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Abstract. Taking a representative sample to determine prevalence of variables such as disease or vaccination in a population
presents challenges, especially when little is known about the population. Several methods have been proposed for second stage
cluster sampling. They include random sampling in small areas (the approach used in several international surveys), random
walks within a specified geographic area, and using a grid superimposed on a map. We constructed 50 virtual populations with
varying characteristics, such as overall prevalence of disease and variability of population density across towns. Each population
comprised about a million people spread over 300 towns. We applied ten sampling methods to each. In 1,000 simulations, with
different sample sizes per cluster, we estimated the prevalence of disease and the relative risk of disease given an exposure and
calculated the Root Mean Squared Error (RMSE) of these estimates. We compared the sampling methods using the RMSEs. In
our simulations a grid method was the best statistically in the great majority of circumstances. It showed less susceptibility to
clustering effects, likely because it sampled over a much wider area than the other methods. We discuss the findings in relation to
practical sampling issues.

Keywords: Sampling methods, Extended Program on Immunization (EPI), virtual populations, computer simulation, global
positioning systems (GPS), small area sampling, random walk

1. Introduction1

Health surveys in various parts of the world are con-2

ducted to estimate (for example) prevalence of disease3

or immunization, or relative risk (RR) of disease given4

exposure to a putative hazard. Conducting these surveys5

can be challenging when relevant information on the6

population of interest is limited. Surveys typically use7

multi-stage sampling. Our paper explores the impact of8

differences at the stage of sampling households.9

Various survey methods have been proposed for low-10

information scenarios; some have been applied in the11

field. The World Health Organization (WHO) devel-12

oped a random walk methodology to estimate immu-13

nization rates in young children as part of the Extended14

Program on Immunization (EPI) [1]. This approach se-15
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lects 30 towns as Primary Sampling Units (PSUs) using 16

probability proportional to size (PPS). To overcome the 17

lack of a complete list of households, surveyors iden- 18

tify a central landmark in each town, choose a random 19

direction, identify all households along that direction to 20

the edge of the town, and randomly choose one as the 21

starting household. Additional households are selected 22

using a ‘nearest neighbor’ process until the required 23

sample size is reached. We label this approach ‘EPI’. 24

(The figures in the Appendix show graphically how it 25

and other sampling methods are applied.) 26

EPI has limitations – in particular, the sampling prob- 27

abilities are undetermined, making it difficult to con- 28

struct adjusted, unbiased estimates from the survey re- 29

sults. Several authors have proposed modifications. For 30

example, Bennett et al. [2] suggested several approaches 31

to ensure a wider geographic dispersion of the sam- 32

ple. One method divided the town into four quadrants 33

and applied the EPI approach to select a quarter of the 34

sample from each quadrant (‘Quad’). They proposed 35
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additional options: taking half the sample from the cen-36

tre of the town and half from the edge; taking every37

third nearest house; and taking every fifth nearest house.38

Grais et al. [3] recognized that EPI biases the starting39

house to be close to the center of the town and proposed40

an alternative method to identify the starting household.41

However, none of these changes allows the estimation42

of sampling probabilities.43

Kolbe et al. [4] made use of satellite images and44

Global Positioning Systems (GPS). They randomly45

chose GPS points within the survey area, drew circles46

around them on the images, numbered the buildings47

in the circle, and randomly chose one building from48

each circle. Shannon et al. [5] suggested a variant to49

avoid the overlap that can occur with circles: super-50

imposing a grid of squares over the images of towns,51

randomly sampling several squares from each town,52

and randomly sampling a building from each square53

(‘Square’). Ambiguities about buildings that overlap the54

edges of squares can be resolved by assigning buildings55

to a square based on the side on which the building falls,56

e.g. north/west vs. south/east. (Appendix Fig. A3 shows57

a schematic figure for the Square method.) The Square58

and Circle methods produced very similar results. Since59

the Square approach avoids overlap, we include it and60

not the Circle method in this paper.61

Several surveys (e.g., MICS [6]; Demographic and62

Health Surveys [7]) sample small areas (typically cen-63

sus Enumeration Areas), identify all households in64

those areas, and take random samples of the house-65

holds in each area. The WHO has revised its EPI evalu-66

ation and uses this procedure of sampling small areas67

(‘SA’) [8]. The Afrobarometer surveys [9] use this ap-68

proach when possible; when it is not, sampling adapts69

EPI by taking every 10th household in a randomly cho-70

sen direction from a randomly chosen point.71

Some simulations have assessed whether the EPI72

method was ‘good enough,’ i.e., whether the biases and73

variances of the estimates were sufficiently small for the74

survey’s purposes [10,11]. Bennett and colleagues [2]75

concluded that the variants they suggested performed76

better than the EPI approach. Himelein et al. [12] found77

that a random walk method performed poorly in esti-78

mating a continuous variable, household consumption.79

We have conducted a simulation study to compare80

the performance of a selected set of different sample81

designs in estimating prevalence of a variable and RR82

of a disease given an exposure. We also examined how83

the performance of the methods depended on character-84

istics of the populations. We looked at sampling meth-85

ods under ideal conditions and did not consider practi-86

cal issues in surveys, which are discussed by Cutts et 87

al. [13]. 88

We investigated ten methods, including the variants 89

of the EPI technique described by Bennett et al. [2]. For 90

clarity, we report only on simple random sampling and 91

four other selected methods in this paper: EPI, Quad, 92

Square, and SA. We exclude most variants of the origi- 93

nal EPI evaluation. The variant we do include (Quad) is 94

the one that performed best in our simulations. Descrip- 95

tions of all the methods and full results can be found at 96

https://zenodo.org/record/7734149#.ZBtgDPbMLIx. 97

2. Methods 98

Our broad approach was as follows: 99

– Create 50 virtual populations with known charac- 100

teristics (parameters), including allocation of dis- 101

ease or vaccination status and an exposure and dis- 102

ease status for different relative risks (RRs) from 103

that exposure. 104

– Simulate different sampling methods to take 1,000 105

samples from the populations for each method. 106

– Estimate the prevalence of disease and the RRs 107

from an exposure for each sample. 108

– For each method, compute the Root Mean Square 109

Error (RMSE) of the 1,000 estimates. 110

– Compare the RMSEs for the different sampling 111

methods both overall and in relation to the popu- 112

lation characteristics. 113

Henceforth, we label the binary outcome ‘disease.’ 114

2.1. Creating the virtual populations 115

The simulation program was written to be extremely 116

flexible. A variety of parameters was chosen, as we 117

attempted to mimic how those parameters might vary 118

in real life. We varied parameters for the overall pop- 119

ulations and for characteristics of towns, households, 120

and individuals within populations. To consider a broad 121

range of many different parameters we used a ‘Latin 122

hypercube’ approach [14], treating the parameters as 123

measures that varied in small increments within a pre- 124

specified range and ensuring unique combinations of 125

the parameters. The technique is in effect a stochastic 126

form of fractional factorial design that works well with 127

large numbers of parameters. The procedure is complex 128

and in this main text we provide an overview of what 129

we did. Further technical detail and a list of parameters 130

is included in the Appendix. 131

2.1.1. Overall population 132

To create each simulated population, we randomly 133

sampled one of the possible values for each parameter 134
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without replacement. For example, for the mean sizes135

of households the range was from 2 to 5, varying by136

units of 0.06. Since we created 50 populations with137

characteristics varying between and within the towns,138

we allowed 50 values for the parameters, and the Latin139

Hypercube approach ensured we used each of those140

values in exactly one simulated population. Other pop-141

ulation parameters included the target disease preva-142

lence (range 0.1 to 0.5), number of disease pockets per143

town (0 to 10, integer values only; also see below), and144

prevalence of exposure.145

2.1.2. Distributing the population among towns146

Each population created was distributed among147

cities, towns and villages (henceforth, simply ‘towns’)148

using a Pareto distribution. We created 300 towns, with149

population sizes between 400 and 250,000. Each town150

was geographically represented as a square,151

2.1.3. Distribution of households within towns152

Given a parameter value for a population, the actual153

value for a particular town was randomly chosen from a154

normal distribution centred at the population value with155

a small variance to reflect variation within populations.156

Within each town, we divided the area into 100 smaller157

squares (a 10× 10 grid), labelling the axes x and y. The158

values of x and y were used to determine the overall159

characteristics of people living in each sub-area. The160

first determination was the range in the density between161

the most and the least densely populated sub-areas. The162

density varied linearly with each of x and y, so that163

the minimum and maximum densities were at opposite164

corners of each town.165

The households were placed randomly within each166

square. To enable precise placement, we used floating167

point variables for each of the x and y axes. We did not168

require a minimum distance between households; any169

households close together could be considered to be part170

of a multi-residence building. The number of people in171

a household was randomly determined, based on the172

hypercube value for the mean number per household,173

using a zero-truncated Poisson distribution. The first174

two people in the household were taken to be adults,175

and additional members were designated as children.176

Using the linear function that determined the popula-177

tion density, households were added until the sub-area178

had the predetermined number of people. We allocated179

an income to each household based partly on its two-180

dimensional location. For each individual we specified181

their age (adult vs. child). Appendix Table A1 shows182

the parameters used in the simulations, and the ranges 183

of possible values allowed. 184

We incorporated ‘pocketing’, the presence of small 185

areas with particularly high prevalence, representing a 186

local spread of infection. This was done by randomly 187

identifying points that were the centres of pockets. The 188

number of pockets per town was randomly chosen for 189

each population. Each pocket added to the risk of dis- 190

ease for everyone in the town. The risk declined rapidly 191

with distance from the centre of the pocket, using one 192

of three kernel types: exponential, inverse square, or 193

Gaussian. For most people the additional risk was min- 194

imal. 195

2.1.4. Determining disease status of individuals 196

Each individual’s disease status was based on their 197

computed risk, which was in turn based on several fac- 198

tors. Once the background disease risk for a sub-area 199

was determined, we further adjusted the probability 200

based on household income and age. Each person’s ac- 201

tual disease status was determined randomly based on 202

the adjusted probability. (See Appendix for more de- 203

tail.) The random determination of disease status meant 204

that the prevalence in a population differed from the 205

target value that had been chosen. 206

2.1.5. Relationships between disease and exposure 207

We also incorporated bivariate relationships between 208

variables representing an exposure and a disease. The 209

likelihood of exposure varied across the population de- 210

pending on the location of the household. We consid- 211

ered relative risks (RRs) of 1.0, 1.5, 2.0, and 3.0. To 212

program these, we assigned a different disease for each 213

RR; for Disease 1 (the disease status described above) 214

we had RR = 1.0, for Disease 2 we had RR = 1.5, etc. 215

Each disease status for individuals was based on the 216

exposure level (present/absent), the background disease 217

risk, and the relative risk. For example, if the back- 218

ground disease risk was 0.1, the relative risk of Dis- 219

ease 3 was 2.0, so the risk was the product, 0.2 and 220

individuals were assigned Disease 3 status randomly, 221

with binomial probability of 0.2. When the background 222

prevalence and the RR were high, the product could be 223

a probability greater than 1, so we ‘capped’ probabili- 224

ties at 0.9. As with prevalence, the actual RRs differed 225

from the target values. 226

2.1.6. ‘Control’ populations 227

Three additional populations were created with dif- 228

ferent prevalences but no variation in the parameters 229

across or within the towns. These provided a ‘control’ 230

for our procedures. 231
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2.2. Choice of sampling methods232

We included the original EPI as it was the stan-233

dard for many years and we wanted to confirm that its234

known flaws would affect its statistical properties. We235

added variants of EPI to see if increasing the geographic236

spread of the sample led to a reduction in any bias. As237

noted, we only show the results for Quad, which was the238

best performing variant. Small Area (SA) sampling was239

included as it is used in a number of surveys, including240

the updated version of EPI. Finally, Square has been241

used, albeit infrequently, but has never been evaluated.242

2.3. Applying the sampling methods243

The methods all used a cluster sampling design.244

Apart from SA, the PSUs were towns. Thirty PSUs245

were selected using Probability Proportional to Size246

(PPS). We followed the approach used by, inter alia,247

EPI [8: Appendix D]. In practice, this is Probability248

Proportional to Estimated Size (PPES) since the PSU249

sizes are not known exactly. We used two ways to iden-250

tify PSUs for the simulations. The first (‘same PSUs’)251

identified 30 PSUs which were used to obtain all 1,000252

sets of simulated samples. The second approach (‘re-253

sampling’) took a fresh sample of PSUs each time a254

new set of samples was taken. A set consisted of the255

three samples sizes (210, 450, and 900) x five sampling256

methods, i.e., 15 samples. One thousand sets of samples257

were taken.258

Households were selected in each PSU until the spec-259

ified sample size of individuals was reached. Sometimes260

the PPS selection method chose a town more than once.261

If the town was chosen k times, then k samples were262

taken from the town.263

The sampling methods within the PSUs were.264

2.3.1. Simple random sampling – ‘Random’265

Simple random sampling (SRS) selected households266

with equal probability within PSUs. While logistically267

impractical in real-life populations, SRS was our stan-268

dard for comparisons of the methods (See Appendix269

Fig. A1).270

2.3.2. The original EPI method – ‘EPI’271

We followed the original Extended Program on Im-272

munization (EPI) random-walk approach [World Health273

Organization, 2005] described above. We used the cen-274

tre of the town in place of a landmark. In practice build-275

ings occupy an area in two dimensions, whereas we276

placed each building at a point. So instead of drawing a277

line from the centre of the town to the edge, we drew 278

a narrow strip, symmetrical about the random direc- 279

tion, and identified buildings in that strip. We randomly 280

chose one as the starting household and identified near- 281

est neighbors (in Euclidean distance) until the required 282

sample size was achieved (See Appendix Fig. A2). 283

2.3.3. Selecting parts of the sample from each 284

quadrant – ‘Quad’ 285

We divided each selected town into four quadrants 286

and applied the original EPI method (Appendix Fig. A2) 287

to each of them, replacing the central landmarks with 288

the centres of the quadrant. Bennett et al. [1994] took a 289

quarter of the sample from each quadrant. Our sample 290

sizes per town were not divisible by four, so we ensured 291

the sample size per quadrant was as even as possible, 292

randomly determining which areas would have an extra 293

‘participant’. 294

2.3.4. Square grid – ‘Square’ 295

We constructed a 64 × 64 grid of squares over 296

each town. We randomly sampled squares, then one 297

household within each square, and continued until 298

the required sample size was reached. (See Appendix 299

Fig. A3). 300

2.3.5. Small areas as PSUs – ‘SA’ 301

We constructed SAs by dividing towns into rectan- 302

gular areas with between 50 and 100 households. SAs 303

were chosen randomly from the whole population using 304

probability proportional to size and households were 305

randomly selected from each of the selected EAs until 306

the target sample size was attained. 307

2.3.6. Sample size per PSU 308

Within each town (or SA), for each sampling method 309

we used three sample sizes: 7, 15, and 30 children per 310

PSU chosen. The samples were chosen independently, 311

and yielded overall sample sizes of 210, 450, and 900. 312

For each sample size, we conducted 1,000 simulations 313

of the sampling. 314

2.4. Analysis 315

2.4.1. Calculating probabilities of selection 316

The original EPI methodology treats samples within 317

towns as simple random. Under this assumption, since 318

towns are selected with probability proportional to size, 319

these samples are self-weighting, i.e., the probability of 320

selecting any individual in the population is constant. 321

We assumed this property also applied for Quad and 322



co
rre

cte
d p

roo
f v

ers
ion

Galley Proof 11/04/2024; 16:40 File: sji–1-sji230021.tex; BOKCTP/yn p. 5

H.S. Shannon et al. / A simulation study of sampling in difficult settings: Statistical superiority of a little-used method 5

SA. For the Square method, we estimated the overall323

probability of selecting an individual in the sample by324

multiplying together the probabilities of selecting the325

town, selecting the squares within the town (account-326

ing for empty squares), and the household within the327

square (accounting for households with no children).328

The sampling weight was the inverse of this overall329

probability.330

2.4.2. Calculating Prevalences and Relative Risks331

For each sample size (210, 450, or 900) we computed332

the four prevalences of disease and the RRs, applying333

sampling weights when appropriate, for each of the334

1,000 simulations. Since the true prevalences and RRs335

were known, we computed the error of each sample336

(sample estimate minus true value) and took the mean337

of those 1,000 values to estimate the bias.338

We computed the variance of the estimates across339

the 1,000 simulations. We used the bias and variance to340

compute the Mean Squared Error (MSE), where341

MSE = (Bias)2 + Variance

= Mean{(Estimate− True Population Value)
2}

The Root Mean Squared Error (RMSE), the square342

root of the MSE, was our measure for comparing the343

sampling methods.344

Actual surveys, of course, are only conducted once345

and variance estimates of the proportions must be calcu-346

lated directly from a single sample. For EPI and Quad,347

one can use equation 2 in Brogan et al. [16]. For SA348

and Square, one can apply the approach described in349

WHO’s Reference Manual [8:70 and Annex K]. Stata350

programs for the computations are available at Vacci-351

nation Coverage Quality Indicators [17].352

2.4.3. Overall comparisons of the sampling methods353

We compared the sampling methods in two ways:354

firstly, for each population (and sample size) we ranked355

the RMSEs for the four methods. Lower RMSEs had356

lower ranks. We calculated the mean rank for each sam-357

pling method across the 50 populations.358

Secondly, for each population (and sample size) we359

took the ratio of the RMSE for the sampling method360

to the RMSE for simple random sampling, our gold361

standard. We calculated the mean of these ratios for the362

50 populations and compared the means between the363

sampling methods.364

2.4.4. Impact of the population parameters365

We also wanted to learn how the RMSE varied with366

different values of the parameters used to construct the367

Table 1
Mean ranks of RMSEs for relative risk = 1.0 and same PSUs are
sampled

Sampling method Mean ranks when estimating
Prevalence Relative risk

n = 7 15 30 n = 7 15 30

SA 2.74 2.74 2.74 3.06 3.40 3.26
Quad 2.30 2.38 2.44 1.72 1.68 1.92
Square 1.22 1.08 1.12 2.10 1.56 1.38
EPI 3.74 3.80 3.70 3.12 3.36 3.44

Note: RMSE = Root Mean Squared Error. PSU = Primary Sampling
Unit. For this and other tables of rankings, a low ranking represents a
lower RMSE, so is ‘better’. (1 = lowest RMSE, 4 = highest RMSE.)
The first three columns of data show the mean rankings for RMSEs of
prevalence estimates for the three sample sizes within clusters (n =
7, 15, or 30). The other three columns show the mean rankings for
the RMSEs of estimates of relative risks. See text for description of
sampling methods and supplementary material for full set of tables.

Table 2
Mean ranks of RMSEs for relative risk = 3.0 and same PSUs are
sampled

Sampling method Mean ranks when estimating
Prevalence Relative risk

n = 7 15 30 n = 7 15 30

SA 2.70 2.76 2.62 3.12 3.40 3.16
Quad 2.38 2.38 2.42 1.78 1.68 2.02
Square 1.26 1.14 1.22 2.02 1.64 1.34
EPI 3.66 3.72 3.74 3.08 3.28 3.48

See footnote to Table 1.

populations. We created graphs showing the RMSEs for 368

the different methods in relation to the parameter val- 369

ues. We smoothed the plots using generalized additive 370

models. 371

2.5. Computing 372

The creation of the populations and simulations 373

of sampling were conducted on a modern high- 374

performance cluster: we used SHARCNET, a compu- 375

tational resource supported by a consortium of Ontario 376

universities [15]. The two runs used for our final data 377

took approximately 380 processor hours. The computer 378

code and other details of the methods are available 379

in our Supplementary material at https://zenodo.org/ 380

record/7734149#.ZBtgDPbMLIx. 381

3. Results 382

3.1. Overall analyses of RMSE Ratios and their ranks 383

3.1.1. Mean ranks 384

Tables 1 and 2 show the mean ranks for when the 385

Relative Risk was 10 and 3.0, respectively, and the same 386
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Table 3
Mean ratios of RMSEs for relative risk = 1.0 and same PSUs are
sampled

Sampling method Mean ratioss when estimating
Prevalence Relative risk

n = 7 15 30 n = 7 15 30

SA 1.18 1.41 1.62 1.08 1.31 1.44
Quad 1.23 1.43 1.75 1.33 1.05 1.16
Square 1.01 1.04 1.07 1.22 1.00 0.99
EPI 1.39 1.73 2.15 1.49 1.34 1.55

Note: RMSE = Root Mean Squared Error. PSU = Primary Sampling
Unit. The first three columns of data show the mean RMSE ratios
(ratio of RMSE for the sampling method: RMSE for simple random
sampling) for the prevalence estimates for the three sample sizes
within clusters (n = 7, 15, or 30). The last three columns show the
mean RMSE ratios for estimates of relative risks. The same towns
were sampled for all 1,000 simulations. See text for description of
sampling methods and supplementary material for full set of tables.

Table 4
Mean ratios of RMSEs for relative risk = 3.0 and same PSUs are
sampled

Sampling method Mean ratioss when estimating
Prevalence Relative risk

n = 7 15 30 n = 7 15 30

SA 1.26 1.55 1.83 1.15 1.32 1.41
Quad 1.35 1.63 2.01 1.00 1.03 1.20
Square 1.03 1.06 1.11 1.00 0.98 0.99
EPI 1.52 1.94 2.43 1.16 1.32 1.58

See footnote to Table 3.

towns were ‘reused’ for each of the 1000 simulations.387

(The results for other situations are similar and shown388

in the Supplementary material.)389

For estimates of prevalence, the Square method was390

the best, with mean rankings lower than (i.e., better391

than) those of other methods. Indeed, it ranked the best392

for at least 40 of the 50 populations regardless of the393

sample size or the sampling of towns. SA and Quad394

were similar. The EPI method was generally worse.395

Overall, the mean rankings did not change much with396

sample size.397

For estimates of Relative Risk, the picture is a little398

different. For the sample sizes of 7 per PSU, the Quad399

method had the lowest mean ranks. For 15 per PSU, the400

mean ranks for Quad and Square methods were very401

similar. For the largest sample size (30 per PSU) the402

Square technique was the best.403

3.1.2. Means of ratios of RMSEs404

The means of the ratios of RMSEs (to the RMSEs405

for simple random sampling) are shown in Tables 3406

and 4 for Relative Risks of 10 and 30 when the same407

towns were used for each of the 1,000 simulations.408

Once again, results for other cases are similar and are409

included in the Supplementary information. We also 410

examined the results graphically (Fig. 1). Part (a) shows 411

RMSE ratios when estimating prevalence for RR = 1.0 412

and the same towns were used for the simulations. Part 413

(a) is typical of the graphs for the other conditions. Part 414

(b) shows the results when estimating RR under the 415

same conditions. Other graphs (in the Supplementary 416

information) show mostly similar patterns reflecting the 417

results seen in Tables 3 and 4. 418

For estimating prevalence, the Square method was 419

always best – it had the lowest mean ratios, which were 420

close to 1 for all sample sizes, indicating that the RM- 421

SEs were similar to those from simple random sampling 422

(SRS). Notably, the other methods had mean ratios that 423

increased with sample size per PSU. With SRS, sta- 424

tistical theory predicts that an increase in sample size 425

from 7 to 30 per PSU will reduce the variance of es- 426

timates by a factor of just under a quarter (7/30). The 427

increase in the ratios indicated that these methods ben- 428

efited less from larger sample sizes. This disadvantage 429

likely reflects some intracluster correlation due to the 430

homogeneity of people in neighbourhoods. This result 431

was not surprising, since these methods sample close 432

neighbours within clusters. 433

One might have expected the Quad approach to be 434

relatively free of this property, since it samples from 435

different areas of the PSUs, but it also showed an in- 436

crease in the mean ratio with larger sample size. Since 437

SA takes random samples, it might have avoided the 438

problem, but it did not. 439

For estimates of Relative Risk, the Square method 440

performed very well; the mean RMSE ratios were 441

mostly close to 10, for all three sample sizes. The Quad 442

procedure was sometimes – but not always – compara- 443

ble in having low mean ratios. 444

3.1.3. Impact of parameter values 445

Given the results above, we did not expect that ex- 446

amining the relationship between the RMSEs and pa- 447

rameter values (which characterized the populations) 448

would identify circumstances when a method other than 449

Square would be preferable. Still, for completeness, we 450

looked at the relationships. We examined graphs of the 451

mean RMSE ratios as a function of parameter values 452

(Fig. 2). 453

Individual parameters had little or no impact on the 454

relative performance of different methods when esti- 455

mating prevalence. This was mostly the case for es- 456

timates of RR. Especially for the larger sample sizes 457

(n = 15 or 30 per PSU) the relative values for the dif- 458

ferent methods were mostly independent of parameter 459

values. 460
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Fig. 1. Mean of ratios of RMSE for sampling method to RMSE for simple random sampling. Figure shows the mean ratios when estimating (a)
Prevalence and (b) Relative Risk (RR), using the same sample of towns (clusters for the SA method) for each population, and RR = 1.0. PSU =
Primary Sampling Unit.

Further details of the Results are in the Supplemen-461

tary information.462

3.2. Non-varying populations463

For the three populations for which all individuals464

had the same probability of disease, all methods were465

similar in their RMSEs (data in Supplementary infor-466

mation).467

4. Discussion468

4.1. Summary of main results469

Our simulations found that the Square method was470

nearly always the best, as measured by lower RMSEs.471

Under some circumstances, the Quad approach, which472

samples from four areas of each town, performed well,473

better than the EPI method, but not as well as the Square474

technique. SA was mostly an improvement over EPI,475

especially when estimating prevalence. The other cri-476

terion for comparison, the ranks of RMSE ratios, sug-477

gested that the Square method was almost universally478

better.479

The examination of RMSEs in relation to population 480

parameters revealed that there were no particular pa- 481

rameters (i.e., no population types) for which the rela- 482

tive ranking of the methods varied, at least for the larger 483

sample sizes. For the three non-varying populations, 484

as expected, there were minimal differences between 485

methods. 486

4.2. Commentary 487

Several procedures have been proposed to overcome 488

the known limitations of the original EPI. These new 489

procedures did improve on EPI but had their own limi- 490

tations. Thus, some authors (e.g., [16]) have proposed 491

segmenting towns into smaller units, whose populations 492

can be enumerated to allow simple random sampling. 493

Our results for the SA approach, though, suggest that 494

the homogeneity within small segments produces suffi- 495

ciently large design effects that increasing sample size 496

within the segments does not improve precision as much 497

as expected. Moreover, it requires some prior identifica- 498

tion of the SAs, beyond data on town population sizes 499

alone. 500

Designers of those surveys are well aware of the im- 501

pact of clustering. The Reference Manual for the revised 502
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Fig. 2. Root Mean Square Error (RMSE) for each population against prevalence. Figure shows RMSE for three sample sizes, when the same towns
were sampled for each simulation and relative risk (RR) = 1.0. PSU = Primary Sampling Unit.

WHO EPI method (which we labelled SA) includes a503

table of the design effects (DEFF) with different val-504

ues of the Intracluster Correlation Coefficient (ICC)505

[8:127]. It states that a conservative estimate of the ICC506

for routine immunization surveys is 1/3, or 0.333. With507

seven respondents per PSU (cluster) the DEFF is 3.0,508

so that three times as many SAs must be sampled to509

achieve the same precision as a random sample. This510

adds considerably to the time and cost of the study.511

The Square approach, which does not have this limi-512

tation, could be adapted in the absence of information513

on the target population, for example, when an informal514

refugee camp is formed. Drones or other technology515

could ensure the aerial images used are up-to-date. This516

approach would be even more feasible if newer soft-517

ware can recognize buildings or tents on the ground, so518

the step of identifying structures could be automated.519

One possible disadvantage of the Square method is520

that, in some places, significant travel (hence increased521

time and cost) may be required to reach all the sam-522

pled households within a PSU, while the other methods523

restrict samples to a small geographic area. Still, this524

feature may be an advantage if there are concerns about525

the security of interviewers: with the Square method,526

interviewers can enter and leave areas quickly, rather527

than spending time finding and interviewing several 528

households in a small neighbourhood. 529

4.3. Strengths and limitations of our work 530

Our study has several strengths. We attempted to cre- 531

ate realistic populations, whose characteristics varied 532

between and within towns. We included multiple popu- 533

lations, which simulations using real data cannot. Our 534

full analysis included many sampling methods, includ- 535

ing some variations on EPI that have been proposed but 536

to our knowledge have not been used in practice. For the 537

SA and Square techniques, sampling probabilities can 538

be properly estimated, unlike the original EPI method 539

(and its variants). 540

Of course, our study also has limitations. The popu- 541

lations are simulated, not real. Small neighbourhoods 542

in our simulations may be more homogeneous than in 543

real life; still, similarity of nearby households is broadly 544

realistic. Our simulated samples were ideal and ignored 545

the logistical difficulties experienced by real surveys. 546

For example, population numbers are inexact so PPS 547

sampling is subject to error; interviewer teams make 548

decisions that may not strictly follow protocols; and 549

people in households may be out when interviewers call 550
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or may refuse to participate. (As noted earlier, Cutts551

and colleagues [12] provided a fuller discussion.) Still,552

we expect these problems would apply similarly – and553

lead to similar degrees of inaccuracy – for different554

sampling methods. In practice, the Square approach555

relies on some technical ability to deal with images and556

to identify GPS locations of buildings. It also requires557

identifying buildings from aerial images, which can558

lead to errors due to, e.g., tree coverage.559

We did not assess ‘balanced sampling’ described,560

e.g., by Tillé [18: 119-142] that can improve the ef-561

ficiency of a sampling design. The approach uses in-562

formation on the population that is correlated with the563

variables of interest. For an infectious disease spatial564

autocorrelation suggests spatial sampling to create the565

balance. Alleva and colleagues [19] considered the ap-566

proach in estimating parameters relevant to the SARS-567

CoV-2 pandemic. They conducted a simulation con-568

firming the value of spatially balanced sampling at the569

first stage of sampling. Our study was concerned with570

situations where information on the population is very571

limited so balanced sampling is not feasible.572

The time required to complete the survey may influ-573

ence the choice of sampling method. EPI and its vari-574

ants can be completed quickly, while the WHO manual575

for the updated EPI methodology (i.e., SA) projects an576

overall 12-month timetable [8:23]. The Square method577

requires obtaining the relevant images and identifying578

buildings from them, which should be possible to do579

quite quickly: a sample of the grid squares can be cho-580

sen and surveyors need only identify buildings in those581

squares.582

4.4. Contribution of our study583

Our work adds to the literature in several ways. To584

our knowledge, it is the first simulation study to explore585

the properties of small area (SA) sampling and ‘Square’586

sampling. While studies based on real-life data can only587

consider a single population, we created 50 large popu-588

lations across hundreds of towns. We varied parameters589

across these towns to create more realistic populations590

and examined the impact of these parameters. We com-591

pared multiple sampling methods. We know of no other592

study that compares how different sampling methods593

affect estimates of relative risk. Finally, we included the594

previously-untested Square method, which has proved595

to be statistically superior to other sampling approaches596

that are used in several major official surveys.597

5. Conclusion 598

In our simulations the Square method is almost al- 599

ways the best from a statistical perspective, especially 600

when estimating prevalence or for larger sample sizes. 601

Quad and SA improve on the original EPI (EPI), but 602

not enough to be statistically preferable to the Square 603

method, which is relatively easy to apply. 604
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Appendix671

The Appendix provides further detail on the cre-672

ation of the populations, lists the parameters used, and673

shows figures to illustrate diagrammatically the sam-674

pling methods.675

The program we used was highly flexible, so some676

aspects such as the number of populations could be677

set before the computer runs. We set the value at 50.678

Other parameters listed in the Table below were selected679

by the Latin Hypercube approach. Population density,680

household income, area disease risk, and exposure were681

all determined by location, via a linear combination682

of the x and y coordinates. We have not provided spe-683

cific parameter values, as they cannot be directly inter-684

preted. Rather we note that the values of these variables685

changed across the towns with the extremes at the lower686

right and upper left, i.e., at the minimum and maximum687

values of x and y.688

An individual’s disease status depended on several689

variables: income, household disease risk (itself depen-690

dent on local disease risk), and pocketing. Thus yi the691

actual disease status for individual i was determined692

from693

η = β0 +
∑

i (xi/x̄) /σ

yi ∼ Bernoulli (logistic (η))

where the xi are the predicting variables.694

Table A1
Parameters used in creation of populations and disease determination

Variable Values used in this study
Target disease prevalence (0.1,0.5]
Number of populations generated 50
Number of towns generated 300
Minimum population of a town 400
Maximum population of a town 300,000
Shape parameter used by town size
Pareto distribution

0.785

Number of squares in the horizontal di-
rection

10

Number of squares in the vertical direc-
tion

10

Population density trend’s X coefficient *
Population density trend’s Y coefficient *
Mean number of individuals per house-
hold

(2,5]

Number of disease pockets per town [0,10], Integer values
only

Type of kernel to use for disease pockets Exponential; Inverse
square; Gaussian

Scaling factor used for disease pocket (0.5,2]
Mean income trend’s base value *
Mean income trend’s X coefficient base
value

*

Mean income trend’s Y coefficient base
value

*

SD of values of income *
Mean disease risk trend’s base value *
Mean disease risk trend’s X coefficient
base value

*

Mean disease risk trend’s Y coefficient
base value

*

Mean exposure trend’s base value *
Mean exposure trend’s X coefficient base
value

*

Mean exposure trend’s Y coefficient base
value

*

Disease weight for household income (0,1]
Disease weight for household risk (0,1]
Disease weight for pocketing 1

Notes: Coefficients for Income, Disease, and Exposure were for use
in linear function based on x and y coordinates of households within a
town. Disease weights were applied when determining actual disease
status to allow for different impacts of the predictors. For values
shown as a range, the Latin Hypercube selected the 50 values at equal
intervals between the lowest and highest values of the range. *See
Appendix text for explanation.

Appendix figures showing sampling methods. 695

Each diagram shows a town. To keep the diagrams 696

simpler to interpret, just three households are chosen 697

per town (or per Small Area). 698
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Appendix Fig. A1. Simple random sampling. Each dot shows a house-
hold. The triangle represents a central landmark. Three households
(circled) are randomly chosen.

Appendix Fig. A2. Sampling using original EPI method. Each dot
shows a household. A central landmark is identified (triangle). A
random direction is chosen (parallel lines) from the landmark and
households in that direction are identified (diamonds). From these,
the ‘starting’ household’ is randomly chosen (octagon) and nearest
neighbours (in Euclidean distance) are also selected for the sam-
ple (circles). The ‘Quad’ sampling method divides a town into four
quadrants and applies this sampling approach in each quadrant.

Appendix Fig. A3. Sampling using ‘Square’ method. Each dot shows
a household. The town is divided into a grid of smaller squares.
Yellow shading shows the three that are randomly chosen, and one
household (circled) is randomly chosen from each.

Appendix Fig. A4. Small area (SA) sampling. The town or popu-
lation is divided into successively smaller areas until each contains
a number of households in the pre-specified range. Several small
areas (yellow shading) are randomly chosen. Three households are
randomly sampled from each selected small area.




