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Abstract. Official Statistics commonly conducts sample surveys to produce estimates of aggregate statistics with a desired level
of precision. For this purpose, design-based methods are used which are suitable for the estimation of finite population quantities
such as totals or means. In most cases, however, model-based analyses are applied to the survey data as well. Examples include
small area estimation techniques that allow for reliable estimates of finite population quantities in the presence of small sample
sizes and socio-econometric models used in academia to test scientific hypotheses. This may cause problems as model-based
methods frequently assume a non-informative sampling design and a violation of this assumption can lead to erroneous statistical
inferences. We argue in this work that if the application of model-based methods can be anticipated before the sample is drawn,
then this knowledge should be incorporated in the survey design. We propose a method called antithetic clustering that enables
precise estimates for aggregate figures using design-based estimation methods and does automatically lead to non-informative
sampling designs. Our method is compared against other sampling plans designed to achieve precise design-based estimates for
aggregates in a simulation study.
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1. Introduction

Traditionally, Official Statistics has adopted a
design-based approach to produce estimates using
sample data. Thus, the sample is collected by means
of probability sampling, i.e. each unit in the population
has a known and positive probability of being included
in the sample [1, p. 32]. Moreover, an estimator is cho-
sen which possesses certain desirable properties such
as design-consistency. Hence, very precise estimates
can be obtained provided the sample size is large.
While this prerequisite will be met for national statis-
tics or for large subgroups that have been incorporated
in the sampling design as strata, it might not be true for
some small subgroups. A potential remedy in this case
is the use of model-based small area estimation meth-
ods [2–4]. A caveat regarding the application of many
model-based small area estimation techniques is that
they are not design-consistent under general sampling
designs. Hence, their design-bias does not vanish as
the sample size increases and these methods are conse-

quently not robust against a potential model misspeci-
fication. Furthermore, the sampling design can even in-
duce biases of model-based estimates when the model
is correctly specified. This phenomenon is known as
informative sampling and arises whenever a model that
can be validated for the sample differs from the model
which holds for the population [5, p. 455]. As a conse-
quence, the sample model cannot be used for inference
on the population model without further adjustments.
Ignoring this fact may lead to erroneous statistical in-
ferences.

In most applications, estimates for subgroups with
small sample sizes as well as estimates on aggregate
levels with large sample sizes are needed at the same
time. This poses a challenge to the survey planner, as
the sampling design has to reflect different and poten-
tially conflicting requirements simultaneously. On the
one hand, the sampling design should be built on infor-
mation related to the variable of interest to enable ef-
ficient design-based estimates for aggregate statistics.
This could be achieved via stratification [6, p. 450] or
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sampling with probabilities proportional to size, where
a proportional relationship between the size variable
and the variable of interest is desirable [1, p. 88]. On
the other hand, these optimised designs may lead to in-
formative sampling and thereby invalidate conclusions
drawn from model-based estimation procedures. For
those estimators non-informative designs such as sim-
ple random sampling (SRS) that do not interfere with
the model would be beneficial. However, plain SRS
schemes do not use auxiliary information at the design
stage and are thus not very suitable for design-based
estimation of aggregate figures.

The preceding discussion clearly indicates that the
trade-off between design-optimisation and modelling
should be already dealt with in the sampling design.
Even though both design- and model-based estimates
are regularly published by statistical offices [7,8], de-
signs reflecting the needs of both philosophies have
rarely been discussed. A notable exception is due
to [9], who propose a box-constraint optimal allocation
in stratified random sampling (StrRS), where the vari-
ance of a national statistic is minimised under an im-
plicit restriction on the range of the sampling weights.

In Section 2, we propose a sampling method that
allows for precise design-based estimates and is non-
informative by construction. Our approach is based on
the technique of antithetic variates, which is a well-
known method to reduce the variance in Monte-Carlo
simulations [10]. We adapt this approach to the context
of survey sampling and derive conditions under which
it will yield estimates with a higher precision than SRS.

Section 3 presents the results of a design-based sim-
ulation study, where we compare our method against
various alternative sampling designs for both design-
and model-based estimators.

Finally, concluding remarks are given in Section 4.

2. Antithetic clustering

2.1. Notation

Following [11], we consider a fixed and finite pop-
ulation U = {1, . . . , k, . . . , N}, with values (y1, . . . ,
yk, . . . , yN )′ of the variable of interest y. The values
yk are only observed for the elements included in the
sample S ⊂ U of size n, which is drawn using a
probability sampling mechanism. The population can
be further partitioned into D mutually exclusive do-
mains (or areas) Ud ⊂ U, d = 1, . . . , D with do-
main sizes Nd. Thus, the part of the sample which is

Table 1
Algorithm for antithetic clustering

1. Order the elements according to the values of zk .
2. Set i = 0 and assign units 1 and N from the ordered vector to

the first cluster.
3. Increase i by 1 and assign units 1 + i and (N − i) from the

ordered vector to the next cluster.
4. Repeat step 3 until all units have been assigned to a cluster. The

procedure yields L = dN/2e clusters, where the last cluster
may either comprise one unit (odd N ) or two units (even N ).

5. Draw l > 1 out of L clusters by means of a simple random
sample.

taken from domain d is given by Sd = S ∩ Ud and
the resulting sample size in the domain d is denoted
as nd. Note that depending on the sampling design
used, the sample sizes in domains may be random. In
this article, we focus on the estimation of the national
mean µY = (

∑
k∈U yk/N) and the domain means

µY,d = (
∑
k∈Ud

yk/Nd). Estimators of µY and µY,d
will be denoted as µ̂∗Y and µ̂∗Y,d where the “*”-symbol
refers to the estimation method used. Moreover, we as-
sume that the sampling frame comprises information
about a size variable z, whose values zk are known for
all units in the population. Hence, this size variable can
be used by the survey planner when constructing the
sampling mechanism. Frequently, the survey collects
a (p + 1)-dimensional vector of auxiliary information
xk = (1, x1k, . . . , xpk)′ as well. If the corresponding
population totals of the vector of auxiliary information
τX =

∑
k∈U xk are known at the estimation stage, the

xk can be incorporated as covariates in model-based
and model-assisted estimation procedures [11, p. 220].
It should be noted that as zk is assumed to be known for
the entire population, it can easily be included among
the covariates xk.

2.2. Our approach

Our aim is to construct a sampling design, which en-
ables precise design-based estimates but does not dis-
tort the properties of statistical models. To do so, we
combine single stage cluster sampling with the idea of
antithetic variates, where pairs of negatively correlated
random variables are drawn to reduce the variance in
Monte-Carlo simulations [10, Chapter 5]. We call our
proposed method antithetic clustering (ATC). It is sum-
marised in Table 1.

Since the sample is drawn using a simple random
sample of clusters, all clusters and hence all units
k = 1, . . . , N of the population have the same prob-
ability of being included in the sample. Consequently,
the sample selection mechanism does not depend on
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the values of the variable of interest such that the pro-
posed method is non-informative by construction. Note
that the idea to base the sampling design on the sorted
values of an auxiliary variable is not new. A system-
atic sampling approach based on the ordered values of
zk is discussed in [12, Section 3.4.2] and references
therein. Technically, systematic sampling can be con-
sidered a special case of a single stage cluster sam-
pling design where only one cluster is selected. Thus,
unbiased variance estimation under a design-based ap-
proach is infeasible as the second-order inclusion prob-
abilities πkl = 0 for elements which do not belong to
the same cluster [1, p. 75]. This limitation does not oc-
cur with our approach, as we draw a simple random
sample of clusters, where more than one cluster is sam-
pled.

The question that remains is whether our sampling
mechanism is suitable for design-based estimation.
Therefore, we study the properties of the sample mean
under single stage cluster sampling.

2.3. The efficiency of single stage cluster sampling

A sampling design yields estimates with a higher
precision than simple random sampling provided its
design effect is less than one. This design effect
(DEFF) under single stage cluster sampling is closely
related to the intraclass correlation coefficient (ICC) in
the case of evenly sized clusters where Nh = NL for
all h = 1, . . . , L [13, Section 5.2.2]:

DEFF =
NLL− 1

NL(L− 1)
(1 + (NL − 1)ICC) (1)

From Eq. (1), it follows that ICC < −1
LNL−1

is re-
quired to obtain better estimates under single stage
cluster sampling compared to SRS. Note that the ICC
is defined as [13, Section 5.2.2]

ICC = 1− NL

NL − 1

SSWY

SSWY + SSBY
(2)

where

SSBY =

L∑
h=1

NhY
2

h −NY
2

(3)

SSWY =

N∑
k=1

y2k −
L∑
h=1

NhY
2

h

denote the sum of squares between clusters and the
sum of squares within clusters, respectively. Using
Eqs (2) and (3), we get the following condition for a
variance reduction compared to SRS:

SSWY >
L(NL − 1)

L− 1
SSBY . (4)

An implication of Eq. (4) is to create clusters such
that most of the variation of the dependent variable is
due to variation within the clusters, not between clus-
ters. What does this imply for our ATC approach? Intu-
itively, the clusters will have a large ratio of the within
versus the between variation for the size variable. It
can be shown that our approach is optimal among all
possible combinations of PSUs, which are exhaustive,
mutually exclusive and where one unit with an above-
median value of the size variable is clustered with a
unit with a below-median value. This follows from
applying the rearrangement equality, which is given
in [14, p. 261]. Having established a certain optimal-
ity of ATC for the size variable, we need to examine
the implications for our variable of interest. To do so,
we consider models specifying the data generating pro-
cess.

2.4. ATC under a single level model

Suppose that the relationship between the dependent
variable and the size variable used for clustering is
given by the simple linear regression model

yk = β0 + β1zk + εk, εk
i.i.d.∼ G(0, σ2) (5)

where εk denotes the error term, which is assumed to
be independently and identically distributed according
to a distribution G with mean zero and variance σ2.
The expectation of the SSB and SSW under model
Eq. (5) can be calculated using

EM (SSBY ) =
L∑
h=1

NhEM (Y
2

h)−NEM (Y
2
),

(6)

EM (SSWY ) =

N∑
k=1

EM (y2k)−
L∑
h=1

NhEM (Y
2

h),

where EM (·) denotes the expectation with respect to
the model. It can be seen from Eq. (6) that we need
expressions for the expected values of Y

2

h, Y
2

and y2k
under model Eq. (5). They are readily available using
the variance identity E(X2) = [E(X)]2 + Var(X).
This leads to

EM (y2k) = β2
0 + 2β0β1zk + β2

1z
2
k + σ2,

EM (Y
2

h) = β2
0 + 2β0β1Zh + β2

1Z
2

h + σ2/Nh,

EM (Y
2
) = β2

0 + 2β0β1Z + β2
1Z

2
+ σ2/N. (7)

Inserting expressions Eq. (7) in Eq. (6) yields the
following equations:
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EM (SSBY ) = β2
1

(
L∑
h=1

NhZ
2

h −NZ
2

)
+ σ2(L− 1),

EM (SSWY ) = β2
1

(
N∑
k=1

z2k −
L∑
h=1

NhZ
2

h

)
+ σ2(N − L) (8)

Equation (8) and utilising

SSBZ =

L∑
h=1

NhZ
2

h −NZ
2
,

SSWZ =

N∑
k=1

z2k −
L∑
h=1

NhZ
2

h,

as well as N − L = L for even N allow us to arrive
at a simple expression for the condition under which
ATC will lead to a variance reduction vis-à-vis SRS. It
is given by

EM (SSWY )

EM (SSBY )
=

β2
1SSWZ + Lσ2

β2
1SSBZ + (L− 1)σ2

(9)
>

L

L− 1
.

If β2
1 takes a non-zero value, expression Eq. (9) can

be further simplified to
EM (SSWY )

EM (SSBY )
=

SSWZ

SSBZ
>

L

L− 1
. (10)

Hence, ATC is expected to perform better than SRS
under a linear model provided the correlation between
the variable of interest is non-zero and the ratio of the
within to the between variation in the size variable is
greater than L/(L − 1). If β1 = 0, the variable of in-
terest and the clustering variable are uncorrelated. It
should be further noted that relaxing the i.i.d. assump-
tion on the model error to the case of independence
also leads to condition Eq. (10) in the presence of a
non-zero correlation. Another interesting question re-
lates to the consequences of applying ATC when the
population model is given by

yk = c · (zk − Z)2 + εk,
(11)

εk
i.i.d.∼ G(0, σ2

ε ).

In this case, constructing clusters based on zk will
be inefficient and lead to a loss in precision vis-à-vis
SRS as the units within a cluster will have very similar
values of yk such that SSBY dominates the total sum
of squares. A simple remedy in this situation is to de-
termine the cluster membership by applying the ATC
method to the values of ak = (zk − Z)2, as model
Eq. (5) holds for the auxiliary variable ak.

2.5. ATC under a model with domain effects

While the developments from the previous sections
are based on a simple linear regression model, the con-
dition applies as well to a model with domain-specific
effects vd

yk = β0 + β1zk + vd + εk, k ∈ Ud,
(12)

εk
i.i.d.∼ G(0, σ2)

provided that the sampling design is a two stage design
with the domains as strata on the first stage (planned
domains) and within domains the ATC procedure is ap-
plied. The reason why this holds is that within a do-
main d, the domain-specific effect vd in Eq. (12) is a
constant and thus absorbed by the intercept β0. Thus,
model Eq. (12) reduces to model Eq. (5) within do-
mains. Since the national mean is a convex combina-
tion of the stratum means under StrRS, applying ATC
within domains will lead to a variance reduction for the
national mean compared to SRS.

Now suppose that the model governing the popula-
tion is indeed given by Eq. (12), but ATC is applied on
the population level directly. This leads to changes for
the relevant expectations needed to compute the sum
of squares between and within as the cluster can be
composed of units from different domains. Hence, the
expected values are given by

EM (y2k) = β2
0 + 2β0β1zk + 2β0vk + β2

1z
2
k

+ 2β1zkvk + v2k + σ2,

EM (Y
2

h) = β2
0 + 2β0β1Zh + 2β0V h + β2

1Z
2

h

+ 2β1ZhV h + V
2

h + σ2/Nh,

EM (Y
2
) = β2

0 + 2β0β1Z + 2β0V + β2
1Z

2

+ 2β1ZV + V
2

+ σ2/N, (13)

where vk denotes the domain-specific effect relevant
for unit k and V and V h refer to the population and
cluster means of the domain-specific effects, respec-
tively. Using Eq. (13) in connection with expressions
for EM (SSBY ) and EM (SSWY ) yields:

EM (SSBY ) ≈ β2
1SSBZ + (L− 1)σ2

+

L∑
h=1

NhV
2

h −N · V
2
,

EM (SSWY ) ≈ β2
1SSWz + Lσ2

+

D∑
d=1

Ndv
2
d −

L∑
h=1

NhV
2

h. (14)
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Note that expressions Eq. (14) are approximations,
since cross-product terms between the domain-specific
effects and the clustering variable as well as those be-
tween the domain-specific effects and the individual
error terms are ignored. These approximations can be
motivated as in many applications the cross-product
terms are negligible compared to the terms present in
Eq. (14). Thus, ATC will be more precise than SRS if

EM (SSWY )

EM (SSBY )
≈ β2

1SSWZ + SSWV

β2
1SSBZ + SSBV (15)

>
L

L− 1
,

where we use

SSWV =

D∑
d=1

Ndv
2
d −

L∑
h=1

NhV
2

h

and

SSBV =

L∑
h=1

NhV
2

h −N · V
2
.

Hence, the domain-specific effects vd play a similar
role to the values of the size variable zk.

3. Simulation study

3.1. Simulation set-up

In this section, we present results from a simulation
study that compares the proposed ATC approach with
other sampling designs which are known to be suit-
able for design-based estimation. In addition to study-
ing the impact of the sampling designs on aggregate
design-based estimates, we also analyse the influence
of the designs on design- and model-based estimates
for small domains. We consider a fixed and finite pop-
ulation comprising N = 12000 units from D = 30 do-
mains. In our design-based simulation study, we repeat
the process of drawing samples from a fixed population
according to various sampling designs R = 10000-
times. The population is chosen as one realisation of
the following nested-error regression model

yk = 10 + x1k + x2k + vd + εk, k ∈ Ud,
(16)

vd
i.i.d.∼ N(0, 32), εk

i.i.d.∼ N(0, 52).

Following [11, Section 5.2], the values of the ex-
planatory variables were generated as x1k

i.i.d.∼ U

(1, 11) and x2k
i.i.d.∼ U(−5, 5), respectively. As es-

timators for the small area means we consider the

Horvitz-Thompson (HT) estimator of the mean, a mod-
ified generalised regression (GREG) estimator, and the
Battese-Harter-Fuller (BHF) estimator due to [15]. The
HT estimator of a domain mean is given by µ̂HTY,d =

N−1d
∑
k∈Sd

wk · yk, where wk = π−1k denotes the
design weight given by the inverse inclusion proba-
bility. We deliberately introduce model misspecifica-
tion as the models fitted for both the GREG and the
BHF estimator do not include x1k among the covari-
ates. The modified GREG estimator is defined as [4,
Section 2.5]:

µ̂GREG
Y,d = µ̂HTY,d + (X̄d − x̄HTd )′β̂WLS (17)

where X̄d and x̄HTd denote the vector of the popula-
tion mean and the HT estimator of the sample mean of
xk = (1, x2k)′ in area d. Moreover, β̂WLS refers to vec-
tor of regression coefficients obtained from regressing
yk on x2k using weighted least squares with weights
wk. The BHF estimator is given by [4, Section 7.1]:

µ̂BHF
Y,d = γ̂d(ȳ

SRS
d + (X̄d − x̄SRS

d )′β̂GLS)
(18)

+ (1− γ̂d)X̄ ′dβ̂GLS

where ȳSRS
d and x̄SRS

d denote unweighted estimates of
the mean and mean vectors of yk and xk, respectively.
Furthermore, β̂GLS denotes the estimated regression
vector that is obtained from regressing yk on x2k with
random effects for the areas using generalised least
squares. It can be seen that the modified GREG estima-
tor corrects the HT estimator by an adjustment that de-
pends on the difference between the vector of the pop-
ulation mean and the corresponding HT estimate of the
sample mean for the auxiliary information. The model-
based BHF estimator Eq. (18) can be considered as
a weighted average between a survey regression esti-
mator, ȳSRS

d + (X̄d − x̄SRS
d )′β̂GLS, and the regression-

synthetic component X̄ ′dβ̂GLS, where the weight γ̂d in-
creases with the sample size nd [4, Section 7.1].

As estimators for the national mean we focus on the
HT and GREG estimators, as the sample design is typ-
ically constructed to enable design-based estimates on
the national level. The HT estimator for the national
mean is given by

µ̂HTY = N−1
∑
k∈S

wk · yk,

while the GREG estimator follows as

µ̂GREG
Y = µ̂HTY + (X̄ − x̄HT )′β̂WLS,

where X̄ and x̄HT denote the vector of the popula-
tion mean and the HT estimator of the sample mean of
xk = (1, x2k)′ respectively.
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Table 2
Average absolute relative bias of the domain estimates

Estimator E(nd) ATC Cube-πps Cube-SRS Pivotal Rejective SRS StrRS
HT < 10 0.003 0.005 0.004 0.005 0.002 0.002 0.003

10–30 0.001 0.003 0.002 0.003 0.002 0.001 0.002
> 30 0.001 0.002 0.002 0.002 0.002 0.001 0.001

GREG < 10 0.019 0.019 0.018 0.019 0.018 0.018 0.019
10–30 0.001 0.001 0.001 0.001 0.001 0.001 0.001
> 30 0.001 0.001 0.001 0.002 0.001 0.001 0.001

BHF < 10 0.061 0.132 0.061 0.132 0.062 0.061 0.061
10–30 0.034 0.090 0.034 0.090 0.034 0.034 0.034
> 30 0.013 0.085 0.012 0.086 0.013 0.013 0.012

To introduce variation in the domain sizes, we pro-
ceed in a similar fashion to [11, Section 5.2] and al-
locate the units to domains with probabilities propor-
tional to exp(qd) where qd is drawn as an indepen-
dently and identically distributed random variable with
a uniform distribution over the interval between 0 and
2.9. This results in domain sizes Nd varying between
57 and 1167 units. The sampling schemes are applied
to the population as a whole, irrespective of the domain
membership. Hence, the domain-specific sample sizes
nd are random variables and even sample sizes of zero
are possible. We fix the total sample size to n = 500,
such that the expected sample size for domain d fol-
lows as E(nd) = n ·Nd/N = 500 ·Nd/12000. Thus
our approach reflects the situation where the sample is
designed to obtain national estimates of adequate pre-
cision, but where the need to produce reliable domain
estimates is not addressed at the design stage. We focus
on this unplanned domain case, because it is a situation
frequently encountered in practice.

We apply a variety of sampling designs in order to
compare our propose method with other sampling de-
signs that are frequently used to obtain precise design-
based estimates. The first two designs that are used in
our study are SRS and the ATC approach described in
Section 2.2, where the latter uses zk = x1k as the aux-
iliary information at the design stage. Furthermore, we
consider StrRS with 10 strata, where the stratum mem-
bership is determined by the deciles of x1k and 50 units
are taken from each stratum. It should be noted that this
allocation of sample sizes to the strata is very close to
the optimal Neyman-Tschuprow allocation for the pop-
ulation constructed by model Eq. (16). Additionally,
we apply a rejective sampling procedure (Rejective) as
described by [16] using SRS as the initial sampling
procedure. In our simulation study, the SRS sample
was rejected as long as (x̄1

SRS−X̄1)2 ·Var(x̄1SRS)−1 <
0.52, where X̄1 and x̄1SRS denote the population mean
and SRS estimate of x1k, respectively and Var(x̄1SRS)

refers to the variance of x̄1SRS. This corresponds to
an empirical rejection rate in our simulation study of
79.16%. Furthermore, we also study pivotal sampling
(Pivotal) introduced by [17], where the inclusion prob-
abilities are chosen to be proportional to x1k, i.e. πk ∝
x1k∀k. Finally, we apply the cube method due to [18]
with balancing constraints on the population size and
the total of x1k. In our study, we consider two vari-
ants of the cube method: using (i) equal inclusion prob-
abilities, i.e. πk = nN−1∀k (Cube-EPSEM) and (ii)
πk ∝ x1k∀k (Cube-πps).

It can be seen that x1k is incorporated as auxiliary
information at the design stage for all sampling de-
signs except SRS, i.e. we set zk = x1k Doing so
permits potential variance reductions for design-based
and model-assisted estimators. Hence, the simulation
study facilitates a comparison of the ATC approach
with other popular sampling designs that are known
to be suitable in a design-based framework. More-
over, the consequences of applying a particular design
on model-based small area estimates can be studied.
Note that due to the construction of the size variable
zk = x1k, similar domain-specific sample sizes nd re-
sult for the different sampling designs. Nevertheless
there are important differences among the sampling de-
signs as the Cube-πps and the pivotal methods draw
samples with probabilities proportional to size. Since
the size variable influences the variable of interest but
is not included among the covariates, the issue of infor-
mative sampling arises for these two sampling designs.

3.2. Results

The simulation results for domain estimates in terms
of the average absolute relative bias (AARB) are sum-
marised in Table 2. We average the results according
to the expected sample size in the domains, E(nd). We
clearly see that the Monte-Carlo biases of the HT es-
timator are very close to zero under any sampling de-
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Table 3
Average relative root mean squared error of the domain estimates

Estimator E(nd) ATC Cube-πps Cube-SRS Pivotal Rejective SRS StrRS
HT < 10 0.470 0.509 0.468 0.507 0.472 0.470 0.470

10–30 0.261 0.281 0.261 0.282 0.260 0.260 0.260
> 30 0.163 0.177 0.163 0.177 0.163 0.163 0.163

GREG < 10 0.214 0.265 0.212 0.267 0.214 0.214 0.213
10–30 0.098 0.122 0.098 0.123 0.097 0.098 0.098
> 30 0.060 0.075 0.060 0.076 0.060 0.061 0.060

BHF < 10 0.118 0.166 0.118 0.167 0.118 0.118 0.118
10–30 0.081 0.116 0.081 0.116 0.081 0.081 0.081
> 30 0.054 0.099 0.053 0.100 0.054 0.054 0.054

sign and sample size. This finding is expected as the
HT estimator is known to be design-unbiased. For the
modified GREG estimator, we observe small Monte-
Carlo biases in the group of very small domains with
E(nd) < 10. These biases vanish as the sample size
increases. This finding is also consistent with the the-
ory as the modified GREG estimator is asymptotically
unbiased. In the case of the model-based BHF estima-
tor, we observe highly different results depending on
the sampling mechanism used. For designs with equal
inclusion probabilities, the absolute biases decrease as
the sample size increases and reach values of 1.2 to 1.3
per cent in the group of the largest domains. The reason
for this is that the BHF estimator is biased when con-
ditioning on the random effects vd, which is precisely
what is done in a fixed finite population setting. This
conditional bias is supposed to decrease as the sam-
ple size increases, because the weight γ̂d on the sur-
vey regression component approaches 1. It should be
noted, however, that much larger values of the AARB
for the BHF estimator result under the Cube-πps and
the pivotal sampling designs, respectively. Under both
designs the sampling mechanism is informative, which
causes biased estimates when using the BHF method.

In order to assess the precision of the domain es-
timates, we consider the average relative root mean
squared error (ARRMSE) over domains reported in Ta-
ble 3. The results show an interesting pattern for any
estimation method and domain size. On the one hand,
there is the group of equal probability sampling de-
signs that yield very similar results for a particular
choice of an estimator and domain size. On the other
hand, the Cube-πps and the pivotal designs also yield
very similar results for given combinations of an esti-
mator and domain size, but their ARRMSEs are larger
than for the equal probability sampling designs. In case
of the HT and modified GREG estimators, this find-
ing corresponds to a larger variance as compared to the
other designs, as these estimators did not suffer from

biases (Table 2). An explanation for this behaviour of
the HT estimator is the presence of the intercept term
in the data generating process Eq. (16), which causes
the inefficiencies of the HT estimator based on inclu-
sion probabilities πk ∝ x1k [11, p. 227]. In order to
explain the performance of the modified GREG esti-
mator, we may note that the regression vector β̂WLS es-
timated by weighted least squares with weights wk un-
der an equal probability sampling design is identical
to the solution that would have been obtained by ordi-
nary least squares. When the sampling design uses un-
equal inclusion probabilities, however, using weighted
least squares will lead to an increase of the variance
vis-à-vis ordinary least squares. Indeed, we observe the
largest Monte-Carlo variances of β̂WLS when we use
Cube-πps and the pivotal designs (not reported here).
Regarding the model-based BHF estimator, the higher
values for the ARRMSE under Cube-πps and the piv-
otal designs are due to informative sampling. Further-
more, a comparison of the three different estimation
methods in terms of the ARRMSE clearly indicates
advantages for the BHF estimator, which yields the
best results for all domain sizes. This finding does not
come as a surprise, since our simulation study contains
small unplanned domains, where design-based estima-
tion methods are not suitable.

The results for the national estimates are shown in
Table 4, where RBias refers to the relative bias of the
national estimates, while RRMSE indicates the rela-
tive root mean squared error and ACR denotes the av-
erage confidence interval coverage rate. All numeri-
cal entries in Table 4 are rounded to three decimal
places. Regarding the biases, we see that all combi-
nations of an estimator and a design yield unbiased
estimates. A closer look at the precision of the na-
tional estimates reveals that the equal probability sam-
pling designs which use auxiliary information at the
design stage yield the best results for both estimators.
The RRMSE under these designs is about 10 per cent
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Table 4
Results for the national estimates

Estimator Design RBias RRMSE ACR
HT SRS 0 0.019 0.951

Rejective 0 0.017 –
Pivotal −0.002 0.028 –
StrRS 0 0.017 0.950
Cube-πps 0 0.021 0.942
Cube-SRS 0 0.017 0.948
ATC 0 0.017 0.947

GREG SRS 0 0.017 0.949
Rejective 0 0.015 –
Pivotal 0.001 0.021 –
StrRS 0 0.015 0.951
Cube-πps 0 0.018 –
Cube-SRS 0 0.015 –
ATC 0 0.015 0.945

smaller than the RRMSE under SRS for a given es-
timator. Hence, incorporating auxiliary information at
the design stage helps to achieve a variance reduction
as compared to SRS. Furthermore, we see that designs
using inclusion probabilities proportional to x1k pro-
duce estimates with a larger RRMSE for both estima-
tors. Unlike the results for the domain estimates, how-
ever, the Cube-πps method yields estimates that are
much more precise than pivotal sampling. An expla-
nation for this finding is that the Cube-πps method in-
cludes a calibration constraint for the total size of the
population. Moreover, the results show advantages of
the GREG estimator as compared to HT estimator for
a given sampling design. This is simply due to the fact
that the GREG estimator incorporates additional infor-
mation about x2k which could not be used at the design
stage. Finally, the average confidence interval coverage
rates are very close to the nominal rate of 95 per cent
for all combinations of estimator and designs. Note
that we did not compute variance estimates under the
rejective and pivotal sampling procedures. Moreover,
when the sample was selected by the cube method, we
only produced variance estimates for the HT estimator
using the residual technique developed by [19].

4. Concluding remarks

We have proposed a novel allocation mechanism of
ultimate sampling units to clusters, which in connec-
tion with single stage cluster sampling allows real-
ising variance reductions for design-based estimation
methods versus SRS. Moreover, this allocation mecha-
nism yields equal inclusion probabilities and therefore
avoids the issue of informative sampling. Thus, our ap-
proach does not distort the properties of model-based

estimation procedures. Therefore, our method is well-
suited for modern surveys, where design-based esti-
mates are produced at aggregate levels and at the same
time model-based estimates are published for domains
with small sample sizes. Further advantages of our pro-
posal are that it is both very simple to implement and,
perhaps even more importantly, also very easy to com-
municate to the public.

We compared our proposed method against a num-
ber of alternative sampling designs aiming at variance
reduction for design-based estimation methods in a
simulation study under a misspecified model. The re-
sults of this study showed very similar results of the
ATC method, the cube method with equal inclusion
probabilities, StrRS where the strata are defined by
the deciles of the auxiliary variable and a rejective
sampling procedure. All of these methods make use
of the auxiliary information at the design stage and
use equal (initial) inclusion probabilities. Sampling de-
signs based on sampling with probabilities propor-
tional to size were shown to be less efficient for the es-
timation of national estimates and led to biased model-
based small domain estimates due to informative sam-
pling.

In comparison to the rejective sampling procedure,
our approach allows fixing the inclusion probabili-
ties in advance and it permits the use of simple un-
biased design-based variance estimators. Furthermore,
our sampling procedure is a SRS of clusters and, thus,
very fast even for large populations. This is a dis-
tinct advantage over the cube method, which can be
time-consuming for large populations. Moreover, us-
ing ATC we avoid the need for approximations to
second-order inclusion probabilities.

In contrast to sampling with probabilities propor-
tional to size, our proposal is more robust with respect
to a misspecification of the implicitly assumed model.
This is highlighted by the results of the simulation
study, where designs based on sampling with proba-
bilities proportional to size led to inefficiencies owing
to the presence of an intercept term in the population
model. Additionally, sampling with probabilities pro-
portional to size is clearly suboptimal for HT estima-
tion in situations where the size variable is negatively
correlated with the variable of interest.

Alternatively, one could consider StrRS approaches
towards optimal model-based stratification for the
GREG estimator, which have been discussed in Sec-
tion 12.4 of [1]. However, they require knowledge
about the error structure of the assisting regression
model and a rule to determine the stratum member-
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ship. Thus, the survey planner needs a comprehensive
knowledge about the model, which is by far more de-
manding than knowing the values of some size vari-
able.

Future research may focus on a generalization of
the ATC approach to account for multiple auxiliary
variables simultaneously when constructing antithetic
clusters. One option in this regard could be to apply a
principal component analysis to the standardized ma-
trix of auxiliary information and to base the clustering
on the values of an appropriate distance of the principal
components from their origin.
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