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Abstract. As is the case for many National Statistics Institutes, the United States Department of Agriculture’s (USDA’s) National
Agricultural Statistics Service (NASS) has observed dwindling survey response rates, and the requests for more information at
finer temporal and spatial scales have led to increased response burdens. Non-survey data are becoming increasingly abundant and
accessible. Consequently, NASS is exploring the potential to complete some or all of a survey record using non-survey data, which
would reduce respondent burden and potentially lead to increased response rates. In this paper, the focus is on a large set of records
associated with potential farms, which are operations with undetermined farm status (farm/non-farm) and are referred to here as
operations with unknown status (OUS). Although they usually have some agriculture, most OUS records are eventually classified
as non-farms. Those OUS that are classified as farms tend to have higher proportions of producers from under-represented groups
compared to other records. Determining the probability that an OUS record is a farm is an important step in the imputation process.
The OUS records that responded to the 2017 U.S. Census of Agriculture were used to develop models to predict farm status using
multiple data sources. Evaluated models include bootstrap random forest (RF), logistic regression (LR), neural network (NN),
and support vector machine (SVM). Although the SVM had the best outcomes for three of the five metrics, the sensitivity for
identifying farms was the lowest (13.8%). The NN model had a sensitivity of 80.5%, which was substantially higher than the other
models, and its specificity of 45.3% was the lowest of all models. Because sensitivity was the primary metric of interest and the
NN performed reasonably well on the other metrics, the NN was selected as the preferred model.
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1. Introduction

The United States Department of Agriculture’s
(USDA’s) National Agricultural Statistics Service
(NASS) conducts more than 100 surveys each year,
producing more than 400 agricultural reports annually,
and the Census of Agriculture (Census) every 5 years.
These reports are utilized for a variety of applications,
from public policy decisions to price estimates and re-
search. The published data are under strict confidential-
ity constraints. This requires that published granular-
level estimates (particularly at the county level) include
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enough producers in that area such that data can be ag-
gregated to protect confidentiality. This becomes more
challenging as the demand for information at finer tem-
poral and spatial scales increases. At the same time,
many survey areas, including agriculture, have observed
a steady decline in response rates over recent years [1,
2]. To conduct most surveys and the Census, NASS
uses a list frame, a comprehensive list of all known
and potential farms in the U.S. A farm is defined as a
place from which $1,000 or more of agricultural prod-
ucts were produced and sold, or normally would have
been sold, during the year, including any government
agricultural payments received. The list frame is up-
dated regularly to maintain current information on each
record and serves as the foundation for the development
of the Census Mail List.

NASS builds and improves the list frame on an on-
going basis. Lists are obtained from multiple sources,
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Fig. 1. Demographic characteristics of primary producers identified in farm and non-farm records in the 2017 U.S. Census of Agriculture.

including state and federal government agencies, pro-
ducer associations, and marketing associations. NASS
also obtains special commodity lists to address specific
deficiencies. These outside source lists are matched to
the NASS list frame using record linkage. Most of the
records obtained are already on the NASS list frame;
however, any record not currently on the frame is classi-
fied as a potential farm until NASS can confirm whether
the associated operation meets the definition of a farm.

Each operation on the list frame is assigned an active
status (AS) code to classify the record as an active, po-
tential, or inactive farm. Active records represent op-
erations that have been confirmed to be farms and are
thus assumed to have a high probability of representing
active farming operations. Potential farms are those op-
erations identified during the list building process as be-
ing associated with agriculture, but their farm status has
not been assessed and is thus unknown. Inactive records
may be associated with landlords, deceased producers,
farms no longer in business, etc. Some active records
represent agricultural establishments that operate land
but do not have sufficient production to be classified as
a farm in a specific year. These are maintained on the
list frame as active records to help ensure high coverage
of farms for the Census every five years.

Potential farms are periodically screened to deter-
mine whether they satisfy the definition of a farm. In
this effort, NASS conducts the National Agricultural
Classification Survey (NACS) each year. This survey
collects data from potential farms to establish whether
they meet the definition of a farm. The status code of
each responding record is changed to indicate the op-
eration is either a farm or a non-farm. The subset of
potential farm records that have not responded to any
NACS and thus have unknown farm status are classi-

fied as operations with unknown status (OUS) for the
current Census.

For the 2017 U.S. Census of Agriculture, 356,889
(12%) of the records on the Census list frame were
OUS records. Of these, 74,040 (22%) responded to the
Census and, of those responding, 20,414 (26%) were
farms. In comparison, the overall response rate for the
2017 Census, which included the OUS, was 72%. With
the low response rates and the small proportion of re-
sponding OUS records that are farms, OUS data collec-
tion costs tend to be high. However, the OUS records
identified as farms during the Census had significantly
higher proportions of producers from under-represented
groups, including female producers and producers of
Hispanic and non-white origin (Fig. 1). Obtaining re-
sponses from as many of these records as possible
would improve overall response rates, increase repre-
sentativeness, may lead to more precise estimates, and
could increase the number of published county-level
estimates.

The proportion of Census OUS records varies by
state, exceeding 30% in some states (see Fig. 2). The
Census response rates of OUS records and the propor-
tion of responding OUS records that are farms vary
by state (see Figs 3 and 4). Using 2022 administrative
and other non-survey data to complete the OUS records
would provide richer information for estimation while
potentially reducing respondent burden and costs. Be-
cause not all OUS records are farms, an important first
step is to estimate the probability of an OUS record
being a farm based on its characteristics. In this work,
it is assumed that records with the same characteris-
tics have the same probability of being a farm, whether
they responded or did not respond to the Census. How
these probabilities of records being a farm could be
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Fig. 2. Map of the proportion of 2017 U.S. Census of Agriculture records that were OUS.

Fig. 3. Map of the proportion of 2017 U.S. Census of Agriculture OUS records that responded.

used in the estimation process will be discussed in the
last section.

The USDA NASS uses various types of machine
learning to analyze agricultural data and derive mean-
ingful insights. NASS may use supervised learning
algorithms to forecast crop yields based on histori-
cal data, weather patterns, and other relevant factors.
Unsupervised learning algorithms are also utilized by
NASS to identify patterns and structures within agricul-
tural datasets without explicit labeling. Clustering algo-
rithms, such as K-means clustering, help NASS group

similar data points together, aiding in the identification
of trends or anomalies in agricultural production or land
use patterns. Additionally, NASS leverages ensemble
methods, such as random forests and gradient boosting,
to generate propensity scores for more efficient data
collection. NASS explores emerging techniques, such
as deep learning and natural language processing, to
extract insights from unstructured data sources, such
as satellite imagery and textual reports. Deep learning
algorithms, including convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), enable
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Fig. 4. Map of the proportion of responding 2017 U.S. Census of Agriculture OUS records that were farms.

NASS to analyze complex spatial and temporal patterns
in agricultural data, facilitating more comprehensive
assessments of crops, land use changes, and environ-
mental impacts. See [3,4,5] for a detailed overview of
current and past data sources and statistical techniques.

A few notable applications of machine-learning
within NASS include:

1. Crop Yield Prediction: Numerous studies have
focused on using machine learning algorithms
to predict crop yields based on various factors
such as historical yield data, weather patterns, soil
characteristics, and crop management practices.
The aim is often to improve the accuracy and
reliability of crop yield forecasts, aiding farmers,
policymakers, and other stakeholders in decision-
making processes [4,6,7].

2. Land Use Classification: Machine learning tech-
niques, including supervised and unsupervised
learning algorithms, have been applied to satellite
imagery and other remote sensing data to classify
land use and land cover types. These studies help
monitor changes in agricultural landscapes, assess
the impacts of land management practices, and
inform land-use planning initiatives [8].

3. Survey Methodology Optimization: USDA NASS
conducts numerous surveys to collect agricultural
data from farmers and other stakeholders. Ma-
chine learning algorithms have been utilized to
optimize survey methodologies, including sample
design, questionnaire design, and data collection

strategies, to improve the efficiency and accuracy
of data collection processes [9,10].

Here the study objective is to utilize the responses
from OUS records in the 2017 U.S. Census of Agri-
culture to develop a model that can be used to predict
whether an OUS record meets the farm definition. The
study was initiated to inform data collection and poten-
tial imputation for the 2022 Census. Thus, the time and
resources available for the study were limited.

In the next section, a detailed overview of the ap-
proach used in this study to predict which OUS records
are farms. The dataset composition, candidate model
specifications, and model comparison techniques are
described.

2. Methodology

Data used in this study were the 74,040 OUS records
that responded to the 2017 Census. Of these, 17,766
were classified as farms. The data were divided into
training (70%; 51,828 records) and testing (30%,
22,212 records) sets with equal proportions of farm and
non-farm records as suggested by Vrigazova [11]. In a
set of simulation studies using real data, Vrigazova [11]
found that splitting the dataset with the 70/30 train/test
proportion usually provides the most accurate results.
Agricultural variables were omitted from modeling for
two reasons: 1) the extremely sparse reporting of agri-
cultural information by the OUS farms in the 2017 Cen-
sus data; and 2) with rare exceptions, the 2022 OUSs
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Table 1
Model specifications for the random forest model

Specification
Trees 42
Rondom split points (node) 10
Bootstrap protocol WR
Impute iterations 2
Weights Yes

did not have agricultural data as these were still op-
erations that had not reported to NASS. Furthermore,
linkage between the OUS records and the NASS area
frame, which covers the conterminous U.S., is not a
viable option because the OUSs were not geospatially
linked to the area frame, which is needed to acquire the
information.

Variables available for analysis were:
– Year the record was linked to the list frame.
– Source of the record.
– Geospatial information: state, county, district, 5-

digit zip code, 4-digit zip code extension, and full
geographic variable (combination of these vari-
ables) for the operation location.

– Last date the record was considered active.
– Demographic information: race (white or non-

white), whether the producer was of Spanish or
Hispanic origin (yes, no, or unknown), age cate-
gory (< 25, 25–34, 35–44, 45–54, 55–64, > 65),
and sex of the principal producer (male, female,
or unknown).

– Indicator variables for whether the record included
a producer or other phone number, with values of
1 indicating the presence of a phone number and 0
indicating no phone number.

– Indicator variable for whether the record was
flagged as a high impact record, with a value of 0
indicating a normal record and a value of 1 indi-
cating a record that required data collection or im-
putation (in cases of refusal or inaccessibility to a
respondent) due to its expected impact on specific
commodity (commodities).

Responding OUS records to the 2017 Census do have
some agricultural data, but all records need to have
this information for them to be useful in the modeling
process.

Machine learning models were developed to pre-
dict OUS farm status using R and python. The boot-
strap random forest (RF) was trained and tested in the
R randomForestSRC-package [12] with specifications
shown in Table 1. Logistic regression (LR) was con-
ducted in R using the function glm() from the package
stats, which uses the Fisher scoring algorithm [4]. Neu-

ral network (NN) and support vector machine (SVM)
were trained and tested in python. In particular, the
NN was implemented using the keras API provided
by the tensorflow package [13,14,15,16,17], and the
implementation of Support Vector Classifiers (SVCs)
available from the scikit-learn package was used for
the SVM. Furthermore, all four models were trained
using weights. These weights were included to cope
with unbalanced data by adjusting for the proportion of
records classified as farms vs. non-farms.

The SVM model was trained using the default set-
tings of the SVM algorithm in the scikit-learn package.
That is, the regularization parameter was set to one, and
the kernel was formulated as a radial basis function with
scale parameter equal to , where denotes the number of
variables. In general, the approach proposed by [18] is
adopted to compute probabilities for multi-class classi-
fication problems. However, the probabilities from the
binary SVC in this paper were calibrated using Platt’s
scaling method [19], which uses 5-fold cross-validation
on the training data to fit logistic regressions on the
SVM scores. Because the classification probabilities
were calibrated, the outputs of the SVC were in the
interval [0, 1].

The NN model was designed to account for inter-
action between pairs of hidden layers. See Table 2 for
more information about the architecture of the network.
The training of the NN model was performed by mini-
mizing the binary cross entropy loss function with the
RMSprop optimization algorithm [20]. Because this al-
gorithm is based on the concept of stochastic gradient
descent, the records were randomly assigned to their
respective mini batches. Using default values, the size
of the mini batches was kept at 32 samples; a single
epoch was performed; and the optimization method
used a learning rate of 0.001, a discounting factor of
0.9, and zero momentum. Because the sigmoidal acti-
vation function was used as the output layer in the NN
model, the resulting probabilities were in the interval [0,
1]. Due to memory constraints, the ZIP-code indicator
variables were not used in the NN.

Using the validation data, all models were evaluated
for accuracy, sensitivity, specificity, and area under the
receiver-operating characteristic curve (AU-ROC). In
the context of this study, accuracy is defined as the pro-
portion of records that were correctly classified by the
model (correctly identified as a farm or as a non-farm).
Sensitivity is the proportion of farms that were cor-
rectly classified by the model. Specificity is the propor-
tion of non-farms that were correctly classified by the
model. The AUC is the area under the Receiver Oper-
ating Curve (ROC), which is a plot of the sensitivity
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Table 2
Structure of the neural network used for identifying farms with active status

Layer type Output neurons Processed information received from layer
Input Layer 18
Dropout at 25% 18 1.
Dense with linear activation 32 2.
Dense with rectified linear units 32 2.
Multiply (i.e., concatenate with interactions) 1088 (3., 4.)
Dropout at 50% 1088 5.
Dense with rectified linear units 4 6.
Dense with rectified linear units 4 3.
Multiply (i.e., concatenate with interactions) 24 (7., 8.)
Dropout at 5% 24 9.
Dense with sigmoidal activation (in output) 1 10.

Table 3
Variable importance computed using the weight values from the neural network

Variables Importance
Year record added to the list frame 2.49
Source of record 2.49
Indicator of whether the record is expected to have a major impact on a commodity’s estimate 2.21
State 2.16
Sex of the producer 2.15
Indicator that the primary producer is Hispanic 2.07
Primary producer’s age category 2.03
Agricultural district 2.02
County of the operation 2.01
Date last active 2.01
Other phone number indicator 1.99
Phone number indicator 1.94
Producer race 1.91

Table 4
Model evaluation metrics for model performance in predicting farm
status of records in the testing data set

Metric RF SVM NN LR
Accuracy1 67.26% 72.90% 53.80% 66.40%
Sensitivity2 66.75% 13.80% 80.50% 67.30%
Specificity3 67.42% 96.40% 45.30% 66.20%
Precision4 27.05% 54.30% 31.70% 38.60%
AUC5 72.63% 72.50% 72.10% 71.80%

1Accuracy = number of correct predictions/total number of records.
2Sensitivity = number of farms correctly identified/number of
true farms. 3Specificty = number of non-farms correctly identi-
fied/number of non-farms. 4Precision = number of farms correctly
identified/number of records predicted as farms. 5Area under the
Receiver Operating Curve = measure of the ability of the model to
distinguish between farms and non-farms; range 0.5 to 1.0 (higher
values indicate a better fit model).

versus (1 – specificity). The AUC can be between 0.5
and 1.0, with higher values indicating a better model.
Model comparisons were based on all metrics; however,
sensitivity was considered the most important model
outcome. In the Census, further record evaluation and
imputation processes may remove records as non-farms
after this initial classification, so misclassifying a record
as a farm was considered less important than potentially
missing records that were farms.

3. Results

All models included all variables. For the LR model,
all variables were significant (p 6 0.05). A record was
classified as a farm or non-farm if the estimated prob-
ability of it being a farm was, respectively, at least 0.5
or below 0.5. There are two ways to compute variable
importance from a NN. The first approach looks at the
gradient of the network output with respect to the in-
put variables. However, this approach is not suited to
assessing variable importance when using dummy vari-
ables representing categorical input data. Therefore, the
variable importance shown in Table 3 is computed using
the weights of neurons associated with inputs having
higher contributions to the final model predictions [21].
The computed importance varies between 1.91 and 2.49
for the categorical variables, racial group and year the
record was linked to the NASS list frame, respectively.
The most important variables (i.e., top-five variables in
Table 3) are the year that the record was first added to
the list frame, the source of the record (farm association
membership, meeting, etc.), whether the operation was
impactful for estimates associated with a specific com-
modity, the state, and the sex of the primary producer
with importance over 2.15.
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The overall accuracy of a classification approach
based on the majority class observed in the training set
(i.e., classifying all records as non-farms) was 76% for
the validation set, which is greater than that of any of
the fitted models (see Table 4). However, the sensitivity
and specificity in the validation set were 0% and 100%,
respectively. The four fitted models have much higher
sensitivity at the cost of a lower specificity. Therefore,
the four fitted models provide a higher applicate value
for the correct identification of farm status among the
true farms within OUS records. Conversely, assuming a
classification approach based on the minority farm, the
results from the validation data would have been a 23%
overall accuracy, 100% sensitivity, and 0% specificity.
However, this approach could result in a large percent-
age (∼ 76%) of records being incorrectly classified as
farms and inappropriately being included in the Census.

SVM had the best outcomes for three of the evalua-
tion metrics (accuracy, sensitivity, and specificity, see
Table 4). The RF and LR models produced comparable
results in accuracy, sensitivity, and specificity, and the
precision of the RF model (27.05%) was below that
of the LR model (38.6%). The NN produced the high-
est sensitivity (80.5%), and the SVM had the smallest
(13.8%). These values indicate that the NN was much
better able to identify true farms. The cost of these pos-
itive identifications was lower specificity of the NN
(45.3%) compared to the SVM (96.4%). Given that sen-
sitivity was identified as the most important metric and
the specificity is still reasonable, the NN was identified
as the best model.

4. Discussion

The U.S. has a de-centralized Federal Statistical Sys-
tem (FSS). The laws governing the protection of respon-
dents’ data are usually specific to each agency within
the USFSS. As examples, Title 7 governs how NASS
is to protect the data it collects whereas Title 13 deter-
mines the confidentiality constraints of the U.S. Cen-
sus Bureau. Thus, gaining access to administrative and
other non-survey data for imputation is more complex
than in numerous other countries. Yet, increasingly,
agencies within the FSS are working across agency
boundaries in their efforts to explore opportunities to
decrease or eliminate respondent burden by using di-
verse data sources to obtain the information needed to
produce official statistics.

NASS has begun identifying data sources that can be
used to complete some or all of the responses for its

2027 U.S. Census of Agriculture. The OUS project de-
scribed here is an initial step in that direction. Modeling
the probability of an OUS record meeting the definition
of a farm, and the extension to other records on the
NASS list frame, has application beyond the Census.
Costs may be reduced by incorporating the probability
of a record representing a farm into the data collection
process. Sample selection could be informed by this
probability, and the number of contact attempts could
also vary with the probability of the operation being a
farm.

In all models, it was assumed that the probability of
an OUS record is associated with a farm is the same
whether the producer responded to the Census. Assess-
ing the validity of the assumption is a major challenge
as most nonresponding OUS records have been con-
tacted numerous times without obtaining a response.
One approach may be to evaluate the proportion of re-
sponding OUS records that are found to be farms after
each contact. Recall that once an OUS responds the op-
eration is classified as a farm/nonfarm and is no longer
an OUS. If the proportion classified as farms is the same
after the first, second, and subsequent contacts, then the
assumption is more likely to be valid than if the propor-
tion of farms decreases (or increases) with each contact.
If the rate of decrease can be quantified, perhaps an
adjustment for nonresponse bias can be developed. This
is an area for future research.

For this application, it was decided to identify those
records most likely to be farms and to impute only for
those records. The alternative was to weight each record
by its probability of being a farm. Because OUSs are a
rich source of information on under-represented groups,
this approach could lead to imputing records for these
groups in counties without any producers in that group.
For example, an estimate of the number of Asian fe-
male producers could be provided for a county without
any producers in this demographic group. Whether this
would have been an issue needs to be further studied.
Because the proportion of OUS records representing
farms is small, failing to either classify records as being
farms or non-farms or adjust a record’s weight by the
probability of it being a farm, would lead to an upward
bias in the estimated total number of OUS farms. The
uncertainties associated with estimating the probabili-
ties and the subsequent classification of records as farms
and non-farms should be reflected in the uncertainties
of the subsequent population estimates. How best to do
that is another area of potential research.

These models could be modified or re-evaluated for
improvement. As artificial intelligence (AI) and other
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data science methods become available, the choices of
data and potential models are growing, and the prob-
ability of a record being associated with a farm will
become more precise. In addition, the models should
be generalized for repeated use over time. As an ex-
ample, as one referee noted, recasting the time related
variables of “Year” and “Time Since Last Active” as
values relative to a meaningful reference point could
ensure temporal validity when applying the models in
later years.

With the current approach, the probability cutoffs for
classifying a record as a farm could be modified to favor
sensitivity or specificity, depending on the importance
of misclassification type. Over-predicting records as
farms would increase the number of actual farms de-
tected and reduce the risk of not including these records.
However, it would also increase the number of non-
farms included, which could reduce estimation accu-
racy or increase cost. This balance should be carefully
considered for final model determination.

Future model evaluation should also include a com-
parison of misclassification rates. Accurate represen-
tation of minority producers (e.g., female and/or non-
white) is an important goal for the USDA. To determine
any model bias associate with any specific group, the
misclassification rates across all demographic groups
of producers should be evaluated and, if needed, model
adjustments should be made to eliminate bias.

The distribution of OUS records and the proportion
meeting the definition of a farm may differ across Cen-
sus cycles. Utilizing past Census data to predict the
status of future records may not be sufficient. If this is
the case, the models may only be applicable for post-
data collection imputation, using the current OUS re-
sponses for model development. If the models are accu-
rate across Census cycles, they could be used before sur-
vey administration to inform mailing and nonresponse
follow-up.

Because the OUS records have never responded to
any NASS survey, the amount of information and vari-
ables available for modeling these records is minimal.
Identifying additional potential sources, such as admin-
istrative and web-scraped data, may lead to additional,
useful information for the modeling efforts.
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