
Statistical Journal of the IAOS 36 (2020) 823–839 823
DOI 10.3233/SJI-200663
IOS Press

The use of combined Landsat and Radarsat
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Abstract. This paper describes an approach for combining Landsat and Radarsat satellite images to generate national statistics for
urban ecosystem accounting. These accounts will inform policy related to the development of mitigation measures for climatic
and hydrologic events in Canada. Milton, Ontario was used as a test case for the development of an approach identifying urban
ecosystem types and assessing change from 2001 to 2019. Methods included decomposition of Radarsat images into polarimetric
parameters to test their usefulness in characterizing urban areas. Geographic object-based image analysis (GEOBIA) was used to
identify urban ecosystem types following an existing classification of local climate zones. Three supervised classifiers: decision
tree, random forest and support vector machine, were compared for their accuracy in mapping urban ecosystems. Ancillary
geospatial datasets on roads, buildings, and Landsat-based vegetation were used to better characterize individual ecosystem assets.
Change detection focused on the occurrence of changes that can impact ecosystem service supply – i.e., conversions from less
to more built-up urban types. Results demonstrate that combining Radarsat polarimetric parameters with the Landsat images
improved urban characterization using the GEOBIA random forest classifier. This approach for mapping urban ecosystem types
provides a practical method for measuring and monitoring changes in urban areas.
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1. Introduction

Urban areas are among the most complex manifes-
tations of man’s impact on the environment [1]. They
consist of a wide array of heterogeneous materials with
diverse properties and multi-faceted interactions. Com-
binations of buildings (e.g., low- and high-rises), imper-
vious surface covers (e.g., roads and parking lots), veg-
etation (e.g., parks and sports fields), bare soil (empty
lots and unattended garden plots) and water (e.g., wet-
lands and streams) are fundamental components of the
urban ecosystem [1,2]. More research is needed on the
impact of land conversion on ecosystem assets and ser-
vices in urban areas, and on the resilience of urban areas
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to climate change given its pressures on ecosystems,
both in Canada and elsewhere.

Statistics Canada is creating a suite of ecosystem ac-
counts that link environmental information to socio-
economic data available in the System of National Ac-
counts and elsewhere in the national statistical sys-
tem. These ecosystem accounts will contain informa-
tion on both the quantity and quality of ecosystem as-
sets and their services, in both physical and eventually,
monetary terms. The System of Environmental – Eco-
nomic Accounting – Experimental Ecosystem Account-
ing (SEEA-EEA) provides guidelines for compiling
ecosystem accounts [3].

Considering the large and growing proportion of the
world population living in cities, with 68% of the world
population projected to live in urban areas by 2050 [4],
an emerging interest concerns ecosystem accounting for
urban areas. Urban areas can be considered a specific
category of ecosystem, or can alternatively be under-
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stood as a combination of multiple ecosystem types.1

In both cases, urban areas produce and benefit from
ecosystem services.

Statistics Canada has already developed statisti-
cal data and analysis for urban areas by integrat-
ing maps generated from satellite Earth observation
(EO) data and socio-economic data to provide new
insights on urban expansion and natural and semi-
natural ecosystems impacted by changes in the land-
scape surrounding metropolitan areas [5]. This analy-
sis made use of geospatial datasets produced by other
federal departments, including Agriculture and Agri-
Food Canada [6,7] and Natural Resources Canada [8].
These datasets, although of high quality, were produced
to meet the mandates and needs of those departments
for tracking cropland and forests. However, they do not
provide the precision needed to delineate urban areas
as a specific ecosystem type that combines impervious
surface, buildings, vegetation and water or to delineate
intra-urban level ecosystem assets. As such, they do
not meet the ‘fit for purpose’ criteria required of spatial
datasets for more focused urban ecosystem accounting.

In 2018, Statistics Canada and the Canadian Space
Agency (CSA) signed an agreement, under the CSA’s
Government Initiatives Related Program (GRIP), to col-
laborate on the improvement of urban delineation and
characterization in the context of Climate Change Im-
pacts and Ecosystem Resilience (CCIER). The Earth
Observation for Ecosystem Accounting in Canada
(EO4EA-Can) project aims to integrate earth obser-
vation data with socio-economic information to better
measure the climate change resilience of built-up areas
in the context of ecosystem accounting. The main ob-
jective of this project is to map urban areas, including
both the built-up structures and ‘green and blue infras-
tructure,’ and assess the changes in the extent and den-
sity of these types of assets, using optical and radar im-
agery, complemented with census and geospatial data.
Green and blue ecosystem assets are of specific policy
interest in urban areas since they provide ecosystem
services that can improve human health and well-being
and buffer against natural disturbances and extreme
weather events. Maintaining these services may have a
crucial role in increasing adaptive capacity to cope with
climate change [9].

This case study on the integration of Landsat and
Radarsat for urban ecosystem accounting is a first step

1https://www.ons.gov.uk/economy/environmentalaccounts/bulletin
s/uknaturalcapital/urbanaccounts; https://www.nina.no/english/Fields
-of-research/Projects/Urban-EEA.

towards this larger objective. Milton, Ontario has been
used as a test case and subsequent test cases are being
developed in other regions of the country. The devel-
opment of better spatial data to support urban ecosys-
tem accounting will help inform policy and investment
decisions related, for example, to the identification and
development of mitigation measures for climatic and
hydrologic impacts (i.e., those relating to urban heat is-
lands and energy consumption, air pollution, increased
runoff, modified streamflow dynamics, or water quality)
at a regional scale across the country; and in this way
will contribute to the health, security and well-being of
Canadians.

2. Background

The delineation and characterization of areas into a
complete set of mutually exclusive and contiguous spa-
tial units is at the foundation of ecosystem accounting.
The Technical Recommendations of the SEEA-EEA [3]
defines three main spatial units relevant to the produc-
tion of accounts: 1) ecosystem assets, 2) ecosystem
types and 3) ecosystem accounting areas. A basic spa-
tial unit is additionally described in the recommenda-
tions; it represents fine-scaled gridded cells or polygons
that underlie the delineation of ecosystem assets.

In ecosystem accounting, stocks of ecosystem as-
sets generate flows of ecosystem services. Individual
ecosystem assets can be grouped according to ecosys-
tem types (e.g., forest, wetland, cropland, urban) that
are expected to generate a similar bundle of ecosystem
services [3]. Typically, ecosystem accounts are com-
piled and presented by ecosystem type rather than by
individual ecosystem asset and they may be reported for
different ecosystem accounting areas (e.g., at a national
or sub-national level or for a specific ecosystem type
(e.g., forest or urban). Thus, a classification describing
the ecosystem types and a map showing their occur-
rences are essential components of ecosystem account-
ing that allow tracking changes over time.

If spatial data on ecological characteristics are not
available to delineate the ecosystem assets, a land cover
map may be used as a starting point [3]. Land cover
can be defined as the “observed (bio) physical cover
of the Earth’s surface,” [10] and is a synthesis of the
many processes taking place on the land. It reflects land
occupation by various natural, modified or artificial
systems. Land cover is one of the most easily detectable
indicators of human intervention on land [10].
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2.1. Urban characterization for ecosystem accounting

Urban ecosystem accounting has considered the use
of different levels of detail in the delineation of urban
ecosystem assets and types – from the detailed level
of the individual green assets, such as rows of street
trees or green roofs, to larger patches of urban area with
common characteristics to which ecosystem services
can be attributed. The focus, in this study, is this lat-
ter perspective: analyzing urban morphological struc-
ture at the landscape level to define urban ecosystem
types. The challenge in doing so lies in the spectral
complexity of the urban environment [11]. The urban
environment is composed of various natural (e.g., vege-
tation, bare soil, bare rock and sand) and artificial fea-
tures (e.g., buildings, roads and urban open space) con-
structed with different kinds of materials. Many natural
surfaces are spectrally similar to the artificial features.
Remote sensing analysis should therefore consider not
only the spectral characteristics of different materials,
but also contextual information [2].

Assessing the ecosystem services generated by urban
ecosystem types at landscape level requires that urban
areas be subdivided into smaller patches that maintain
structural diversity while being regrouped within ho-
mogeneous areas [12]. For example, urban heat island
studies have developed local climate zones (LCZs), a
generic, climate-based typology of urban and natural
landscapes that integrates surface structure (height and
density of buildings and trees) and surface cover (pervi-
ous or impervious) [13]. The classes are local in scale,
climatic in nature, and zonal in representation. LCZs are
defined as “regions of uniform surface cover, structure,
material, and human activity that span hundreds of me-
ters to several kilometres in horizontal scale” and have a
“characteristic screen-height temperature regime” [13].
The physical properties of all zones are measurable and
nonspecific as to place or time. A generic urban classifi-
cation scheme, which addresses the constructional char-
acteristics of a surface (i.e., the land cover and not the
usage), facilitates the classification of urban land cover
into classes representing real world features with an
organized system that enables the comparison between
urban classes and their components [2].

The Stewart and Oke LCZs classification consists of
17 standard classes, of which 15 are defined by surface
structure and cover, and two by construction materials
and anthropogenic heat emissions [13].

2.2. Earth observation sensors

Satellite earth observation uses remote-sensing tech-

nologies including optical, infrared and radar sensors
to collect information about physical and other char-
acteristics of the Earth, such as land cover, vegetation,
temperature and aerosols. The choice of sensors for the
identification of detailed urban ecosystem types should
consider and balance between the sensor’s technical
characteristics such as spatial, spectral, radiometric and
temporal resolution, and feasibility, so that the resulting
data are of sufficient quality and are useful for ecosys-
tem accounting. Desirable characteristics include high
to very high spatial resolution; good coverage of the
electromagnetic spectrum, including number and width
of spectral bands; radiometric accuracy and reliability
(radiometric resolution is determined by the sensitiv-
ity to the magnitude of the electromagnetic energy e.g.
8, 16, 32 bits); and suitable temporal scales, including
historical coverage and revisit times. These character-
istics will also have an impact on the practicality and
efficiency of the processing.

The Landsat series2 satellites are the most common
optical Earth observation (EO) data sources for land
cover mapping, including for urban, peri-urban and ru-
ral areas [14]. Zhang et al. described Landsat data as
efficient and cost effective for mapping urban areas in
Canada [15]. This is particularly relevant for a large
country like Canada, where population centres – areas
with a population of at least 1,000 and a population den-
sity of 400 persons or more per square kilometre [16] –
cover an area of approximately 18,000 km2 (or 1.5% of
Canada landmass), distributed across the 1,210,519 km2

(or 12% of Canada landmass) that correspond to the
2016 population ecumene [17].

The Landsat series provides nearly continuous cover-
age since the early 1970s. Landsat-8 is the latest satel-
lite in the series, providing imagery since 2013. The
seven spectral bands (multispectral) at a spatial res-
olution of 30 m, coupled with the 15 m visible band
(panchromatic), offer sufficient spatial and spectral in-
formation to map major urban land use classes, such as
residential, recreational and industrial/commercial/in-
stitutional. Another benefit is that the United States Ge-
ological Survey (USGS) provides analysis ready data
(ARD) for Landsat 4–8, resulting in a highly accurate
surface reflectance image, which significantly reduces
the pre-processing required by users [14].

The Global Human Settlement Layer (GHSL) pro-
duced by the Joint Research Centre (JRC) of the Euro-
pean Commission, used Landsat data for mapping built-

2https://www.usgs.gov/land-resources/national-land-imaging-
program.
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up areas worldwide. These datasets contain a multi-
temporal information layer of built-up presence de-
rived from Landsat image collections from 1975 to
2014 [18–20]. The GHSL-built dataset was combined
with a population grid to produce the degree of urbani-
sation. The degree of urbanisation is described by the
classes: 1) cities, 2) towns and suburbs, and 3) rural
areas [21,22]. However, a preliminary review of the ac-
curacy of the GHSL built-up area in Canada has identi-
fied some issues [5]. In some cases, the product strug-
gles to accurately delimit the urban extent or cannot
differentiate the urban landscape into separate urban
classes. However, although GHLS overestimates the
area of settlements in some places and does not capture
the built-up area in others, it remains a useful tool as
a basis for change analysis and comparison of built-up
areas.

The Sentinel-2 satellites from the European Space
Agency (ESA) Copernicus programme can be used to
complement Landsat-8 imagery for urban area mapping
and monitoring [22,23], although the satellites (A and
B) were only launched recently (2015 and 2017) reduc-
ing the capacity to do historical comparisons. The twin
satellites have 13 spectral bands, with spatial resolution
of 10 m, 20 m and 60 m in the visible, near infrared
and shortwave infrared bands of the electromagnetic
spectrum. They offer a revisit time of five days.

Very high resolution images (< 5 m) can map de-
tailed urban features and can therefore provide useful
additional information to understand the heterogene-
ity of urban areas that is not otherwise available using
Landsat or Sentinel. However, such datasets are costly
and they require a more significant use of computing
resources for analysis compared to Landsat data, espe-
cially when covering a large area. Also, with very high
resolution images, the heterogeneity of urban areas is
amplified by the illumination of surfaces exposed to the
sun and the resulting shadows create noise in the signal
measured on the image [24].

Synthetic aperture radar (SAR) has been recognized
as an effective tool for urban analysis, as it is less in-
fluenced by solar illumination or weather conditions
(e.g., cloud cover) compared to optical or infrared sen-
sors [25]. SAR sensors can acquire information in dif-
ferent polarizations (these are related to the orienta-
tion of the electromagnetic field), which helps provide
a more complete description of the target. SAR data
have been increasingly used for urban land use and land
cover (LULC) classification [26–28]. The difficulty in
detailed urban mapping using SAR data is mainly due
to the complexity of the urban environment – its many

different kinds of natural and built objects and mate-
rials, orientations, shapes, sizes, etc. complicate the
interpretation of SAR images [25,29–31].

The integration of optical and polarimetric SAR data
is seen as a promising approach to improve urban im-
pervious surface mapping [29,32], because it helps re-
solve issues with the diversity of urban land covers and
the spectral overlap between covers. The Global Urban
Footprint (GUF) project from the German Aerospace
Agency (DLR) demonstrated that SAR data can be used
with optical data to delineate urban areas. SAR data
usefully captures built environments, since these ex-
hibit strong scattering properties as a result of double
bounce effects and direct backscattering from vertical
building structures [33–36]. The GUF project, like most
studies about urban mapping using SAR data was, how-
ever, limited to the identification of the urban extent
and relative built-up density.

The approach developed by DLR for mapping urban
areas using Sentinel-1 data (SAR) has also been tested
with success on Radarsat-2 images [37]. In addition,
previous comparative studies on the combined use of
multispectral optical and polarization SAR data to iden-
tify urban areas have demonstrated that polarization
data improved the accuracy of results [28,38,39].

The Canadian Radarsat-2 https://mdacorporation.
com/geospatial/international/satellites/RADARSAT-2/
satellite has a C-band synthetic aperture radar (SAR)
with multiple polarization modes, including a fully
polarimetric mode in which HH, HV, VV and VH
polarized data are acquired. The spatial resolutions
range from 1 m to 100 m. The radar signal in differ-
ent polarizations determines physical properties of the
observed object and the use of polarimetric parame-
ters can provide a more complete characterization of
the target. Polarimetric target decomposition has be-
come the standard method for the extraction of param-
eters from polarimetric SAR data [39]. Once decom-
posed, the physical properties of the target are extracted
and interpreted through the analysis of the simpler re-
sponses [31,40–42].

Touzi multiresolution decomposition is a method
that considers the target’s structure to generate the de-
composition [41,43]. It uses a scattering-vector model
to represent each coherency eigenvector in terms of
unique target characteristics. Each coherency eigen-
vector is uniquely characterized by five independent
parameters. Scattering type is described with a com-
plex entity, whose magnitude (alpha_s) and phase (phi)
characterize the magnitude and phase of target scat-
tering. The helicity (tau) characterizes the symmetric-
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asymmetric nature of the target scattering. The angle
(psi) is the target orientation. To complement the de-
composition, discriminators can be used to provide the
intensity of the target’s response. The algorithm devel-
oped by Touzi [40] derives the maximum and mini-
mum degrees of polarization and total intensity of the
scattered wave. Touzi decomposition and discrimina-
tors have been shown to provide better classification
for urban areas with high variability and complexity,
compared to other decomposition methods [31].

2.3. Classification approach

Depending on the resolution of the data provided by
the sensor, pixels may contain more than one type of
land cover. This is particularly a problem in heteroge-
neous areas like cities, where a given 30 m pixel may
contain built structures, impervious surfaces, and differ-
ent types of vegetation [11]. Conventional pixel-based
classifiers, such as maximum likelihood classification
(MLC), cannot effectively handle the mixed-pixel prob-
lem in urban areas. In the MLC classification, the dis-
tribution of each class is assumed to come from a nor-
mal distribution. The probability that a given pixel be-
longs to a specific class is calculated using the mean
vector and the covariance matrix. Each pixel is then
assigned to the class that has the highest probability
(the maximum likelihood) [11].

Moreover, in the pixel-based approach, the propor-
tion of the signal coming from the surrounding area
is ignored. Alternative approaches that use geographic
object-based image analysis (GEOBIA) with machine
learning classifiers provide better results [24].

The GEOBIA approach provides a geographic infor-
mation system-like functionality for classification that
integrates not only the spectral but the spatial charac-
teristics during the image segmentation process. The
result is individual areas with shape and spectral ho-
mogeneity referred to as segments or objects [44]. This
method can make use of varied data sources includ-
ing multi-sensors, geospatial datasets and any spatially-
distributed variable (elevation, slope, population den-
sity) [11]. GEOBIA uses a two-step approach. First,
the segmentation process defines homogeneous objects
and second, classifies these objects into a classifica-
tion scheme based on spectral, spatial and contextual
information. Objects are assigned to land cover classes
representing real-world features (e.g., open low-rise,
compact medium-rise, sparsely built, dense trees, and
paved), instead of a somewhat arbitrary pixel struc-
ture [45]. Object-based methods, which make use of

contextual information to improve mapping accuracy,
are increasingly employed [11,29,46].

A comparison of pixel-based and object-based ap-
proaches for identifying urban land-cover classes has
demonstrated that the object-based classifier produced
a significantly higher overall accuracy. In addition, seg-
mentation procedures used in GEOBIA can be applied
following a hierarchical structure where classes are de-
fined at an appropriate scale [29,47].

Nonparametric classification approaches using ma-
chine learning algorithms such as artificial neural net-
work, decision tree (DT), random forest (RF) and sup-
port vector machine (SVM) are widely used in land
cover classification [30,46]. Niu, X. and Y. Ban used the
object-based SVM for the classification of Radarsat-2
polarimetric parameters in order to produce an urban
land cover classification [30]. The results showed that
SVM can map detailed urban land cover classes with
high accuracy (90%); it provides homogeneous map-
ping results with preserved shape details; and outper-
forms other land cover classification approaches in a
complex urban environment with limited training sam-
ples [30].

Machine learning classifiers were used to map seven
land cover classes in the United Kingdom with Land-
sat data [48]. Results from this study suggest that the
RF classifier performs equally well to SVM in terms
of classification accuracy and training time. This study
also concluded that fewer user-defined parameters are
required by the RF classifier than for SVM and that they
are easier to define. However, the performance of the
classifiers was highly dependent upon several factors
such as the training set design (i.e., sample selection,
composition, purity and size), even though the nonpara-
metric algorithm does not require normally distributed
training data [11], as well as input imagery resolution
and landscape heterogeneity [49].

Finally, other studies have demonstrated that the inte-
gration of indices such as Normalized Difference Vege-
tation Index (NDVI) and Normalized Difference Water
Index (NDWI) into the segmentation and classification
processes can improve the results for urban characteri-
zation [50,51].

2.4. Change detection

Images acquired on different dates rarely capture the
landscape surface in the same way due to many factors
including illumination conditions, view angles and me-
teorological conditions [52]. Change detection methods
that use the pixel as the change unit are negatively af-
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fected by these factors. Problems with pixel change de-
tection are usually caused by the complexity of change
conditions such as small spurious changes, the accu-
racy of image registration, and shadows resulting from
different viewing angles, which can be dominant in ur-
ban areas. Pixel-level comparison for change detection
therefore requires further analysis to attach a meaning
to the change observed [53]; for example, to assess a de-
crease of forest canopy, a geospatial analysis is required
to define forest patches. By contrast, the GEOBIA ap-
proach transforms spectral and spatial properties of the
image into meaningful objects, thereby creating features
that have real-world meaning (e.g., buildings) [52,53].
Object-based change detection reduces the problems
associated with assessing pixel-level changes.

Object-based analysis offers great potential for iden-
tifying and characterizing LULC change processes, es-
pecially when combined with multi-temporal analysis.
Segmentation-generated objects from different dates
often vary geometrically, even though they represent
the same geographic features. Instead of separately seg-
menting these images, the use of multi-temporal object
change detection takes advantage of all multi-temporal
states of the scene [54]. Specifically, temporally se-
quential images are combined and segmented together,
producing spatially corresponding change objects [52].
For example, Schneider et al. used the NDVI generated
from Landsat time series from 1985 to 2015 to detect
urban extents, identify the conversion types and the date
the change occurred [55].

3. Methods

In support of the creation of detailed urban maps for
ecosystem accounting, the objective of this case study
was to develop a classification approach to improve
the accuracy of urban land cover maps generated from
Radarsat-2 and Landsat Operational Land Imager (OLI)
observations at 30 m. This paper describes both the
mapping approach using machine learning classifiers
applied on Radarsat-2 polarimetric parameters and the
characteristics of the produced map.

3.1. Study area

Milton is a town located in Southern Ontario,
Canada, and is part of the Toronto census metropolitan
area. Between 2001 and 2011, Milton was the fastest
growing municipality in Canada, with a 71.4% increase
in population from 2001 to 2006, and another 56.5% in-

crease from 2006 to 2011. In 2016, Milton’s population
was 110,128 and it is forecasted to grow to 228,000 by
2031 [56]. While most of the development is suburban
in nature, larger industrial lots are being developed, and
commercial and institutional facilities have been built
as well. The built-up patterns in Milton are fairly repre-
sentative of suburban growth within the Toronto CMA,
which represents 44% of the population of Ontario and
17% of the total population of the country.

3.2. Satellite data and pre-processing

Radarsat-2 fine quad pol wide images3 in different
angles were acquired for Milton for the months of July
to October 2019 to test the multi-polarization infor-
mation. All images were converted in Sigma Nought
format and then orthorectified. The pixel size of all im-
ages, even if they were acquired in different angles,
was resampled at 8 m for better comparison. A Lee
adaptive filter with a window of 7 by 7 was applied on
the images to reduce the speckle effect [57]. The Touzi
multiresolution decomposition [41] was performed us-
ing Geomatica software [57] and created an image of
15 decomposition parameters. For each of the primary,
secondary, and tertiary eigenvectors, the orientation an-
gle (psi), dominant eigenvalue (lambda), alpha_s angle,
phase, and helicity (tau) are computed.

These parameters characterize the properties of scat-
tering by computing the proportion and type of the scat-
tering mechanism for all features in the image. For ex-
ample, the Alpha S polarimetric parameter measures the
double bounce response resulting from the interaction
of the radar signal with a corner reflector created by two
or more smooth, flat surfaces oriented at a 90-degree
angle to each other (most commonly an impervious
surface and a building). Four Touzi discriminators [40]
were also generated for measuring the intensity of the
signal returned to the sensor [57]. The computed dis-
criminators include the Touzi anisotropy, the degrees
of minimum and maximum polarization response, and
the difference between the maximum and minimum re-
sponse. Table 1 provides the list of the parameters used
for the assessment.

Landsat analysis ready data (ARD) images were se-
lected from the USGS Earth Explorer platform portal
for census years 2001, 2006, 2011, and 2016. Imagery
was also downloaded for the most recent year (2019) to

3https://www.asc-csa.gc.ca/eng/satellites/radarsat/technical-feat
ures/radarsat-comparison.asp.
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Table 1
List of Radarsat-2 polarimetric parameters

Touzi decomposition
Eigenvectors Parameters
Dominant Psi Angle

Eigenvalue (Lambda)
Alpha S Parameter
Phase
Tau Angle (Helicity)

Secondary Psi Angle
Eigenvalue (Lambda)
Alpha S Parameter
Phase
Tau Angle (Helicity)

Tertiary Psi Angle
Eigenvalue (Lambda)
Alpha S Parameter
Phase
Tau Angle (Helicity)

Touzi discriminators
Maximum Polarization Response
Minimum Polarization Response
Touzi Anisotropy
Difference between Max and Min Response

have the most up-to-date classification possible. Mul-
tiple images were downloaded for each year to cover
seasonal variability from spring to fall. The NDVI was
calculated for each image.

3.3. Training and validation data selection and
classification scheme

The 2016 Census of Population geographic boundary
for the population centre of Milton [58] was used to
delineate the urban core and buffered by an arbitrary
distance of two kilometres to include the newly built-up
areas in the peri-urban area. A buffer distance of two
kilometres was found to capture the majority of new
built-up areas that occurred outside of the population
centre between 2016 and 2019. The 2019 Radarsat-2,
Landsat ARD and the buffered population centre poly-
gon for Milton were loaded into a project using the
commercial software eCognition V9.4.4 A multireso-
lution segmentation, based on the 2019 Landsat NDVI
from spring, summer and fall, was generated to cre-
ate meaningful objects, i.e., different urban ecosystem
types. Identification of training classes was performed
through visual interpretation of Landsat data and high
resolution imagery available through Google Earth and
on-site visits to assign a class to each polygon.

4https://geospatial.trimble.com/products-and-solutions/ecogni
tion.

The approach used a classification scheme based
on the local climate zone (LCZ) classes developed by
Stewart and Oke for the urban ecosystem types (Ta-
ble 2) [13]. For each LCZ class, 75% of the polygons
were randomly selected for training. The remaining
25% were kept for validation. A total of 723 polygons
were selected for training and 237 for validation (Ta-
ble 3). This proportion was chosen to balance between
what is statistically sound and what is practicably at-
tainable.

3.4. Object-based classification

The decision tree (DT), random forest (RF), and sup-
port vector machine (SVM) supervised classification
models were evaluated. Each classifier was trained and
validated, and the accuracy of each classification was
compared. Radarsat-2 polarimetric parameters Alpha
S, Dominant Lambda, Tertiary Lambda and Maximum
Intensity, and Landsat spectral bands and NDVI were
used to create classifier statistics from the same set of
training samples. The accuracy of the three classifi-
cations was assessed using the same set of validation
polygons.

3.5. Ecosystem assets calculation

Urban ecosystem accounting requires the delineation
of individual ecosystem assets that make up the en-
tire fabric of urban areas (e.g., vegetation, buildings,
impervious surface, bare soil and water).

The total area and the percentage of vegetation cov-
erage by each LCZ class were calculated using a bi-
nary map of vegetation based on the NDVI from Land-
sat imagery. All available Landsat NDVI imagery was
acquired for 2019 and the maximum NDVI value for
each pixel was selected. A binary vegetation mask was
generated by manually specifying a threshold for the
maximum NDVI value observed for 2019.

The road coverage was derived from the Road Net-
work File (RNF) from Statistics Canada, a digital rep-
resentation of Canada’s national road network [59]. All
road line features were buffered by four metres5 to cre-
ate road polygons in order to calculate the road area of
each LCZ class.

The building coverage was drawn from Microsoft’s
Building footprint dataset [60] dated March 2019. This
dataset includes the footprint of nearly 12 million build-

5https://tac-atc.ca/sites/tac-atc.ca/files/site/2011-gdg-revisions.
pdf.
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Table 2
Description of local climate zone classes found in Milton, Ontario [13]

Code LCZ classes Description of local climate zone (LCZ) classes
LCZ 3 Compact low-rise Dense mix of low-rise buildings (1–3 stories). Few or no trees. Land cover mostly paved.
LCZ 6 Open low-rise Open arrangement of low-rise buildings (1–3 stories). Abundance of pervious land cover (low plants,

scattered trees).
LCZ 8 Large low-rise Open arrangement of large low-rise buildings (1–3 stories). Few or no trees. Land cover mostly paved.
LCZ 9 Sparsely built Sparse arrangement of small or medium-sized buildings in a natural setting. Abundance of pervious land

cover (low plants, scattered trees).
LCZ A Dense trees Heavily wooded landscape of deciduous and/or evergreen trees. Land cover mostly pervious (low plants).

Zone function is natural forest, tree cultivation, or urban park.
LCZ B Scattered trees Lightly wooded landscape of deciduous and/or evergreen trees. Land cover mostly pervious (low plants).

Zone function is natural forest, tree cultivation, or urban park.
LCZ D Low plants Featureless landscape of grass or herbaceous plants/crops. Few or no trees. Zone function is natural

grassland, agriculture, or urban park.
LCZ E Paved Featureless landscape of rock or paved cover. Few or no trees or plants. Zone function is natural desert

(rock) or urban transportation.
LCZ F Bare soil Featureless landscape of soil or sand cover. Few or no trees or plants. Zone function is agriculture.
LCZ G Water Large, open water bodies such as seas and lakes, or small bodies such as rivers, reservoirs, and lagoons.

Table 3
Number, area and average area of polygons used for training and validation per LCZ class

Training objects Validation objects

LCZ Count Total area (km2) Average area (km2) Count Total area (km2) Average area (km2)
Bare soil 51 4.37 0.09 16 1.31 0.08
Compact low-rise 18 8.82 0.49 6 1.86 0.31
Dense trees 34 5.23 0.15 11 1.58 0.14
Large
Low-rise 64 5.40 0.08 21 1.86 0.09
Low plants 283 32.88 0.12 94 11.52 0.12
Open
Low-rise 36 6.18 0.17 12 3.02 0.25
Paved 33 2.95 0.09 11 0.68 0.06
Scattered trees 63 7.40 0.12 20 1.71 0.09
Sparsely built 92 7.35 0.08 30 3.51 0.12
Water 49 0.71 0.01 16 0.16 0.01

ings, covering all provinces and territories in Canada.
The total area and percentage coverage of the building
footprints were calculated for each LCZ class.

3.6. Change detection

Object-based change detection analysis captures
change by comparing the values of objects over several
dates. The annual mean maximum NDVI values for
2001, 2006, 2011, and 2016 census years, and 2019,
were compared to identify the type of landscape change
and timing of its occurrence for each built-up image
object from the 2019 segmentation. To calculate the
annual maximum NDVI value for a given year, all avail-
able Landsat NDVI images were acquired and the high-
est NDVI value for each pixel was selected. The NDVI
values within each built-up object were averaged to ob-
tain the mean maximum NDVI value. Assessing the
change directly from the NDVI value reduces the error
introduced by post classification change analysis, where

misregistration and misclassification can lead to false
changes.

The Landsat-8 sensor acquires data in two thermal
bands, in addition to the seven spectral bands. The
USGS systematically processes the thermal bands to
create a surface temperature product, which is available
for all ARD image dates. A single surface temperature
image was selected for each year of the analysis. The
individual images were chosen to coincide with typical
summer temperatures and with daily temperature read-
ings from two nearby weather stations. Local surface
temperature is dependent on a number of factors such
as elevation, vegetation, topography, solar radiation and
prevailing winds.

Surface temperature was calculated for each object
by averaging the individual pixel values within the ob-
ject. The maximum surface temperature value for each
date, as measured at the weather stations, was then sub-
tracted from the mean value of each object to adjust
for differences between dates. The final surface tem-
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Table 4
Comparison of the overall accuracy for the classifications

Classification Overall accuracy Kappa
Landsat-8 (DT) 56.96% 0.49
Landsat-8 (RF) 64.98% 0.58
Landsat-8 (SVM) 54.85% 0.42
Landsat-8 and Radarsat-2 (DT) 62.45% 0.54
Landsat-8 and Radarsat-2 (RF) 74.26% 0.68
Landsat-8 and Radarsat-2 (SVM) 55.70% 0.43

perature values for each object represent the deviation
from the maximum surface temperature observed at the
weather stations.

4. Results and discussion

Results show that the polarimetric parameters con-
tributed to the classification of the local climate zone
(LCZ) urban ecosystem types. The best result is ob-
tained with the random forest (RF) algorithm, which
had an overall accuracy of 74% and a kappa of 0.68
(note that a kappa value of 1 represents perfect agree-
ment, while a value of 0 represents no agreement) (Ta-
ble 4). The RF algorithm applied on the Landsat-8 com-
bined with the Radarsat-2 image provided better results
for most of the classes when compared to the Landsat-
8 only classification (Table 5), for both the producer
accuracy and user accuracy.

Producer accuracy is the probability that a value in
a given class was classified correctly from the point of
view of the map maker. User accuracy is the probability
that a value predicted to be in a certain class really is
in that class. The probability is based on the fraction of
correctly predicted values to the total number of values
predicted to be in a class. For example, in Table 5, the
producer accuracy for the ‘Compact low-rise’ class was
83% while the user accuracy was 56%. This means that
even though 83% of the reference sites classified as
Compact low-rise areas have been correctly identified
as Compact low-rise, only 56% percent of the areas
identified as Compact low-rise in the classification were
actually Compact low-rise. The producer’s accuracy is
a complement of the omission error, while the user’s
accuracy is a complement of commission error. Errors
of omission refer to reference sites that were left out (or
omitted) from the correct class in the classified map.
In the case of Compact low-rise, 17% of this class was
omitted, while 44% of polygons identified as Compact
low-rise were, in reality, other classes.

Polarimetric decomposition parameters can explain
the target scattering mechanisms in different ways.
However, their basic scattering mechanisms include

three main classes: surface scattering, volume diffusion
scattering and double bounce scattering. Table 6 ex-
plains the way in which polarimetric parameters con-
tributed to the improvement of the classification of the
LCZ urban type classes.

The overall accuracy of the results of this approach
may seem low compared to the literature, where a
threshold of 85% is typically recognized as an accept-
able level of accuracy [61]; however, the results should
be analyzed at the class level. Moreover, even if the
accuracy of one class is low, if it represents a green
and blue ecosystem type that is important for defining
ecosystem services, then this class can be conserved
in the result. Nonetheless, the assessment of this class
should be analyzed with ancillary data to avoid unac-
ceptable errors.

Given that urban type class definitions from LCZs
are based on a combination of structural and biophysi-
cal criteria observed on the ground, the use of remote
sensing to map LCZs classes may introduce overlap be-
tween classes. However, this overlap can be explained
when looking at the spectral response. For example,
the accuracy of the ‘Paved’ class is low compared to
the other classes (45% for producer accuracy and 50%
for user accuracy) because of its confusion with other
built-up classes that have a paved component (Table 7).
This confusion is judged acceptable; confusion with
a class such as water or dense trees would have been
unacceptable. In this case, however, given the lower
relevance of paved areas for ecosystem service supply,
the class could be merged with another related class.

Note that since the accuracy assessment was per-
formed at the object level, the comparison is based on
the count of the polygons, even though the objects do
not have the same size. A comparison using the area of
the objects, where each pixel is considered in the calcu-
lation, increases the user’s accuracy for the Paved class
from 50% to 80%. The level of accuracy is higher for all
classes when calculated with the area, but the relative
comparison between classes is similar (Table 8).

The RF object-based classification identified 10 ho-
mogeneous urban sub-classes based on the LCZs for
Milton in 2019 at 30 m resolution (Fig. 1). All of the
urban classes inside the socio-economic boundary of
the buffered population centre were summed to give a
total urbanized area for Milton. The total area calculated
based on the RF object-based classification is 45.3 km2

(2019), while Statistics Canada’s official area for the
population centre is 40.4 km2 (2016) (Table 9). The
difference in area between the classification results and
the official statistics (∼ 5 km2) is concentrated in the
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Table 5
Comparison of the producer’s and user’s accuracy for Landsat-8 (L8) and Landsat-8 combined to Radarsat-2 (RS2) at class level (%)

Classification Accuracy Water
Low

plants
Dense
trees

Scattered
trees

Sparsely
built

Bare
soil Paved

Large
low-rise

Open
low-rise

Compact
low-rise

L8 (RF) Producer 94 59 100 45 73 81 18 76 58 67
User 100 90 85 43 44 57 17 89 47 44

L8-RS2 (RF) Producer 94 76 91 45 77 88 45 90 42 83
User 100 89 83 69 52 67 50 86 45 56

L8-RS2 (RF) Omission 6 24 9 55 23 12 55 10 58 17
Commission 0 11 17 31 48 33 50 14 55 44

Table 6
Scattering mechanisms associated with the polarimetric parameter for each LCZ class

Ranking RS2 contribution LCZ Scattering mechanisms Polarimetric parameters
1 Paved Surface Lambda 1, maximum intensity
2 Compact low-rise Double bounce and volume scatter Alpha S, Lambda 3
3 Bare soil Surface Lambda 1
4 Sparsely built Volume scatter Lambda 3
5 Scattered trees Volume scatter Lambda 3
6 Low plants Surface Lambda 1
7 Large low-rise Double bounce Alpha S

Table 7
Error matrix of the random forest classification – Landsat-8 and Radarsat-2 for each LCZ class

User class/
sample (objects) Water

Low
plants

Dense
trees

Scattered
trees

Sparsely
built

Bare
soil Paved

Large
low-rise

Open
low-rise

Compact
low-rise

Water 15 0 0 0 0 0 0 0 0 0
Low plants 1 71 0 2 3 2 1 0 0 0
Dense trees 0 0 10 2 0 0 0 0 0 0
Scattered trees 0 3 1 9 0 0 0 0 0 0
Sparsely built 0 12 0 6 23 0 0 0 3 0
Bare soil 0 5 0 0 1 14 1 0 0 0
Paved 0 1 0 0 2 0 5 1 1 0
Large low-rise 0 0 0 0 0 0 2 19 1 0
Open low-rise 0 2 0 1 1 0 1 0 5 1
Compact low-rise 0 0 0 0 0 0 1 1 2 5
Unclassified 0 0 0 0 0 0 0 0 0 0
Sum 16 94 11 20 30 16 11 21 12 6
Producer % 94 76 91 45 77 88 45 90 42 83
User % 100 89 83 69 52 67 50 86 45 56
KIA per class % 93 63 90 42 71 86 43 90 39 83
Overall accuracy % 74
KIA % 68

Table 8
Accuracy assessment calculated with the area (number of pixels) %

User class/
sample (areas) Water

Low
plants

Dense
trees

Scattered
trees

Sparsely
built

Bare
soil Paved

Large
low-rise

Open
low-rise

Compact
low-rise

Producer % 88 77 98 58 92 93 51 97 58 86
User % 100 95 90 61 63 57 80 90 80 61

northeast area of the city and mainly represents paved
areas (i.e., parking lots).

The application of the GEOBIA segmentation and
classification approach delineated Landsat images seg-
mented into spatially continuous and homogeneous re-
gions according to LCZ classes based on spectral, spa-
tial and contextual information. The error matrix calcu-

lated from the validation dataset demonstrated that the
combination of Landsat8 spectral bands and NDVI with
the Radarsat2 polarimetric decomposition parameters
provided a more accurate urban characterization than
the Landsat images alone (Table 5).

The use of ancillary geospatial datasets for mea-
suring ecosystem assets can also be used to validate
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Fig. 1. Milton urban local climate zones – 2019.

Table 9
Areas by local climate zone class

LCZ LCZ class Area (km2) %
3 Compact low-rise 12.3 27.1
6 Open low-rise 8.3 18.2
8 Large low-rise 7.3 16.2
9 Urban sparsely built 3.9 8.7
A Urban dense trees 0.8 1.7
B Urban scattered trees 1.9 4.3
D Urban low plants 5.0 11.1
E Paved 3.6 7.9
F Urban bare soil 1.8 2.7
G Urban water 0.4 0.5

Total urban 45.3 100.0

whether the pixel grouping produces meaningful results
that meet urban ecosystem accounting requirements.
The areas of buildings, buffered roads and vegetation
were calculated for each LCZ class from the geospatial
datasets described in the previous section. Limited in-
formation was available for impervious surfaces (e.g.,
parking lots), bare soil and water. These land cover
classes were included as ‘Others’ by subtraction from
the total area. Figure 2 provides the ratios of the build-
ing, road and vegetation areas for each LCZ class. The
ratios are compliant with the description of the LCZ
classes as described in Table 2 and as estimated by
Stewart and Oke [13]. Note that the percentage of veg-

etation in the water class is caused by the inclusion of
shorelines, islands and forest canopy in the object.

In defining the segments corresponding to the LCZ
classes (or urban ecosystem types), it is helpful to con-
sider how urban ecosystem assets differ in their ability
to supply ecosystem services to people. For example,
different levels of vegetation will impact climate regu-
lation services in mitigating urban heat island effects.
Figure 3 shows that the vegetated urban classes experi-
enced lower temperatures compared to the urban classes
where building and road area were more predominant,
based on Landsat8 surface temperature data for Au-
gust 1, 2019. The highest temperatures were seen in the
Compact low-rise class, which also accounted for the
largest proportion of the town’s population, indicating
that a greater number of people were exposed to higher
temperatures (Fig. 4).

Changes in land cover composition are impor-
tant landscape characteristics for assessing changes
in ecosystem condition and functions. The object-
based change detection analysis assessed the vegetation
change at the landscape level (segment) using NDVI.

Figure 5 provides an example of the changes between
2001 and 2019 for one segment. The 2001 and 2006
sub-images show agriculture fields. Between 2006 and
2011, there was a conversion of agricultural fields to a
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Fig. 2. Ratio of ecosystem assets by LCZ class.

Fig. 3. Surface temperature by LCZ for August 1, 2019.

Fig. 4. Total population estimated by LCZ.

combination of built-up and bare soil. Between 2011
and 2016, the entire object was converted to built-up
area. Overall, 0.05 km2 of agricultural area was con-
verted to built-up over the period. The analysis of NDVI

for different years demonstrates that change in NDVI
values can be used to identify both the type of change
(i.e., conversion from agricultural to urban land uses)
and when it occurs (Fig. 6).
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Fig. 5. Changes observed in polygon 688 from Landsat series, 2001 to 2019.

Fig. 6. Mean maximum NDVI values for polygon 688 from 2001 to 2019.

Fig. 7. Mean temperature for polygon 688 from 2001 to 2019.
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Changes in ecosystem characteristics have an im-
pact on ecosystem conditions. For example, the surface
temperature measured with Landsat8 (adjusted with
ground sensors) demonstrated that the conversion of
agricultural land (vegetated during the growing season)
to built-up (buildings and impervious surface) correlates
with an increased ground-level temperature (Fig. 7).

5. Conclusion and recommendations

This study investigated Radarsat-2 polarimetric pa-
rameters combined with Landsat data for urban de-
lineation and characterization using object-based ma-
chine learning classifiers. The approach was success-
fully tested in Milton, Ontario, and is being applied at
two other study sites in Drummondville, Quebec, and
Richmond, British Columbia to evaluate its replicability
before a broader application of the method to other pop-
ulation centres across the country. The goal would be to
eventually apply this approach to the 1,005 population
centres in Canada, which represent 28.6 million people
or 81% of Canada’s total population, and approximately
18,000 km2 of urban area.

Based on the results, the following conclusions are
drawn:

– Geographic object-based image analysis (GEO-
BIA) using the local climate zone (LCZ) classes
provides a meaningful description of biophysical
processes that can be used to define ecosystem
services (e.g., temperature increase mitigation).
Although developed for urban heat island stud-
ies, the LCZ classification provides representative
groupings of individual urban components within
urban ecosystems. The LCZ classification is flex-
ible enough to apply to a wide variety of urban
environments. An adoption of the approach used
in this study could improve ecosystem accounts
in other contexts and could be explored by other
countries. The approach may work best in urban
centres where urban planning and zoning results
in developments with homogeneous urban types.

– The polarimetric parameters Alpha S, Lambda 1
and 3 (Touzi decomposition) and Maximum In-
tensity (Touzi discriminators) contributed to the
improvement of the urban characterization follow-
ing the LCZ scheme. The random forest classifier
provided better results than the decision tree and
support vector machine classifiers.

– The object-based change detection tracks the

change at the patch (parcel) level, which is better
adjusted to the heterogeneity of urban landscapes.
The object-based approach combines the spectral
properties of urban features reducing the effects
associated with the single pixel that are not con-
stant through time, thus the change detected at the
object level represents a real conversion of land
cover.

– Since the classifier is dependent on the quality and
quantity of training and validation datasets, the se-
lection of areas should be considered as a critical
step toward the classification process. Sampling
methodology should be scientifically and statisti-
cally sound. Moreover, a good coverage of the spa-
tial variability of the training sites can contribute
to the generation of unique set of spectral signature
and/or polarimetric parameters, and then facilitate
transferability between study sites.

Further research is needed to explore:

– Use of Sentinel-2 images with their resolution of
10 m, integrated with the Landsat images in the
eCognition project, as this could improve the seg-
mentation process, producing a more accurate and
detailed delineation of the objects and facilitating
the classification of the objects into LCZ classes.

– Use of cloud-based geospatial platforms, such as
Google Earth Engine, to access imagery and en-
able analysis by facilitating scaling of the method-
ology to sites across the country.

– Assessment of the extent and condition of ecosys-
tem assets through landscape metrics (e.g., frag-
mentation, connectivity, and mean patch size),
which provide an accurate representation of the
spatial arrangement by quantifying the extent and
spatial characteristics at patch, classes or land-
scape level at different times.

The use of earth observation technologies to support
official statistics remains a challenge, although meth-
ods based on earth observation for land use and land
cover analysis are robust and scientifically recognized.
Official statistics require that the data and documenta-
tion processes be compliant with the Quality Assurance
Framework (QAF) [62] to ensure the credibility of the
statistical agency. An assessment of products derived
from remote sensing and earth observation data should
consider the six dimensions of quality specified by the
QAF including how they provide or support:

– Relevant information, through use of appropriate
approaches (i.e., methodology, date and resolu-
tion), adapted to the purpose of the study.
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– Accurate results, through documentation of errors
and limitations.

– Improved timeliness of data, with the increased
availability of satellite EO information (e.g.,
RADARSAT Constellation Mission (RCM) [63]).

– Accessible EO data that is openly available
through portals and platforms (e.g., UN platform
and Google Earth Engine), which also provide ac-
cess to open source software and scripts, in addi-
tion to big data computing capacity for implemen-
tation at national and global scale.

– Improved coherence and comparability, through
access to complete coverage of analysis ready data
(ARD) ensuring the use of calibrated data at na-
tional scale.

– Interpretability provided by metadata standards.

The use of satellite earth observation approaches in
accordance with these dimensions, will lead to lower
costs and better services, contributing to the UN SEEA-
EEA, assessments of climate change resilience, and
other Statistics Canada programs related to urban areas.
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