for stem cell sur-
vival [167, 168]. Similar to other polysaccharides,
hyaluronic acid can be incorporated into electro-
spun scaffolds to improve their biocompatibility and
enhance cell adhesion [169]. Finally, several recent
studies have demonstrated that bioink formulations
containing hyaluronic acid can be used to bioprint
3D tissues, making this an exciting area for future
work [170–172].

Chitosan
Another commonly used polysaccharide, chitosan,

can be derived by the deacetylation of chitin and it
consists of glucosamine units [173]. Additionally, the
rate of gelation of chitosan scaffolds can be con-
trolled using pH [174] and the scaffold properties
can also be modulated for stem cell applications
through chemical cross-linking [175]. Chitosan has
been evaluated extensively for tissue engineering
applications, including in combination with stem
cells. For example, 3D chitosan scaffolds contain-
ing coralline promoted osteogenic differentiation of
mouse mesenchymal stem cells [176]. Two recent
papers reviewed such efforts using different for-
mulations of chitosan scaffolds for applications in
developing replacement bone and cartilage [177,
178]. Other efforts have combined chitosan scaffolds
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with stem cells to treat spinal cord injury [179, 180] as
well as wound healing [181]. Chitosan scaffolds have
supported the culture of mouse ESCs and the expan-
sion of cord blood-derived stem cells [182, 183].
Microencapsulation of MSCs inside of chitosan parti-
cles has also been evaluated as a way to engineer bone
tissue engineering [184]. Chitosan and its deriva-
tives can also be electrospun into substrates under the
appropriate conditions [185]. Composite electrospun
nanofibers containing chitosan support stem cell dif-
ferentiation into nerve tissue, suggesting their utility
for tissue engineering applications [186]. Chitosan
can also be used as a bioink [187], but more work
needs to be done to determine an optimal formulation
for printing stem cell-derived constructs. Often these
bioinks must be tailored to the specific application to
ensure proper stem cell survival and differentiation.

Cellulose and its derivatives
Cellulose serves as a major component of cell

walls found in bacteria and plants and it, along with
its chemically modified derivatives, have been eval-
uated for tissue engineering applications [188]. It
is often modified to enhance its ability to support
mammalian cell culture. One of the most commonly
used derivatives is methylcellulose due to its ability
to form hydrogels under different conditions [189],
including injectable versions and thermally reversible
formulations [190]. These scaffold formulations can
be combined with a number of stem cell types for
engineering a wide variety of tissues, ranging from
bone to nerve [191, 192]. It can also be combined
with other polysaccharides to yield printable bioinks
[172]. Cellulose and the closely related methylcel-
lulose have demonstrated significant promise for a
variety of tissue engineering applications due to its
versatile properties.

Decellularized extracellular matrix

An alternative strategy to using pure biomateri-
als requires the process of removing the cellular
components of a tissue, leaving behind the decellular-
ized extracellular matrix (dECM) [193]. This method
takes advantage of the natural bioactive properties of
tissue to produce a suitable scaffold for stem cell cul-
ture and differentiation. The methods used to process
the tissue may vary and can result in different prop-
erties for the scaffold material obtained [193] and
they vary based on the tissue targeted [194]. Such
dECM scaffolds have been extensively characterized
for tissue engineering applications involving MSCs

[195, 196]. Even whole decellularized organs, such
as kidneys and livers, can be repopulated into func-
tional tissues after seeding with stem cells [197].
Such dECM materials can also be bioprinted, pro-
viding another avenue for tissue engineering [198].
While these materials show significant promise, they
can show variability due to the source material and
the isolation method, and could potentially trigger
immune responses [199]. However, they are wor-
thy of further investigation for applications in stem
cell-based tissue engineering and potentially the engi-
neering of whole organs.

SYNTHETIC BIOMATERIALS

Synthetic biomaterials provide an alternative to
natural materials for engineering tissues from stem
cells. These materials offer many advantages over
their natural counterparts, including reproducibility
due to their defined chemical composition, and the
ability to control the mechanical properties, degrada-
tion rate, and shape independently. The mechanical
properties of a scaffold play a large influence in how
stem cells differentiate [200]. The ability to shape a
material allows for production of scaffolds that con-
form to specifications of the injury or transplantation
site. Producing scaffolds with a specific degradation
rate serves as a key advantage of synthetic scaffolds
over natural biomaterials, and they can also affect
the release rate of drugs incorporated into such scaf-
folds. However, many synthetic biomaterials lack
sites for cell adhesion and accordingly must be chem-
ically modified to allow for stem cell adhesion and
culture. Other considerations when choosing a bio-
material include the biocompatibility of the material
and its suitability for transplantation in vivo, as well as
whether the material and its byproducts can trigger an
immune response. However, as the following section
will attest – many synthetic materials demonstrate
huge promise for stem cell-based tissue engineering.

Polymer-based biomaterials

This section discusses synthetic polymers and how
they can be combined with stem cells for produc-
ing different tissues. These materials are chemically
defined and can often be formulated to have targeted
mechanical properties to replicate the microenviron-
ment present in the tissue being engineered. They
can also be chemically modified to contain cues to
enhance their bioactivity and promote stem cell dif-
ferentiation into the desired phenotypes. Potential
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issues with these polymers include a lack of sites for
cell adhesion and the potential for toxic byproducts
after degradation. This section focuses on the most
commonly used polymer scaffolds for culture of stem
cells and their different formulations.

Poly (lactic-co-glycolic acid)
Poly (lactic-co-glycolic acid) (PLGA) a copolymer

that consists of monomers of glycolic acid and lactic
acid connected by ester bonds, has been approved by
the FDA for a range of applications, mainly focused
on drug delivery as it can be formulated to control
drug release rate [201]. Cells enzymatically degrade
PLGA into monomers that can cause cell death due
to their acidic nature [202]. PLGA can be formulated
into scaffolds, nano and microparticles, and electro-
spun fibers [203]. The ability to create biocompatible
scaffolds with tunable drug delivery properties makes
PLGA an attractive material for stem cell-based tissue
engineering.

PGLA scaffolds can be combined with different
types of stem cells, including MSCs, ESCs, and
iPSCs to engineer a wide range of tissues, includ-
ing muscle, bone, cartilage, and nerve [204–209]. The
scaffold porosity, topography, mechanical properties,
and drug delivery capacity all serve as important vari-
ables when designing such scaffolds. Both PLGA
microspheres and electrospun nanofibers have also
been used for differentiating stem cells into mature
tissue types as well [210, 211]. Intriguingly, despite
its widespread adoption as a biomaterial for clini-
cal applications as well as for engineering tissues in
vitro, PLGA has not been adopted as a bioink for use
with 3D printers. This knowledge gap provides an
intriguing opportunity for further work.

Poly (ethylene glycol)
Poly (ethylene glycol) (PEG), and its high molec-

ular weight counterpart poly (ethylene oxide) (PEO),
resist protein absorption, making them a commonly
used polymer for in vivo applications due to this bio-
compatibility [212]. Scaffolds made from PEG can
be polymerized chemically or using photoinitiators.
The amount of initiator used affects the properties
of the resulting scaffolds and it also means PEG can
be used for applications in 3D printing [213]. While
unmodified PEG is typically inert, it can also be
chemically modified to contain bioactive molecules,
including peptides and heparin [214]. PEG hydrogel
scaffolds have been combined with a variety of stem
cell types for their suitability as potential replace-
ments for bone, cartilage, nerve, liver and vasculature

tissue [215–223]. Other groups have incorporated
PEG into other polymer solutions for producing elec-
trospun scaffolds for engineering tissues from stem
cells [224, 225]. PEG microcarriers can also serve
as effective vehicles for delivering stem cells for
in vivo tissue engineering applications [226, 227].
More recent work has focused on using PEG-derived
bioinks to print tissue constructs from stem cells,
including cartilage and muscle tissues [228, 229]. Its
versatility and ability to be modified make PEG an
essential tool for tissue engineering.

Poly (caprolactone) (PCL)
Poly caprolactone (PCL), a popular low-cost poly-

mer with an extended degradation rate, can be used
to form a wide range of scaffolds with different
properties, including novel topographies and con-
trolled release, for applications in tissue engineering
as reviewed recently [230]. These scaffolds are often
fabricated using both solution and melt electrospin-
ning, and then seeded with stem cells to engineer
tissues, including cartilage, nerve, muscle, and bone
[231–235]. Figure 5 shows an example of how such
scaffolds can be combined with adipose-derived stem
cells to produce fat tissue as well as how topograph-
ical cues can influence stem cell behavior [236].
Melt electrospinning requires that the PCL be heated
until it becomes a liquid, which can then be used
to directly write scaffolds with defined structures
that can be seeded with cells [237]. Similar work
has been performed using 3D printed PCL to pro-
duce defined structures which are then seeded with
stem cells to engineer tissues such as bone [238].
Work still remains to create a PCL bioink that could
directly print cells into defined structures. Other work
has incorporated drug-releasing PCL microspheres
in pluripotent stem cell aggregates to engineer neu-
ral tissues [239, 240]. Also, the mechanical stability
and ability to generate controlled drug release over
extended time periods means that PCL is often com-
bined with other biomaterials to generate hybrid
scaffolds for tissue engineering [241], making it a
useful biomaterial for a range of applications.

Polypyrrole (Ppy)
Polypyrrole (Ppy) possess the unique property of

being a biocompatible conductive polymer, which
makes it attractive for certain tissue engineering
applications such as nerve and muscle [242]. It can
also be doped with biological molecules, including
polysaccharides, such as heparin and hyaluronic acid,
and such biomaterials have been used to engineer
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Fig. 5. Human adipose derived stem cells growing in PCL fiber matrices. A) Normalized intensities of the CARS (2845 cm–1) signal of
the fibers (violet, solid) and the MPEF signal (495–530 nm) (black, dashed lines, one line for each cell) of the cells in the matrices in the z
dimension for the aligned (left) and random (right) matrices. 5 cells were investigated for each condition, for the random matrix two fibers
were shown to visualize the different fiber profiles in this matrix. B) 3D reconstructions of the MPEF signals of the cells on/in the fiber
matrices for aligned (left) and random (right) matrices. Nuclei are indicated with circles and fibers with arrowheads (scalebar: 30 �m). This
figure was reproduced under a Attribution 4.0 International (CC BY 4.0). Figure taken from [236].

bone from MSCs [243]. The use of electrical stimula-
tion on stem cells seeded on Ppy scaffolds enhances
their differentiation into neural tissue, including pro-
moting the development of mature retinal cells [244]
and neurons [244]. Electrical stimulation of stem cells
seeded on Ppy scaffolds can also drive osteogenesis
[245] and the formation of functional muscle tissues
[246]. Ppy can also be electrospun to produce scaf-
folds for stem cell differentiation [247] as well as
be combined with other materials to generate con-
ductive hybrid scaffolds for stem cell-based tissue
engineering [248].

Polydimethylsiloxane (PDMS)
Polydimethylsiloxane (PDMS), a silicon-based

viscoelastic polymer, has been used in a wide range of
biomedical applications due to its inertness [249]. It
is often used to construct microfluidic devices, which

serve as valuable tools for studying stem cell behav-
ior [250]. Its inert nature makes an ideal material
to create molds for replicating tissue structure, such
as vasculature networks being derived from pluripo-
tent stem cells [251] or for creating spheroids from
different types of stem cells [252]. As a scaffold
material, PDMS can be modified to contain chemical
cues, including sites for cell adhesion. The mechan-
ical properties of PDMS are easily manipulated and
thus these scaffolds have been used to determine
how mechanical properties of the microenviron-
ment influence stem cell differentiation [200, 253].
Another interesting tissue engineering application
requires the incorporation of PDMS microspheres in
stem cell aggregates. Such microspheres can provide
mechanoregulation cues to direct MSC differen-
tiation into functional tissues [254]. Additionally,
hybrid microparticles consisting of PDMS and PCL
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promoted ESCs to form cardiovascular tissue [255].
PDMS has been applied in unique ways to engineer
tissues from stem cells as discussed here.

Peptide-based biomaterials
Peptide-based biomaterials consist of short

sequences of amino acids, which can produce self-
assembling scaffolds [256]. These scaffolds combine
the functionality of protein-based scaffolds by using
motifs derived from naturally occurring proteins
with the reproducibility of synthetic scaffolds. Many
of the peptide-based biomaterials can self-assemble
into 3D scaffolds using amphiphilic peptides, which
form aggregates in aqueous solutions. The Stupp

lab was one of the first groups to use such
self-assembling scaffolds for promoting the dif-
ferentiation of murine neural progenitor cells into
neurons [257]. These scaffolds contained the peptide
sequence IKVAV (isoleucine-lysine-valine-alanine-
valine) derived from laminin and this sequence had
been shown previously to promote neurite outgrowth
[258]. A similar approach was used to develop
self-assembling peptide scaffolds seeded with mes-
enchymal stem cells for bone tissue engineering
[259]. A variety of such self-assembling peptides
have been evaluated for stem cell applications both
in vitro and in vivo [260, 261]. Figure 6 shows repre-
sentative images of different types of self-assembled

Fig. 6. Atomic Force Microscopy (AFM) images of: A) Self-assembling peptide hydrogel pristine (SAP) or enriched with conjugates between
SAPs and adhesive peptides (called SAP-RGD and SAP-HVP) or decorated with a conjugate between SAP and Insulin-like Growth factor-1
(called SAP-IGF-1) at 4 10–5 M; and B) SAP-RGD, SAP-HVP and SAP-IGF-1 at 4 10–7 M on mica surface. This figure was reproduced
under a Attribution 4.0 International (CC BY 4.0). Figure taken from [261].
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peptide scaffolds as analyzed using atomic force
microscopy.

One popular self-assembling peptide called
RADA16-I has been combined with stem cells for
tissue engineering applications. Such scaffolds were
seeded with embryoid bodies derived from mouse
ESCs in the presence of osteogenic medium to
engineer bone tissue [262]. A follow-up study com-
bined these self-assembling peptides with the ceramic
hydroxyapatite, producing a more effective scaffold
for differentiating the mouse ESCs seeded inside
[263]. The Zhang lab altered the RADA16 sequence
to incorporate 18 different peptide motifs to deter-
mine the most appropriate scaffold material for
mouse adult neural stem cells [264]. More recent
work has shown that RADA16 scaffolds can be
combined with stem cells to engineer cardiac, neu-
ral, adipose and bone tissue [265–268]. As their
properties can be modified based on changing their

sequence, there are significant possibilities to extend
such peptide scaffolds for a range of tissue engineer-
ing applications.

CERAMIC-BASED BIOMATERIALS

Ceramics, inorganic materials formed through
treatment with heat, possess crystalline structures,
meaning they are often porous and brittle [269].
Commonly used ceramics include bioactive glass,
which consists of a mixture of silicon dioxide, sodium
oxide, calcium oxide, and phosphate oxide, [270]
and hydroxyapatite, a naturally occurring material
found in bone [271]. Other ceramic-based materi-
als exhibit similar properties and these materials,
along with hydroxyapatite, have been investigated
extensively in combination with stem cells for tis-
sue engineering of bone [206, 272–289]. Figure 7

Fig. 7. In vitro osteogenesis of interconnected porous hydroxyapatite (IP-CHA discs combined with rat MSCs. A) Alkaline phosphatase
(ALP) staining of IP-CHA discs, which were combined with MSCs and cultured in vitro for 14 days in non-osteogenic or osteogenic
differentiation medium. Each graph is composed of three groups: no osteogenic induction (left), plasma-untreated (center), and plasma-
treated (right) IP-CHA discs. ALP activity, B) and content of total protein, C) per MMCs/IP-CHA composite. D) ALP activity normalized
by the content of total protein. Data were represented as mean ± SD of 2 independent triplicate experiments. This figure reprinted under a
Attribution 4.0 International (CC BY 4.0) license. Figure taken from [290].
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shows an excellent example of how interconnected
porous calcium hydroxyapatite (IP-CHA) scaffolds
can direct MSCs to form bone tissue [290]. These
studies include both in vitro and in vivo testing of
these materials. The Caplan lab has done a great deal
of work characterizing the culture of mesenchymal
stem cells on ceramic materials as a way to engineer
bone tissue [279, 283, 286]. Other groups as well
have performed similar studies as reviewed recently
[291]. These ceramic-based materials can be com-
bined with biodegradable polymers, such as those
materials mentioned earlier in this review, to be used
for bone tissue engineering applications [292–294].
The use of composite materials allows for the ability
to deliver drugs and the fabrication of highly porous
structures necessary for stem cell infiltration when
tissue engineering. More recent work has focused on
how to use additive manufacturing to bioprint ceramic
scaffolds and related composites for tissue engineer-
ing applications, which is an important area for future
work [295].

CONCLUSIONS AND FUTURE STUDIES

This review detailed the most commonly used
biomaterial scaffolds for engineering tissues from
stem cells by covering the types of materials avail-
able and their unique properties. This information
allows readers to determine which material best suits
their specific application. As mentioned in earlier in
this review, many of these materials have not been
fully optimized for specific tissue engineering appli-
cations and further work will continue to optimize
these formulations for translation to the clinic for
targeted applications. For example, optimized scaf-
folds could enhance the survival and differentiation
of neural stem cells being transplanted into the dis-
eased or damaged nervous system, which could lead
to improved function. The type of material and the
cues that are incorporated in the scaffold play a
large role in directing the fate of the stem cells
seeded inside as detailed in this review. The abil-
ity to further functionalize the materials discussed
in this review in terms of their mechanical and chem-
ical properties provides an excellent opportunity for
future work, as such bioactive and instructive scaf-
folds can improve cell survival and differentiation
into the desired phenotypes. The method of fab-
rication serves as an important parameter, which
allows different types of patterns and architecture to
be formed, which include hydrogels, microcarriers,

fibers and 3D bioprinted constructs. In particular,
3D bioprinting offers the possibility of printing con-
structs to fill an injury site as well as the ability
to produce tissues with complex structures contain-
ing multiple cell types. Additionally, work remains
to make many of these biomaterials into printable
formulations that can support stem cell survival and
differentiation post printing. being able to incorporate
or produce a vascular network inside of engineered
tissues fabricated through traditional tissue engineer-
ing methods as well as using bioprinting remains
challenging, but may be addressed through complex
3D printing strategies or through other strategies. The
lack of a stable vasculature often restricts the size
of the constructs due to concerns about maintaining
cell viability in light of diffusion constraints. This
review provides an important overview of the gen-
eral concepts when combining biomaterial scaffolds
with stem cells for tissue engineering applications.
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