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Earth observations for official crop statistics
in the context of scarcity of in-situ data
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Abstract. Remote sensing offers a scalable and low cost solution for the production of large-scale crop maps, which can be
used to extract relevant crop statistics. However, despite considerable advances in the new generation of satellite sensors and the
advent of cloud computing, the use of remote sensing for the production of accurate crop maps and statistics remain dependant on
the availability of ground truth data. Such data are necessary for the training of supervised classification algorithms and for the
validation of the results. Unfortunately, in-situ data of adequate quality for producing crop statistics are seldom available in many
countries.
In this paper we compare the performance of two supervised classifiers, the Random Forest (RF) and the Dynamic Time Warping
(DTW), the former being a data intensive algorithm and the latter a more data frugal one, in extracting accurate crop type maps
from EO and in-situ data. The two classifiers are trained several times using datasets which contain in turn an increasing number
in-situ samples gathered in the Kashkadarya region of Uzbekistan in 2018. We finally compare the accuracy of the maps produced
by the RF and the DTW classifiers with respect to the different number of training data used. Results show that when using only 5
and 10 training samples per each crop class, the DTW reaches a higher Overall Accuracy than the RF. Only when using five times
more training samples, the RF starts to perform slightly better that the DTW. We conclude that the DTW can be used to map crop
types using EO data in countries where limited in/situ data are available. We also highlight the critical importance in the choice of
the location of the in-situ data and its thematic reliability for the accuracy of the final map, especially when using the DTW.

1. Introduction

FAO is implementing the EOSTAT project, which
aims at building the capacity of countries in using Earth
Observations (EO) and remote sensing as alternative
data sources for the production of official crop statis-
tics, under the overall objective of the modernization
of the National Statistics System, an initiative lead and
promoted by the UN Statistical Commission.

Remote sensing is a scalable and cost-effective way
of producing national-scale cropland maps: time series
of open-source satellite missions, such as Sentinel 1
and 2 operated by the European Space Agency, allow
distinguishing agricultural land cover from other land
cover types, due to the inherently seasonal nature of
crop growth, also referred to as crop phenology. Crop-
land masks and crop type maps produced from remotely
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sensed images provide essential information to accu-
rately monitor the spatial distribution of crops and their
growth conditions, enabling national authorities to ad-
equately plan for food commodities supply, as well as
to gradually reduce the threat of food insecurity. Na-
tionwide, crop maps are instrumental tools that pro-
vide spatially explicit information about the quantity
and quality of croplands, and support socio-economic
decision-making.

Despite the considerable advances in the new gener-
ation of satellite sensors, which provide free and open
access to dense imagery time series, and the advent of
cloud computing, which facilitates the storage and com-
putation of EO data, the use of remote sensing for the
production of accurate crop maps and statistics remain
dependant on the availability of ground truth data. Such
data, also denominated in-situ data, being collected in
the field, are necessary for the training of supervised
classification algorithms and for the validation of the
results. However, in-situ data of adequate quality for
producing crop statistics (in combination with remote
sensing imageries) are seldom available in many coun-
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Fig. 1. Map of the main study region with the main rivers and water bodies in blue colour.

tries, especially those with a less advanced statistical
system. In-situ data are in fact either not available, or,
when available, outdated and of poor quality (i.e. for
suboptimal geo-referencing). In fact, crop data are often
georeferenced at the farmer dwelling, rather than at the
parcel level. This makes such data incompatible with
the use of EO data, as it does not allow establishing a
correct spatial relation between survey crop data and
the pixels of the satellite image. Because of the lack of
in-situ data of adequate quality, the operational uptake
of EO data in NSOs is still limited. Hence, the main
objective of the EOSTAT project is to promote the use
of EO, also by developing and using novel classifica-
tion algorithms, which may cope with scarcity of in-situ
data.

In this paper, therefore, we test the performance of
two supervised classifiers, the Random Forest (RF) and
the Dynamic Time Warping (DTW). The former is a
robust decision tree system developed by Kam Ho in
1995 [1], which performs best when trained with large
in-situ data sets [2]. The latter is a data mining algo-
rithms, and focuses on the computation of an average
set of sequences and computes a dissimilarity score to
compare pairs of time series data: Petitjean et al used it
for the first time with satellite data in 2010 [2].

The two classifiers, which utilize Sentinel 1 and Sen-
tinel 2 EO data, are trained several times using datasets

which contain in turn an increasing number in-situ sam-
ples gathered in the Kashkadarya region of Uzbekistan
(Fig. 1) in 2018. In particular, while the DTW algorithm
uses respectively 5 and 10 samples, the RF algorithm
employs respectively 5, 10, 20, 30, 40 and 50 train-
ing samples. We finally compare the accuracy of the
maps produced by the RF and the DTW classifiers with
respect to the different number of training data used.

The reference ground-truth dataset [3] has been pub-
lished in Scientific Data, which is a peer-reviewed,
open-access international journal for descriptions of
scientifically valuable datasets. The full dataset consists
of 8,196 samples collected between 2015 and 2018 in
several regions of Uzbekistan and Tajikistan. In partic-
ular, 2,172 samples are available for the Kashkadarya
region, where they all have been collected in the year
2018 (Fig. 1).

In Kashkadarya, like in the north of Afghanistan,
wheat is the main staple crop. Wheat is generally har-
vested in June, allowing farmers to get a second harvest
before the end of the agricultural season if rainfall water
is available (‘double cropping’). The second most pro-
duced crop in the region is Cotton whose growing sea-
son extends from May to October. Furthermore, other
important crops are orchards, vineyards, and forage
crops (alfalfa).

The paper is organized as follows: Section 2.2 de-
scribes the methodology for sampling the training data
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Table 1
Available Crop classes for Kashkadarya region, year 2018, and the respective number of geo-referenced
polygons, and generated training and validation data points, respectively. The training data points for
the class ‘no-crop (natural vegetation)’ were added to the dataset manually based on satellite image
interpretation

Crop class
Available

polygons [N◦]
Training data set points

generated [N◦]
Test data set points

generated [N◦]
Cotton 945 50 892
Wheat 992 50 942
Wheat–other (double cropping) 18 50 30
Alfalfa 13 50 30
Vineyards 11 50 30
Orchards 85 50 33
No-crop (fallow) 100 50 47
No-crop (natural vegetation) – 10 –
Other 7 – –
Total 2172 360 2004

and for validating the algorithms. In Section 2.2, we
also illustrate the pre-processing of the EO data and we
provide insights into the crop type classification algo-
rithms, the DTW and the RF. The main results of our
experiment are presented and discussed in Section 4,
while in Section 2.4 we provide some concluding re-
marks. Classification maps and validation results can
also be viewed and downloaded in the sample EOSTAT
CropMapper front-end application for Kashkadarya [4].

2. Methodology

The overall methodology is articulated in four dis-
tinct steps:

1. Pre-processing of the in-situ data, in order to gen-
erate subsets of training and validation samples,
from the original in-situ data set.

2. Pre-processing of Sentinel 1 and Sentinel 2 data
to create a harmonized time series of temporal
composites.

3. Production of crop type maps using the RF and
DTW classifiers.

4. Computation of accuracy measures and compara-
tive analysis of results from the DTW and the RF
classifiers.

In the next sections, each step of the methodology
applied is thoroughly described.

2.1. In-situ data and sampling

The ground-truth data are available in the format of
geo-referenced polygons drawn around the fields that
were visited during the field survey in June 2018 [3]. A
single crop class is assigned to each polygon. In order
to obtain the training and validation samples, we auto-

matically generated points inside the polygons within
a minimum distance of 30 m from the border of the
polygons and to the closest point, respectively. For crop
classes with more than 50 polygons only one point per
polygon was generated (Fig. 2). We then randomly se-
lected 50 samples for training of the crop type classi-
fiers. The remaining samples were used for validation
(Table 1). Training and validation data points were re-
viewed for quality control. Each point was checked in
the EOSTAT CropMapper administrator tool for consis-
tency with the mean Normalized Difference Vegetation
Index (NDVI) signature of a given crop category. If the
NDVI signature of a given point was not consistent with
the mean signal of a given crop class, then the point
was removed from the dataset. RF classifiers have the
advantage that they are not sensitive to outliers in the
training data set. Furthermore, data points were individ-
ually reviewed through visual inspection using as very
high resolution images as background in Google Earth
to verify positional correctness.

Two supervised classifiers, the RF and the DTW
were trained with monthly composites of Sentinel-1
and Sentinel-2 satellite images available from the pe-
riod March to October 2018. Several rounds of training
were performed using different numbers of randomly
sampled training data points (5–10 points for DTW,
10–50 points for RF). We then applied the trained algo-
rithms to classify all pixels of Kashkadarya region at a
spatial resolution of 10 m, except for urban areas (based
on the Copernicus Global Land Cover Layers1), or pix-
els above a certain elevation (2500 m asl) or with steep
slopes (> 5◦). For validation purposes, we looked at
the classification accuracy with respect to all available
validation points, as well as with respect to a subset of
30 random validation points per crop class. The subset
was generated to account for the class imbalance in the
validation data set (Table 1).
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Table 2
Summary of satellite sensors used in the study in Uzbekistan

Sensor Type Bands (total) Used bands Temporal resolution
Spatial resolution

(used bands)
Sentinel-1 Radar VV and VH VV and VH One image every 6 days 10 m
Sentinel-2 Optical 13 spectral bands B2, B3, B4, B8, B6, B11, B12, NDVI and EVI One image every 5 days 10 m

Fig. 2. Detail of the CAWa ground-truth reference data available for Kashkadarya. The map shows the polygons as provided by the CAWa dataset,
as well as one point per polygon generated inside each shape.

2.1.1. Satellite data
Sentinel-2 L2A data and Sentinel-1 SAR GRD data

were used in this study. Images acquired from March to
October 2018 of each product were requested through
GEE and selected bands were used as shown in Table 2.

Sentinel-1 SAR GRD was pre-processed using the
angular-based radiometric slope correction for vol-
ume scattering from Vollrath et al., 2021 [5]. Indeed,
Kashkardarya has a hilly landscape, and although crops
cannot grow on very steep slopes, foreshortening and
layover effects may still occur which can affect the
interpretability of the data. Only the VV (Vertically
transmit Vertically receive) polarization was used to re-
duce the number of input variables used. Although there
seems to be an indication, at least in the case of winter
wheat, that polarization and incidence angles have an
influence in the retrieval of phenological stages [6], VV
polarization has proven to be more determinant in gen-
eral purpose cropland classification applications than
VH polarization [7,8], especially for distinguishing the
vertical stem elongation phase of wheat [9], which is

the dominant grain crop in the study area. Moreover, the
combination of Sentinel-2 and Sentinel-1 acquisitions
produces synergy in the sense that the Sentinel-2 time
series data provides the most important variables for
describing crop phenology, while Sentinel-1 can sup-
port the discrimination of cropland and crop types by
providing a higher temporal density of observations in
cloudy periods.

Sentinel-2 L2A data time series was pre-processed
by performing cloud masking with s2cloudless prob-
abilities [10] provided alongside the S2 L2A dataset
on GEE. Only images with a cloudy pixel percentage
inferior to 60% were requested, and a 40% cloud prob-
ability threshold on the s2cloudless dataset was applied
for cloud masking. Moreover, the cloud shadow projec-
tion, calculated based on the mean solar azimuth angle
and with a maximum search radius of 100 m, was used
to identify cloud shadow pixels. Pixel values inferior
to 0.15 NIR reflectance unit (band B8) and located in-
side the cloud shadow projection area were considered
cloud shadow pixels, and therefore masked out. Finally,
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a morphological dilation of 100 m was applied to the
resulting union between cloud mask and cloud shadow
mask pixels to obtain the final cloud mask to apply to
the original sentinel-2 image. As previously mentioned,
there is a preference of over-masking rather than under-
masking in the context of drylands to make sure any
marginal cloud or haze pixels are removed. Besides,
the relatively favourable observation conditions that the
area exhibits, typically more than 40 cloud-free obser-
vation per year in agricultural regions, ensures that both
quantity and quality of data are guaranteed. Bands B2,
B3, B4, B8 (10 m) and B6, B11, B12 (20 m bands) were
selected as input features. Normalized Difference Veg-
etation Index (NDVI) and the Enhanced Vegetation In-
dex (EVI) were also generated as additional covariates
and were used to model crop phenology.

2.2. Temporal composites

Sentinel-1 and Sentinel-2 time series data are harmo-
nized and reduced in size by implementing a temporal
aggregation. Temporal aggregation requires a temporal
interval parameter to be chosen, to generate (almost)
cloud-free composites from all images within the cho-
sen temporal interval. This results in a harmonized time
series of equal-size temporal intervals if the same tem-
poral interval is applied for the entire year. With knowl-
edge of the crop calendar, different temporal intervals
for aggregation can be chosen for different periods of
the year, to get a denser profile around key crop growth
stages between onset and senescence. We have tried
both approaches:

1. Harmonized time series with 15-day composites,
resulting in 16 composites for March-October
2018.

2. Harmonized time series with 30-day composites,
and down to 10-day composites in the key growth
stage periods as per national crop calendar infor-
mation, namely from DOY 60 until DOY 150, and
DOY 180 until DOY 270), also resulting in 16
composites for the period March October 2018.
These figures are area-specific and are chosen to
cover potential temporal shifts in the crop calen-
dars across agro-ecological zones.

The geometric median was used to generate the tem-
poral composites, as this preserves the spectral relation-
ship between the composited bands, smoothens local
spectral artefacts, and ensures consistency across scene
boundaries.

As an alternative to temporal aggregation, data gaps
could be filled spatially using a technique like the

spectral angle mapper based spatio-temporal similarity
(SAMSTS) developed by Yan and Roy in 2018 [11].
However, temporal aggregation was preferred to a gap-
filling approach because data reduction was a desired
outcome, considering the number of pheno-spectral in-
put features used in this study. Based on the resulting
temporal composites, the full extent of Kashkadarya
region was deemed to have sufficient cloud-free ob-
servations in the span of a year, and therefore than no
additional spatial-temporal gap filling was necessary.

2.3. Harmonics fitting

After temporally aggregating data using a given tem-
poral interval, data gaps and undesirable artefacts may
remain in the data. While data gaps need to be filled,
and artefacts need to be smoothened, the same method
of time series harmonic fitting is suitable to address both
issues. Also known as Fourier analysis, this method
allows a complex curve to be expressed as the sum of a
series of sine and cosine waves. Each wave is defined
by a unique amplitude and a phase angle where the am-
plitude value is half the height of a wave, and the phase
angle (or simply, phase) defines the offset between the
origin and the peak of the wave over the range 0–2 π.
Therefore, high seasonal variation in NDVI or EVI of
crop pixels will be characterized by high amplitude val-
ues and phase angles [12]. Although both linear and
non-linear harmonic fitting approaches have been con-
sidered to model time series for cropland mapping [13]
it is not clear whether non-linear fitting improves the
classification results. Therefore, this study has only ap-
plied linear fitting to model the time series, using a har-
monic parameter of 4, which matches well the number
of composite observations (16 for most pixel locations
in the study area).

2.4. Pheno-spectral feature extraction – crop reference
signature

The fitted time series generated provide us with phe-
nology of all land surfaces in the Kashkadarya region at
a pixel level. To better characterize the phenology of the
different surfaces, namely those of crop, phenological
stages can be extracted from the time series [14]. The
main advantage of extracting phenological stages is to
be able to visually, as well as well as algorithmically,
separate crops with distinct crop calendars. Moreover,
considering the representativeness of the phenological
stages extracted, the spectral values of Sentinel-1 VV
channel, Sentinel-2 bands and vegetation indices corre-
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Table 3
PA and UA for individual crop classes calculated using DTW (using 5 training samples per crop category) and RF ( 50 training samples per crop
category) validated under Test A and Test B

Test A Test B
Class PA-DTW PA-RF UA- DTW UA-RF PA-DTW PA-RF UA- DTW UA-RF
Wheat 83.50% 83.00% 99.00% 99.10% 90.00% 90.00% 84.40% 87.10%
Cotton 91.00% 92.40% 98.50% 98.20% 83.30% 90.00% 86.20% 79.40%
Alfalfa 53.30% 70.00% 50.00% 31.30% 53.30% 70.00% 80.00% 72.40%
Orchard 27.30% 51.50% 20.90% 31.50% 26.70% 50.00% 61.50% 65.20%
Vineyard 73.30% 80.00% 33.30% 39.30% 73.30% 80.00% 61.10% 66.70%
Wheat-other 93.30% 96.70% 34.60% 31.90% 93.30% 96.70% 87.50% 85.30%
Non-crop 78.70% 59.60% 22.70% 27.20% 86.70% 56.70% 54.20% 73.90%

sponding to the DOY at which the phenological stages
were extracted to provide additional meaningful input
features to discriminate between crop types, also re-
ferred to as pheno-spectral features. The use of pheno-
logical stages alone may be subject to the inter-annual
and inter-regional variation of crop calendar, but includ-
ing the dynamic spectral properties of pheno-spectral
features offers a more reliable identification of different
crop types. The phenological stages extracted, as well
as their corresponding pheno-spectral features, are sum-
marized in Table 2. One can appreciate the resulting
data reduction of using extracted phenological stages
and pheno-spectral features, as opposed to raw time
series (Table 3), while ensuring optimal discrimination
of the targeted crop types. Considering the operational
nature of the conceived system, data size and process-
ing time are of concerns, and any data reduction that
does not significantly affect the quality of the produced
output is considered. The results of the extraction of the
pheno-spectral signature were used to build a library of
crop reference signatures.

2.5. Classification algorithms

Two supervised classification algorithms were used
for the generation of the crop maps: i) time-constrained
Dynamic Time Warping (DTW) and ii) Random Forest
(RF) supervised classification. The algorithms under-
went through several rounds of training using differ-
ent numbers of randomly sampled training samples (5–
10 points for DTW, 10–50 points for RF). The trained
algorithms were in turn used to classify all pixels of
Kashkadarya region at a spatial resolution of 10 m, ex-
cept for urban areas (based on the Copernicus Global
Land Cover Layers), or pixels above a certain elevation
(2500 m above sea level) or with steep slopes (> 5◦).
For validation purposes, we looked at the classification
accuracy with respect to all available validation points,
as well as with respect to a subset of 30 random val-
idation points per crop class. The subset was gener-

ated to account for the class imbalance in the test data
set (Table 1). The final results obtained with the two
algorithms were then compared.

2.6. Time-constrained dynamic time warping

We used a DTW algorithm to simulate condition of
scarce availability of in-situ data. The DTW algorithm
classifies every pixel in the study area by comparing
the spectral signature of that pixel to that of the ref-
erence crops contained in the crop library. The DTW
measures the similarity between two temporal data se-
quences by identifying their optimal alignment and by
producing a dissimilarity index (Fig. 3). Computing the
alignment between two sequences is done recursively
using the DTW matrix. The algorithm picks the small-
est DTW dissimilarity value between the query pattern
and the available reference patterns and attributes the
corresponding reference crop label to the pixel.

DTW classification has the main advantage that only
a small number of training samples are required to build
the crop reference library. According to Belgiu and
Csillik [15,16] as little as 3 samples per crop type. This
is a big advantage for regional and national crop type
mapping, especially in countries which lack in-situ data
of adequate quality. A few clean reference samples that
represent the characteristic temporal pattern of the crop
type are sufficient for the DTW to function. Conversely,
the positional accuracy and correctness of the crop label
of the training data is of paramount importance for
DTW, as the algorithm is very sensitive to errors in the
training data.

A time-flexible method for comparing two tempo-
ral patterns by considering their temporal distortions
in their alignment, the DTW has proven to achieve
better results than the Euclidean distance measure for
NDVI time series clustering [17]. This flexibility is de-
sirable for crop mapping, to deal with the intra-class
phenological discrepancies caused by different agri-
cultural practices, environmental conditions, or by dif-
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Fig. 3. Computing the alignment between two sequences at hypothetical test areas (TA) TA1 andTA2. The vertical and horizontal values of the
DTW matrix represent the date of an image. The alignment between two sequences is computed only for the yellow cells of the matrix, reducing
the number of computations necessary (a maximum time delay, w, of 45 days is used in this example). After computing the matrix from upper left
to lower right, the last element of the matrix, m[S,T], is returned, as a measure of DTW dissimilarity between the two compared sequences. Image
credits: Csillik et al. [16].

ferent weather conditions. This is beneficial also for
comparisons among samples which are more geograph-
ically distant than the pixel to be classified, as they may
exhibit temporal shifts in growing patterns, while still
belonging to the same crop type class for computing
DTW. It is apply time constraints considering the spe-
cific seasonality of different crops. For example, com-
paring an element of a sequence with all other elements
of another sequence leads to erroneous results when
aligning a winter crop with a summer crop. Applying
time constraints on time warping increases the speed
of processing, while providing meaningful results. A
so-called time constrained DTW implementation was
therefore used in our study. The elements of two time
series will be compared only if the date difference is
smaller or equal to ω, which is the time constraint pe-
riod which we set to 30 days, following the recommen-
dations of Csillik et al. [16].

2.7. Random forest

Random forest is an ensemble learning method for
classification that operates by constructing a multitude
of decision trees based on available training data as
shown in Fig. 4 [17].

In a multi-band RF, the number of variables available
for tree construction is n times i, where n is the number
of bands used (Table 2) and i is the number of times

steps. The output of the random forest is the class se-
lected by most trees (majority voting). Using multiple
deep decision trees, trained on different parts of the
same training set, generates a classification model with
a reduced risk of overfitting the training set. This gener-
ally increases the performance of the model, especially
if a large training data set is available. The RF classifier
has been extensively used to map land cover mapping
and crop type mapping from Landsat images [18,19],
Sentinel 1 and 2 [20]; Sentinel-2 and the Gaofen-1
(GF-1, Chinese satellite data, [21]. The main strength of
the RF is that it copes well with collinearity, and is not
affected by outliers, high dimensionality, and noisy fea-
tures. Wang et al. [22] confirm that random forests gen-
eralizes well within regions where crop compositions
and phonologies remain similar.

2.8. Accuracy test

In order to compare the performance of the two
classifies in producing accurate crop type maps, we
have initially trained the DTW using 5 and 10 training
and produced the respective crop maps. Then we have
trained the RF using 5, 10, 20, 30, 40 and 50 training
samples and produced the respective crop maps. In line
with recommendations from Foody [23] and Congal-
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Fig. 4. Workflow of the random forest classification.

ton [24,25], we evaluated the accuracy of the DTF and
the RF through the establishment of confusion matrixes
using two different settings: i) we used all of the vali-
dation data (Test A), and ii) we used only 30 validation
samples (Test B). The Overall accuracy (OA), the Pro-
ducer Accuracy (PA), the User Accuracy (UA), were
computed for each map produced by the DTW and the
RF under both Test 1 and Test 2.

The PA is the map accuracy from the point of view
of the map maker (the producer). It measures how often
are the ground-truth features correctly shown on the
classified map, or the probability that a certain land
cover of an area on the ground is classified as such.
The PA is the complement of the Omission Error, PA =
100%-Omission Error. It is calculated by summing the
number of reference sites classified correctly divided
by the total number of reference sites for that class.

The UA is the probability that a value predicted in
the map to be really belonging to that class. The User’s
Accuracy is the complement of the Commission Error,
UA = 100%-Commission Error. The User’s Accuracy
is calculating by taking the total number of correct
classifications for a particular class and dividing it by
the row total.

The OA is the probability that an individual will be
correctly classified by a test; that is, the sum of the true
positives plus true negatives divided by the total number
of individuals tested.

The OA’s obtained from the validation of the maps
produced by the DTW and RF classifiers were finally
analyzed in function of the number of training samples
used, for both Test A and Test B.

3. Main results

The maps obtained from the different runs of the
DTW and the RF, trained with increasing number of
training points (from 5 to 50), were tested for OA using
all the validation samples (Test A), and using a ran-

dom subset of only 30 validation samples (Test B), ti
simulate lack of validation data (Fig. 5).

Under Test A, when 5 and 10 samples were used
for training, DTW scored an OA of 85.43% and 85.38
respectively, while RF scored a lower OA of 83.73%
and 84.23%. When using 20, 30, 40, and 50 training
data samples the RF scored an OA of 82.93%, 85.68%,
85.88%, and 86.08% respectively. Under Test B, when
5 and 10 samples were used for training, DTW scored
an OA of 69.05% and 72.38% respectively, while RF
scored a lower OA of 60.95% and 62.38%. When us-
ing 30, 40, and 50 training data samples the RF scored
an OA of 68.57%, 74.76%, 75.71% and 76.19 respec-
tively. The highest OA was scored by the DTW when
5 training samples were used, and by the RF when 50
training samples were used under Test 1 and under Test
2. Overall, when trained with a very low number of
training samples (from 5 to 10), the DTW scores higher
OA than the RF (+1.7%, +1,15% for Test A, +8.1%
and +10% for Test B). Even when the RF is trained
with 20 samples, the DTW trained with 5 samples is
still performing better. The RF scores higher OA than
the best run of the DTW only when 30 training samples
and more are used. When using 30 training samples
(200% more than those used by DTW), the RF scores
an OA 0.25% higher. When the using 50 training sam-
ples (900% more than those used by DTW), the RF’s
scores an OA 0.25% higher. This is confirmd also in
Test B, that the RF scores higher OA than DTW when
30 or more training samples are used.

The crop classes’ specific PA and UA for the best
runs of the DTW (5 training samples) and the RF
(50 training samples), are compared under Test 1 and
Test 2, as shown in Table 3.

Under Test A, both DTW and RF, score the highest
UA for wheat (99% and 99.1%) and for cotton (98.5%
and 98.2%). The values are very similar for both al-
gorithms, which is indicative that they produce an ex-
tremely low rate of commission errors (false positives)
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Table 4
Classified areas per crop category in km2 (DTW: 5 training samples per crop category; RF: 50 training samples per crop category)

Area [km2] Area [% of total crop area] Area [km2] Area [% of total crop area] Difference (RF – DTW)
Crop class DTW DTW RF RF [km2] [%]
Wheat 1446.7 33.41% 1480.1 26.64% 33.4 2.31%
Cotton 1421.1 32.82% 1626.2 29.27% 205.1 14.43%
Alfalfa 221.2 5.11% 867.8 15.62% 646.5 292.27%
Orchard 606.2 14.00% 883 15.89% 276.8 45.66%
Vineyard 461.5 10.66% 502.4 9.04% 40.9 8.86%
Wheat-other 173.9 4.02% 197.1 3.55% 23.2 13.34%
Total Crops 4330.6 25.49% 5556.5 32.70% 1226 22.06%
No-crop 12659.7 74.51% 11433.8 67.30% 1226 −10.72%
Total area 16990.3 100% 16990.3 100%

Fig. 5. Overall accuracy of the DTW and RF classifiers as a function of the number of training samples used. In a) all validation data points were
used to assess the OA. In b) only 30 validation data points were used to assess the OA. In both a) and b) the DTW scores significantly higher OA
than to RF, when 5 to 20 samples are used for training. Only when 30 or more training samples are used, the RF scores higher OA compared to
DTW.

for the two dominant crop classes in the Kashkadarya
region. The PA for these two classes is also quite high
for both the DTW and the RF (wheat 83.5% and 83%;
cotton 91% and 92.4%) indicating a low rate of omis-
sion errors.

The UA scores for the minor crop classes are overall
low for both the algorithms which is not surprising as
these crop classes are rare to find DTW performs better
for alfa-alfa (50% UA vs 31.30% UA) and for wheat-
other (34.6% UA vs 31.9% UA) while RF performs bet-
ter for orchard (31.5% UA vs 20.9% UA) and vineyard
(39.3% vs 33.3% UA). No-crop class scored a UA of
22.7% for DTW and 27.2% for RF, which denotes an
underestimation of this class by both classifiers. The
PA for the minor classes is overall higher for RF. Only
in the case of the non-crop the PA for DTW is higher
(78.7% vs 59.6%).

Under Test B, the UA for the dominant crops (wheat
and cotton) is significantly lower for both the DTW
and the RF compared to Test A. Wheat scores a higher
UA for RF (87.1%) compared to DTW (84.4%) and
cotton scores a higher UA for DTW (83.2%) than the
RF (79.4%). Minor crops’ UA is significantly higher

in Test B for both DTW and RF than in Test A. PA
for alfa-alfa and wheat-other is higher for DTW (80%
and 87.5%) than for RF (85.3% and 77.4%). UA for
orchard and vineyard is higher for RF (65.2 and 66.7%)
than for DTW (61.5% and 61.1%) The UA for non-crop
is significantly higher in RF (73.9%) than the DTW
(54.2%).

The non-crop class is the largest land use category
and the capacity of the RF and the DTW models to
accurately predict this class has a direct impact on the
estimation of the total crop area (Table 4). According to
the DTW 74.51% of the total classified area is non-crop,
whereas according to the RF only 67.3%.

According to DTW, 25.49% of the total classified
areas are used for crop cultivation and 32.7% according
to RF. With the RF, we obtain a total crop area that is
22.06% larger than the area calculated with the DTW.
The major contribution to such difference stems from
the difference in alfalfa acreages, which are almost three
times larger based on the RF classifier (Table 4). Alfalfa
represents only 0.6% of the reference data polygons,
but 15.6% of the classified crop areas with RF (DTW:



1018 L. De Simone and P. Gennari / Earth observations for crop statistics

5.1%). It is likely that both classifiers thus overestimate
the total alfalfa acreages.

4. Conclusions

This assessment has demonstrated that the crop clas-
sification obtained using the DTW on 5 training samples
outperforms conventional RF classification only when
using a number of training samples five times higher.
However, even in these conditions, the RF yields land
cover estimates of the ‘no-crop’ category with a higher
user accuracy that the DTW, while the DTW performs
better 556 bis in terms of producer accuracy (Table 3
Test B). The “no crop” category is underrepresented
in the ground-truth dataset used for validation, but is
generally the most important category for estimating
the total crop acreages, because it is the most abundant
land cover type in Kashkadarya region. RF estimated
a non-crop area of 11433.8 km2, while the DTW esti-
mated an area of 12,659.7 Km2. The considerable dif-
ference in the predicted area of No-crop land (Table 4)
is caused by a higher propensity of the RF to omit ac-
tual no-crop than the DTW, but also, to a considerable
extent, by a higher propensity of the DTW to falsely
identify No-crop than the RF. Indeed, the total crop area
according to the RF classification is about 23% larger
than according to the DTW classification.

We conclude from these results that the DTW lead to
more accurate and more robust results than RF in those
contexts where limited in-situ data are available (5 to
20 trining samples). The main condition for obtaining
good results with supervised classifier is the quality
of the training data, specifically the attribute accuracy
and the location accuracy. In the case of the DTW the
quality assurance and quality control of the training
samples assumes an even higher role due to the fact that
only few points are used. Even in a published crop type
dataset, such as the one used for this assessment, we
found several misclassifications that could be explained
with timing of the field campaign (June 2018), which
was likely too early in the year for accurate sampling
of late crops, or with incorrect delineations of the field
boundaries. While the full ground-truth dataset con-
sists of 2,172 samples, we only needed 40–80 samples
to train the DTW algorithm. It is understood that the
quality assurance and control of such small samples
sizes requires less time and can therefore be carried out
more thoroughly. On the other hand, the RF classifier
is less sensitive to noise in the training data, and when
a large training data set is used, it can compensate for

possible mistakes in the labeling of the ground-truth
data. However, as discussed initially, a large number
of training samples are difficult to obtain, especially in
poor countries. In conclusion, we argue therefore that
the DTW, as implemented in the EOSTAT CropMapper,
is a valuable alternative to the RF classification in the
context of in-situ data scarcity.

References

[1] Kam H. Random decision forests. Proceedings of 3rd Inter-
national Conference on Document Analysis and Recognition.
1995.

[2] Petitjean F, Ketterlin A, Gancarski P. A global averaging
method for dynamic time warping, with applications to clus-
tering. Pattern Recognition. 2011.

[3] Remelgado R, Zaitov S, Kenjabaev S et al. A crop type dataset
for consistent land cover classification in Central Asia. Sci
Data. 2020; 250: 7.

[4] FAOSTAT Crop Mapper application. https://ocsgeospatial.
users.earthengine.app/view/eostat-afghanistan.

[5] Vollrath A, Adugna M, Johannes R. Angular-based radiometric
slope correction for Sentinel-1 on google earth engine. Remote
Sensing. 2020.

[6] Nasrallah A, Baghdadi N, El Hajj T, Darwish T, Belhouchette
H, Faour G, Darwich S, Mhawej M. Sentinel-1 Data for Winter
Wheat Phenology Monitoring and Mapping. Remote Sens.
2019; 11: 2228.

[7] Erkki T, Antropov O, Praks J. Cropland classification using
Sentinel-1 time series: Methodological performance and pre-
diction uncertainty assessment. Remote Sensing. 2019; 248.

[8] Inglada J, Vincent A, Arias M, Sicre C. Improved Early Crop
Type Identification By Joint Use of High Temporal Resolution
SAR And Optical Image Time Series. Remote Sensing. 2016;
362: (8). doi: 10.3390/rs8050362.

[9] Roberts DR, Ciuti S, Boyce MS, Elith J, Guillera-Arroita
G, Hauenstein S, Lahoz-Monfort JJ, Schröder B, Thuiller
W, Warton DI, Wintle BA, Hartig F, Dormann CF. Cross-
validation strategies for data with temporal, spatial, hierarchi-
cal, or phylogenetic structure. Ecography. 2017; 40: 913-929.

[10] Zupanc A. Improving Cloud Detection with Machine Learning.
Sentinel Hub Blog. 2017. https://medium.com/sentinel-hub/
improving-cloud-detection-with-machine-learning-c09dc5d
7cf13.

[11] Yan L, Roy DP. Robust large-area gap filling of Landsat re-
flectance time series by spectral-angle-mapper based spatio-
temporal similarity (SAMSTS). Remote Sensing. 2018; 10(4):
609.

[12] Trong HN, Nguyen TD, Kappas M. Land Cover and Forest
Type Classification by Values of Vegetation Indices and Forest
Structure of Tropical Lowland Forests in Central Vietnam.
International Journal of Forestry Research,2020.

[13] Qiu Y, Zhou J, Chen J, Chen X. Spatiotemporal fusion method
to simultaneously generate full-length normalized difference
vegetation index time series (SSFIT). International Journal of
Applied Earth Observation and Geoinformation. 2021; 100.

[14] Zhong L, Hu L, Yu L, Gong P, Biging G. Automated map-
ping of soybean and corn using phenology. ISPRS Journal of
Photogrammetry and Remote Sensing. 2016.



L. De Simone and P. Gennari / Earth observations for crop statistics 1019

[15] Belgiu M, Csillik O. Sentinel-2 cropland mapping using pixel-
based and object-based time-weighted dynamic time warping
analysis. Remote sensing of environment. 2018; 204: 509-523.

[16] Csillik O, Belgiu M, Asner GP, Kelly M. Object-based time-
constrained dynamic time warping classification of crops using
Sentinel-2. Remote Sens. 2019; 11.

[17] Zhang Z, Tanb P, Huo L-Z, Zhou Z-G. MODIS NDVI time se-
ries clustering under dynamic time warping. International Jour-
nal of Wavelets, Multiresolution and Information Processin.
2014; 12.

[18] Tatsumi K, Yamashiki Y, Canales Torres M, Ramos C. Crop
classification of upland fields using Random forest of time-
series Landsat 7 ETM+ data. Computers and Electronics in
Agriculture. 2015; 15.

[19] Defourny P, Bontemps S, Bellemans C, Dedieu G, Guzzonato
E et al. Near real-time agriculture monitoring at national scale
at parcel resolution: Performance assessment of the Sen2-Agri
automated system in various cropping systems around the
world. Remote Sensing of Environment. 2019; 221: 551-568.

[20] Orynbaikyzy A, Gessner U, Mack B, Conrad C. Crop Type
Classification Using Fusion ofSentinel-1 and Sentinel-2 Data:

Assessing the Impact of Feature Selection, Optical Data Avail-
ability, and Parcel Sizes on the Accuracies. Remote Sensing.
2002; 12.

[21] Fan J., Defourny P, Zhang X, Dong Q, Wang L, Qin Z, De-
Vroey M, Zhao C. Crop Mapping with Combined Use of Eu-
ropean and Chinese Satellite Data. Remote Sens. 2021; 13:
4641.

[22] Sherrie W, George A, David B, Dong Q, Wang L, Qin Z, De-
Vroey M, Zhao C. Lobell, Crop type mapping without field-
level labels: Random forest transfer and unsupervised cluster-
ing techniques. Remote Sensing of Environment. 2019.

[23] Foody GM. Explaining the unsuitability of the kappa coef-
ficient in the assessment and comparison of the accuracy of
thematic maps obtained by image classification. Remote Sens.
Environ. 2020; 239: 111630.

[24] Congalton RG. A review of assessing the accuracy of classi-
fications of remotely sensed data. Int. J. Remote Sens. 1991;
37: 35-46.

[25] Congalton RG, Green K. Assessing the Accuracy of Re-
motely Sensed Data: Principles and Practices, 2nd ed. CRC
Press/Taylor & Francis: BocaRaton, FL, USA. 2009.


