
Semantic Web -1 (2024) 1–30 1
DOI 10.3233/SW-243736
IOS Press
CORRECTED PROOF

Optimising the ShExML engine through code
profiling: From turtle’s pace to state-of-the-art
performance
Herminio García-González
Kazerne Dossin, Mechelen, Belgium
E-mail: herminio.garciagonzalez@kazernedossin.eu

Editors: David Chaves-Fraga, University of Santiago de Compostela, Spain and KULeuven, Belgium; Christophe Debruyne, University of
Liège, Belgium; Anastasia Dimou, KU Leuven, Belgium; Maria-Esther Vidal, Leibniz University of Hannover, and TIB-Leibniz Information
Centre for Science and Technology, Germany
Solicited reviews: Jakub Klimek, Charles University, Prague, Czechia; Ana Iglesias-Molina, Ontology Engineering Group, Universidad
Politécnica de Madrid, Spain; Nuno Lopes, Top Quadrant, Raleigh, North Carolina, USA; one anonymous reviewer

Abstract. The ShExML language was born as a more user-friendly approach for knowledge graph construction. However, a re-
cent study has highlighted that its companion engine suffers from serious performance issues. Thus, in this paper I undertake the
optimisation of the engine by means of a code profiling analysis. The improvements are then measured as part of a performance
evaluation whose results are statistically analysed. Upon this analysis, the effectiveness of each proposed enhancement is dis-
cussed. Moreover, the optimised version of ShExML is compared against similar engines, delivering a comparable performance
to its alternatives. As a direct result of this work, the ShExML engine offers a much more optimised version which can cope
better with users’ demands.

Keywords: Declarative mapping rules, knowledge graph construction, data mapping languages, performance evaluation, profiling

1. Introduction

Declarative mapping rules have emerged as a more reusable, adaptable, shareable and understandable method of
constructing knowledge graphs that supersedes ad-hoc ones [33]. While it all started with one-to-one transforma-
tions (e.g., R2RML1), the topic was soon shifted towards handling more heterogeneous data formats with one single
representation [22], starting with RML [8].

From this point, a myriad of languages and engines have emerged, tackling different challenges and proposing
different syntaxes and functionalities that could appeal to different users’ profiles [21,33]. Among the different solu-
tions, ShExML was devised with usability in mind, trying to make the rules writing easy for users who are not always
familiarised with Semantic Web technologies [10]. However, unlike other languages and specifications, ShExML
only counts on one compliant engine2 which can limit the possibilities for further optimisations [2,16]. This aspect

1https://www.w3.org/TR/r2rml/
2https://github.com/herminiogg/ShExML

1570-0844 © 2024 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:herminio.garciagonzalez@kazernedossin.eu
https://www.w3.org/TR/r2rml/
https://github.com/herminiogg/ShExML
https://creativecommons.org/licenses/by/4.0/

2 H. García-González / Optimising the ShExML engine through code profiling

has been revealed in the recent SPARQL-Anything performance evaluation which shows how the ShExML engine
performs drastically worse than other competitors [3].

Building on this previous research this work defines the following research questions:

– RQ1: Is it possible to improve the performance of the ShExML engine, and if yes, what optimisations have a
significant impact on the overall performance?

– RQ2: How the optimised ShExML engine stands with respect to other similar engines?
– RQ3: What impact do these improvements have on the CPU and RAM usage?

Thus, in this paper I undertake the task of improving the performance of the ShExML engine by means of a
profiling analysis which reveals the performance bottlenecks present in the engine. The results of this analysis led to
several improvements that had been gradually introduced in consecutive engine versions.3 In order to demonstrate
the reliability of this analysis, a performance evaluation is conducted over the improved versions of the ShExML
engine to study the real impact of these enhancements on the overall performance. Moreover, a replication study of
the SPARQL-Anything experiment over the optimised version, and other mapping languages engines coetaneous
versions, is conducted in order to reveal how the optimised version of ShExML stands in comparison with other
similar engines. The results yielded in this study could serve other practitioners who seek to enhance their engines
or their knowledge graph construction workflows.

The rest of the paper is structured as follows: in Section 2 the related work is presented, in Section 3 the ShExML
language is briefly introduced, Section 4 presents the ShExML engine and how it works, while in Section 5 the
introduced improvements are presented. Section 6 explains the experiments, and exposes and discusses the results.
Finally, the future lines of work upon this paper are drafted in Section 7, and conclusions of this work are drawn in
Section 8.

2. Related work

Some previous works have tackled the performance comparison of different mapping languages taking one spe-
cific engine implementation as the preferred one for establishing this comparison. This is specially true in the
case of RML for which many different engines provide an implementation [2,33], however, existing inter-language
comparisons have mainly employed the RMLMapper engine.4 For example, upon its launch, SPARQL-Generate
was compared against RML for a set of size-increasing CSV documents [24]. More recently, SPARQL-Anything
was launched, comparing it against other existing declarative mapping languages (SPARQL-Generate, RML and
ShExML) using two different sets for the evaluation: 4 different JSON files and an increasing in size input in JSON
[3]. Upon the delivered results it was demonstrated that the ShExML engine had serious performance problems.

While inter-languages comparisons are still in an incipient state, the emergence of many implementations for the
RML language has made that intra-RML implementations comparisons are far more numerous, for example, in [16]
SDM-RDFizer was compared against the RMLMapper and RocketRML engines or in [30] where the rmlmapper-
node-js engine was compared to the legacy RML-Mapper5 and the current RMLMapper. Similarly, in [14] the
authors compare a parallel-ready version of RML, RMLStreamer, against a set of size-increasing inputs in CSV,
XML and JSON formats.

In an effort to bring some cohesion to this field, GTFS-Madrid-Bench, a benchmark based on transport data,
was proposed [5] which has led to different evaluations using it (e.g., [2,29,31]) and even a challenge6 in a well-
established workshop in the field, leading to more consequent evaluations (e.g., [4,18]).

Recent optimisations have also been introduced and evaluated in some of the existing RML engines. SDM-
RDFizer has improved its performance by introducing a reordering of mapping rules for a prioritised evaluation,

3https://github.com/herminiogg/ShExML/releases
4https://github.com/RMLio/rmlmapper-java
5https://github.com/RMLio/RML-Mapper
6The challenge counts to date with two editions: 2023: https://kg-construct.github.io/workshop/2023/#call, 2024: https://kg-construct.github.

io/workshop/2024/#call.

https://github.com/herminiogg/ShExML/releases
https://github.com/RMLio/rmlmapper-java
https://github.com/RMLio/RML-Mapper
https://kg-construct.github.io/workshop/2023/#call
https://kg-construct.github.io/workshop/2024/#call
https://kg-construct.github.io/workshop/2024/#call

H. García-González / Optimising the ShExML engine through code profiling 3

alongside a compression technique that avoids the generation of duplicates [19]. In [17] the authors propose a
mapping partition algorithm which is able to determine the best execution order for a set of mapping assertions,
leading to an overall improve in the tested RML engines. A similar approach, using mapping partitions, has also
been explored for the Morph-KGC engine, improving its execution time, decreasing the peak memory usage and
surpassing other engines maximum processable data sizes [1].

However, a common issue of these evaluations is that all of them use a flat structure for the input files – stemming
from the specific R2RML and RML tabular-oriented algorithm – which cannot account for the possible differences
and bottlenecks that processing hierarchical files may impose. As in the case of GTFS-Madrid-Bench, even though
there are many different inputs that correlate to each other, the actual composition is delegated to a join function.
Moreover, in many cases the results are not statistically contrasted nor analysed which can hinder and limit the
assumptions made from them.

Therefore, this work tackles the optimisation of the ShExML engine using a profiling technique but taking a
different approach for the evaluation of the results, including a hierarchical set, and delivering a statistical analysis
of the produced results.

3. Introduction to the ShExML language

ShExML is a language designed for the integration of heterogeneous data sources into a single RDF output,
taking special attention to its usability in an effort for improving the users’ productivity [10]. The ShExML language
specification7 introduces two different concerns: how to extract data from heterogeneous data sources and how to
load data into RDF. For the latter purpose, the syntax is based upon the Shape Expressions (ShEx) [28] one, adapting
a subset of it to the specific task of integrating data. On its turn, the extraction of data is defined on the declarations
part which follows a similar syntax style to prefixes in ShEx or SPARQL, but defining a new set of directives for
the definition of the input files in order to: extract (relying in other query languages like: XPath, JSONPath, SQL
and SPARQL), iterate, merge and transform the input data. This separation of concerns is intentionally enforced
in the language to allow users to focus in one part, or the other, while defining their mappings without the need to
conciliate both concerns under the same syntax constructions. This design choice, at the same time, allows for the
use of a single set of shapes independently of the amount of input data sources, which enhances the readability and
maintainability of the overall mapping solution.

Listing 3 shows an example ShExML file in which two input data sources (one in XML and defined in Listing 1
and the other in JSON and represented in Listing 2) are consolidated into a single RDF representation (see Listing
4). Following this example, the mapping file starts with the general prefixes definition (like other Semantic Web
technologies syntaxes) to go forthwith to the declaration of the two main input files. Then, two iterators are defined,
one for each format, which define how the data will be extracted from the sources. The main iterator defines the
query language to be used, then the nested fields perform the extraction of the data, while the nested iterators
continue the exploration process deeper in the hierarchical files (see Section 4.2 for a more detailed explanation
of the query rewriting algorithm). It is worth noting that in the case of having multiple files under the same data
format but with different data structures, different iterators are needed. Additionally, non-hierarchical data sources,
like CSV files or relational databases do not require the definition of nested iterators. To conclude the declarations
part, a expression defines a variable holding the results of combining the two previously defined iterators,
applied over the two input sources.

The shapes part defines how the data will be generated into RDF triples. As stated before, the ShEx syntax is
borrowed to define these constructions but it has been adapted to the specific case of integrating data, therefore, one
of the main changes resides in the substitution of the subject and object node constraints for generation expressions.
A complete shape definition will contain a shape name, a subject generation and a set of predicate-object expres-
sions which, at the same time, are divided into a predicate and an object generation expression. These generation
expressions are constituted by an optional prefix definition (which will define if the node should be a literal or an

7A draft specification of the language can be consulted on: https://shexml.herminiogarcia.com/spec/.

https://shexml.herminiogarcia.com/spec/

4 H. García-González / Optimising the ShExML engine through code profiling

Listing 1. Example of an input XML file containing data about films

IRI and it is, therefore, mandatory for subjects generation) and a variable navigation path (using the . symbol as
the navigation operand). As an example, a user can define the path to retrieve the names of
all the actors in both files for which the engine will resolve to the defined expression, as the nested
iterators defined for JSON and XML, and finally as the field to be extracted. Based on this substitution process,
the engine will further compose the specific queries and retrieve the data from the defined sources as it is further
detailed in Section 4.2. As a modularity affordance, and following the ShEx syntax, instead of an object generation,
the user can define a link to another shape using its name. This will trigger the generation of triples from the linked
shape whose subject IRI will be used as the object IRI in the invoking predicate-object expression.

Unlike other mapping languages, the ShExML specification is only implemented by a single engine whose opti-
misation is the main topic of this paper. Nevertheless, new research is being conducted around the topics of inter-
mediate mapping representations [21,26] and mapping languages translation [12,20] which could potentially build
crosswalks between different mapping languages and engines, facilitating the adoption of these tools by more users
and the jointly improvement of languages and engines alike.

4. ShExML engine

The ShExML engine is implemented in Scala which allows for designing a purely functional algorithm which
could potentially ease the future parallelisation of the engine. Therefore, the algorithm is merely conceived around
this idea, even though some points do not strictly preserve the solely-functional behaviour as it will be detailed later.

4.1. Engine architecture

The ShExML engine follows the pipes and filters architectural pattern based on the extended architectural design
in which many compilers and interpreters are based on [23]. In essence, it defines a pipeline in which the output
of a component is further transformed by the following one. This division of steps helps to encapsulate the specific

H. García-González / Optimising the ShExML engine through code profiling 5

Listing 2. Example of an input JSON file containing data about films

functionality of each component and allows to build a rich output based on an incremental process. Figure 1 shows
how the engine architecture is composed and how the ShExML engine adapts it for its specific purpose.

The engine abstract workflow is as follows: (1) the lexical analyser produces a series of tokens from a given
mapping input in text format following the ShExML defined syntax (see Listing 3 for an input example), (2) the
syntax analyser produces an Abstract Syntax Tree (AST) from the given set of tokens, (3) the symbol table is
constructed upon the AST in order to be able to resolve the variables later, and (4) the output generator receives
the AST, and the symbol table, and generates an output. One particularity is that the engine does not implement
a semantic analyser which is not strictly necessary for the functioning of the engine. However, this is a common
problem in many declarative mapping rules engines as mentioned in [10], and it is envisioned to be implemented
in the future to help users of this engine to better understand the thrown errors. This abstract workflow translates
to the following specific implementations: (1) and (2) are implemented using ANTLR48 [27], a tool for generating
parsers using a grammar-based input. The grammar is then converted to a lexer, which converts a text-based input
to tokens, and a parser, which based on the received tokens will compose a tree with the structure of the program.
The result of the parser is then received by an AST creator which acts as an intermediary between the ANTLR4
output and the engine domain model – decoupling the AST model from the lexer and parser used technology. The
step (3) registers the symbols declared across the mapping rules and makes them available for the output generators,
generating a dictionary with the different symbols and their meaning. This dictionary is right now implemented
using its mutable version which could possibly prevent the parallelisation of the algorithm, however, this could be
changed in the future by its thread-safe counterpart. Finally, in the last step (4), the output is generated by one of
the output generators. Right now, the ShExML engine counts on four different generators depending on the defined
output: RDF (the main one that outputs an RDF graph in different serialisation formats), RML (translates ShExML

8https://www.antlr.org/

https://www.antlr.org/

6 H. García-González / Optimising the ShExML engine through code profiling

Listing 3. Example of a ShExML input which integrates the data from the XML file in Listing 1 and the JSON file in Listing 2 into the RDF
representation shown in Listing 4

mapping rules to RML equivalent ones [12]), ShEx (infers and outputs a set of ShEx shapes that validates the data
generated by the mapping rules), and SHACL (having a similar behaviour to the ShEx generator but with SHACL
shapes). For the purpose of this study, I will focus on the RDF one which has the greatest load and is responsible
for the generation of RDF, being compared in the evaluation.

4.2. RDF generation algorithm

The RDF generation algorithm in the ShExML engine is broadly composed of two main operations. Firstly,
a general operation processes each shape, iterates over the predicate-object tuples and correlates the results of
each tuple to their corresponding subject results (see Algorithm 1). Then, to generate the results and evaluate the
expressions enclosed in the shapes actions, Algorithm 1 calls the Algorithm 2 which uses the symbol table to
transpose the variables to the partial queries and then composes these partial queries into the final queries. Once the
set of final queries is completed, these are executed against the given file. For the sake of the explainability of the
algorithm many specificities have been excluded but the whole algorithm implemented in Scala can be consulted

H. García-González / Optimising the ShExML engine through code profiling 7

Listing 4. Result yielded by the engine after applying the mapping defined in Listing 3, serialised in Turtle

in the engine source code repository.9 Other details have been encapsulated in calls to functions which can be
interpreted as follows:

– filterRelatedResults(POR): Filters the results from the predicate-object tuples that correspond with the subject
results. For that, if the id or one of the root ids (i.e., the ids of the upper iterator queries executed to reach the
current one) of the predicate-object result matches the id of the subject result, then, the result is included. If
the predicate-object result id does not exist and there are no root ids, then, it is also included as it concerns the
generation of a literal value, not an action.

– composeIterationQuery(riq): Given the partial queries, this function composes an iterator query based on the
used query language (i.e., JSONPath and XPath) which contains placeholders in the form of [*], for substi-

9https://github.com/herminiogg/ShExML/blob/master/src/main/scala/com/herminiogarcia/shexml/visitor/RDFGeneratorVisitor.scala

https://github.com/herminiogg/ShExML/blob/master/src/main/scala/com/herminiogarcia/shexml/visitor/RDFGeneratorVisitor.scala

8 H. García-González / Optimising the ShExML engine through code profiling

Fig. 1. Diagram of the pipes and filters architecture implemented in the ShExML engine based on the UML components diagram. Some additional
symbols were used for the clarity of the diagram, like the arrows to indicate the direction in which the data flows; the tokens, AST and VarTable
representations which are represented graphically to help understand how the data is transformed; and the outputs which use the logos of the
employed technologies. The numbers placed next to the main components denote the steps followed for an input processing in the ShExML
engine and they are used as such in the explanation contained in Section 4.1.

Data: AST as AST , symbol table as ST

Result: set of triples as T

T ← ∅;
S ← all shapes ∈ AST ;
foreach shape s ∈ S do

sa ← subject of s;
POA ← all predicate and object tuples of s;
SR ← resolveAction(sa, ST);
POR ← ∅;
foreach predicate and object tuple (pa, oa) ∈ POA do

OR ← resolveAction(oa, ST);
POR ← POR ∪ (pa,OR);

end
foreach subject result sr ∈ SR do

PORF ← f ilterRelatedResults(POR);
foreach filtered predicate-object result tuple (pa, or) ∈ PORF do

T ← T ∪ (sr, pa, or);
end

end
end
return T ;

Algorithm 1: General algorithm for the generation of RDF

tution in the next step. An example of the expected result from this process can be seen in Listing 6 for the
ShExML input defined in Listing 5.

– generateAllQueries(iq): This function receives an iterator query, like the ones defined in Listing 6, and gener-
ates all the possible queries given the result of the partial queries evaluation. See Listing 7 for an example of
the queries executed for the ShExML example in Listing 5.

It is worth noting that for non-hierarchical files (like CSV and results from a SQL or SPARQL query), which will
yield a set of tabular data, the composeIterationQuery function will not generate a query with placeholders and the
generateAllQueries function will, on its turn, only generate a query per declared field. This difference, emanated
from the need to keep the context while processing hierarchical files, explains the initial difference in performance

H. García-González / Optimising the ShExML engine through code profiling 9

Data: Action as a, symbol table as ST

Result: Result as R

R ← ∅;
exp ← search(a, ST);
EXP ← split (ext, “.");
file as f ← search(EXP [0], ST);
root iterator query as riq ← search(EXP [1], ST);
tail queries as T E ← ∅;
foreach tail expression te ∈ EXP [2 :] do

tq ← search(te, ST);
T E ← T E ∪ tq;

end
iq ← composeI terationQuery(riq);
AQ ← generateAllQueries(iq);
foreach query as q, iterator query as iq, index as i, root ids as RID ∈ AQ do

r ← perf ormQuery(q, f ile);
id ← iq ∪ i ∪ f ile;
R ← R ∪ (r, id, RID);

end
return R;

Algorithm 2: Algorithm to evaluate the expressions and perform the queries, used in Algorithm 1 as resolveAc-
tion(a)

Listing 5. Example ShExML file with a root iterator and a nested iterator, and with one field per iterator. The input file is the one
represented in Listing 1

Listing 6. Iterator queries composed by the engine when executing the mapping rules contained in Listing 5

when processing them, and why it was needed to specifically focus on the optimisation of this hierarchical process-
ing mechanism, in contrast with their non-hierarchical counterparts.

5. Profiling the ShExML engine and performance improvements

For discovering the bottlenecks of the ShExML engine, and allowing to contrast the performance improvements,
a profiling tool was used. Profilers are best suited for this task due to their ability to gather execution times for

10 H. García-González / Optimising the ShExML engine through code profiling

Listing 7. Final queries to be executed after expanding the iterator queries listed in Listing 6

Table 1

This tables summarises the found bottlenecks and how they were fixed. A more detailed explanation can be found in Section 5 where more
background information and examples are introduced

Bottleneck Fix Version implementing the fix

Same file downloaded many times Cache system ShExML-v0.3.3

Hierarchical files queries executed many
times

Cache system for query results ShExML-v0.3.3

File contents used for results id generation Change the file contents for the path to
generate the id

ShExML-v0.4.0

Functions being evaluated when it was not
necessary (eager evaluation)

Change the possible functions to their lazy
evaluation counterpart

ShExML-v0.4.0

Filtering function to assign the
predicate-object results to the
corresponding subjects O(n2)

Grouping function O(n) ShExML-v0.4.0

Parsing JSON data many times Cache system for keeping already JSON
parsed files

ShExML-v0.4.0

URI normalisation system by default Making the URI normalisation system
optional

ShExML-v0.4.2

Data type inference mechanism by default Making the data type inference system
optional

ShExML-v0.4.2

Parsing XML data many times Cache system for keeping already XML
parsed files

ShExML-v0.5.1

Slow JSONPath library (gatling-jsonpath) Change the library to Jayway JsonPath ShExML-v0.5.1

Slow XPath library (kantan-xpath) Change the library to Saxon-HE ShExML-v0.5.1

the functions inside the code, showing them in a call graph which allows to see the interdependencies between
them [13]. Based on this analysis, the different improvements are introduced per version, allowing for a modular
assessment of their overall effect in the engine performance.

The Java VisualVM10 tool was used due to its specific support for profiling processes executed in the JVM. This
allowed for monitoring the different methods inside the engine and assessing their time consumption in relation to
the whole execution time. The workflow consisted in starting the application to, then, activate the sampler on the
CPU, which allows to generate a faster overview than instrumenting the whole application, and its results offered
enough data for the purpose of this work. However, due to the absence of the said instrumentation, it is not possible
to start the sampling together with the process. Therefore, a general idle delay of 20 seconds had to be included in
the main method of the ShExML engine in order to ensure the capture of the relevant data. Afterwards, the method
call tree was analysed in order to seek for the possible bottlenecks, or methods that were taking more time than what
was deemed appropriate, considering their specific weight on the general algorithm.11 It is worth noting that this

10https://visualvm.github.io/
11The profiler results can be consulted on: https://github.com/herminiogg/shexml-performance-evaluation/tree/main/profiler-snapshots.

https://visualvm.github.io/
https://github.com/herminiogg/shexml-performance-evaluation/tree/main/profiler-snapshots

H. García-González / Optimising the ShExML engine through code profiling 11

process requires the expertise of the tool developer to detect which code blocks are behaving abnormally slow. At
the same time, the solution to the bottlenecks irremediable involves some trial-and-error modifications until finding
the correct optimisation – or realising that it cannot be optimised as this is, in reality, the normal behaviour. This
process was repeated through the different improvements and versions as, once one specific bottleneck is solved,
another one may become more evident than before. Finally, this process delivered a set of improvements – which
can be consulted per bottleneck in Table 1 – distributed across the following ShExML engine versions:

Version 0.3.3
This version started the journey on performance improvements by adding a cache mechanism over two main

features that were unnecessarily consuming a lot of time.12 Namely, it was detected that the files were downloaded
many times, incurring in very costly IO operations due to the functional-based design of the algorithm. Therefore,
the retrieval method was redesigned to cache the files contents, only retrieving them for the first time and keeping
them in memory for consecutive accesses. This improvement was really evident when the IO operations involved
downloading files over the internet. Similarly, and due to the algorithm design explained in Section 4, some of
the queries were executed more than once creating an unnecessary time consumption, moreover in the cases of
hierarchical data as explained before. Therefore, a cache system was also put into place for JSONPath and XPath
queries.

Version 0.4.0
After the improvements on v0.3.3, other bottlenecks became more evident.13 Firstly, the algorithm was naively

using the file contents for the id generation – processed afterwards inside a hashcode function. This was not an
evident bottleneck on small inputs, however, the longer the input the more this issue was a huge bottleneck. Thus, in
order to improve the id generation function, the file content was substituted by the file path. Besides, some functions
were changed for more performant ones like instead of which performs a lazy evaluation
instead of an eager one, delaying the evaluation until it is necessary and, therefore, avoiding unnecessary compu-
tation and memory usage [15,32]. Also, some used collections of type were changed for more performant
equivalent ones according to their use case inside the algorithm.14 For example, if a collection needs to be updated
and randomly accessed, the immutable type offers a linear performance while the immutable type
can offer an effective constant time. Nevertheless, the main improvement in this version is linked to the change
of the filtering function, in charge of correlating the predicate-object results to the subject results, by a grouping
function that distributes each result by its id and root ids. Instead of taking each subject result and filtering the con-
cerning predicate-object results, these are grouped beforehand according to the relevant subject result. Ultimately,
this changes the quadratic time complexity O(n2) to a linear one O(n). In addition, a cache system was introduced
for the JSON parser in order to avoid parsing big files multiple times.

Version 0.4.2
This version includes some minor improvements on performance that were more easily identifiable after changing

the filter function.15 Since the very beginning, ShExML incorporates a system for inferencing data types based
on the obtained result and a URI normalisation system that ensures that the engine generates compliant URIs.
The data type inference system works by trying to convert the obtained value to a list of prioritised data types,
for example, if the engine receives the value 100 it will try to convert it to an integer and, when this succeeds,
the acquired data type will be . A more detailed explanation of this mechanism can be consulted
in [9]. The URI normalisation system receives a value and transforms it by omitting, or replacing, the non-valid
characters within the URI specification16 (e.g., white spaces). Following the example in Listing 4, if the engine
receives the result and it must generate a URI under the prefix, it will normalise it to

so the entire result is a valid RDF file. As discussed later, this does not have a significant

12See the changelog: https://github.com/herminiogg/ShExML/compare/v0.3.2...v0.3.3
13See the changelog: https://github.com/herminiogg/ShExML/compare/v0.3.3...v0.4.0
14For collections performance consult: https://docs.scala-lang.org/overviews/collections-2.13/performance-characteristics.html.
15See the changelog: https://github.com/herminiogg/ShExML/compare/v0.4.0...v0.4.2
16https://datatracker.ietf.org/doc/html/rfc3986

https://github.com/herminiogg/ShExML/compare/v0.3.2...v0.3.3
https://github.com/herminiogg/ShExML/compare/v0.3.3...v0.4.0
https://docs.scala-lang.org/overviews/collections-2.13/performance-characteristics.html
https://github.com/herminiogg/ShExML/compare/v0.4.0...v0.4.2
https://datatracker.ietf.org/doc/html/rfc3986

12 H. García-González / Optimising the ShExML engine through code profiling

effect when processing small inputs but, when exposed to longer inputs, it can save some time, moreover when
they are not required in the requested RDF generation. Besides, these are not standard features across languages,
therefore, it was deemed to make them optional letting users decide whether they need these systems for their use
case.

Version 0.5.1
Once all the performance bottlenecks pertaining to the algorithm and implementation details were solved, the

sampling results reflected that most of the time was used on executing the queries, using the respective libraries.
Even though this was totally out of the algorithm design and implementation details, the execution times seemed
excessively high, even more in the case of XML files. While it is not the scope of this work to study the differences
on performance of these libraries and why they happen, the reader can find more information and benchmarks
about this in previous works [7,25] and some other online benchmarks.17 In previous versions, the engine was using
kantan-xpath18 and gatling-jsonpath,19 both libraries written in Scala and designed according to Scala idioms. For
trying to improve the performance, the gatling-jsonpath library was substituted by Jayway JsonPath,20 already in
use by other declarative mapping rules engines. In the case of XPath, firstly I tried to use the Javax Xpath API
which delivered some improvements but very far from those of JSONPath. Finally, the Saxon-HE21 library was
incorporated delivering much better results. Apart from that, VTD-XML22 was also considered due to its very good
performance results (potentially better than Saxon-HE), unfortunately it was not possible to incorporate this library
in the ShExML engine due to a licence collision. As it was done with the JSON parser in v0.4.0, a cache system
was also introduced in this version for the XML parser.23

6. Evaluation

In order to demonstrate the effectiveness of the previously described analysis and the consequent performance
improvements, two experiments were conducted: (1) a personalised experiment over the enlisted versions, and (2) a
replication study of the experiment performed in [3] adapted to the optimised ShExML engine version and the other
engines coetaneous versions.

The reasoning behind introducing the custom-made experiment (1) is two-fold. First, the existing methodology
is not suited for hierarchical data and only takes into account flat data in JSON (not in XML). This, ultimately,
hinders the evaluation of many optimisations that can take place in ShExML, due to its hierarchical-based algorithm
(see Section 4.2). Moreover, the existing study only performs three measures per case, falling short in statistical
significance and hampering, hence, a more profound statistical analysis.

6.1. ShExML optimisation experiment

This section presents the custom-made evaluation of the ShExML engine optimisation, alongside its results and
a discussion of them.

6.1.1. Methodology
This methodology is based upon the one introduced in the SPARQL-Anything evaluation paper [3] but with some

additions and changes to better assess the differences between the different engine versions, taking care of reaching
enough statistical evidence and evaluating hierarchical files access more thoroughly.24 Therefore, the experiment

17See for example: https://github.com/fabienrenaud/java-json-benchmark.
18https://nrinaudo.github.io/kantan.xpath/.
19https://github.com/gatling/jsonpath
20https://github.com/json-path/JsonPath
21https://github.com/Saxonica/Saxon-HE
22https://vtd-xml.sourceforge.io/
23See the changelog: https://github.com/herminiogg/ShExML/compare/v0.4.2...v0.5.1
24The resources and the raw results for this experiment can be found on: https://github.com/herminiogg/shexml-performance-evaluation.

Additionally, they can also be consulted under the following persistent DOI: https://doi.org/10.5281/zenodo.13305712.

https://github.com/fabienrenaud/java-json-benchmark
https://nrinaudo.github.io/kantan.xpath/
https://github.com/gatling/jsonpath
https://github.com/json-path/JsonPath
https://github.com/Saxonica/Saxon-HE
https://vtd-xml.sourceforge.io/
https://github.com/herminiogg/ShExML/compare/v0.4.2...v0.5.1
https://github.com/herminiogg/shexml-performance-evaluation
https://doi.org/10.5281/zenodo.13305712

H. García-González / Optimising the ShExML engine through code profiling 13

Fig. 2. Violin plot comparing the distribution of the elapsed time results in milliseconds for the different inputs and engines under the test. Results
for the ShExML-v0.3.2 under the EHRI institutions input are not shown as only one result was yielded whose value is 2188032 ms. The y axis
has been adapted according to a log10 scale to increase the interpretability of this graphic.

was composed of three different inputs: (1) a set of mapping rules for a single film shape encoded in an almost-flat
JSON file with 1000 entries, (2) another set for a single film shape encoded in an almost-flat XML file containing
1000 entries, and (3) a set of mapping rules used in a real case scenario [11] which converts multiple files containing
descriptive and contact data from 2260 institutions in JSON format, extracted from the EHRI project,25 with a deeper
hierarchical structure. An example of the files format and aspect can be seen in Appendix A, where Listing 9 contains
an extract from the films XML file, Listing 8 from the films JSON file and Listing 10 from the EHRI institutions
JSON files. This combination should provide a double insight on the performance delivered by the engines, both in
a synthetic environment and a real one. Each engine was run against each input 30 times, in order to have a sample
which can be considered statistically significant, and 5 different variables were captured: process elapsed time to
perform the requested operation, the CPU kernel time which can be defined as the time that the process spends
running OS code (this can be, for example, IO operations), the CPU user time which captures the time that the
process uses to run its own code, the CPU usage that represents the percentage of CPU utilisation that this process is
taking with respect to the whole CPU capacity – in the case of multi-core CPUs, the CPU usage can go over 100%
as the process uses more than one core, and the maximum resident set size representing the peak memory consumed
by the process. The v0.3.2 was used as the baseline version and the other described versions containing performance
improvements (i.e., v0.3.3, v0.4.0, v0.4.2 and v0.5.1) were contrasted between them and against the baseline.

6.1.2. Results
The described methodology was executed using the Windows Subsystem for Linux under a steady Windows 11

environment in an 11th Generation Intel i7 at 2.80 GHz, with 16 GB of RAM. The Java environment consisted on
the OpenJDK Runtime Environment 17.0.9 (build 17.0.9+9).

The results of this experiment and the statistical analysis are openly available on Github.26 For the statistical
analysis, R on its version 4.3.1 was used. The descriptive statistics for each of the inputs and engines can be consulted
in Appendix B. Moreover, visual representations of the distributions for the 5 measured variables can be found in:
Fig. 2 for the elapsed time, Fig. 4 for the CPU kernel time, Fig. 5 for the CPU user time, Fig. 6 for the CPU usage
and Fig. 3 for the peak memory usage.

With the aim to assess the differences between the engines in a statistically-significant manner, a statistical hy-
pothesis testing was conducted. In order to test the differences of means of two or more groups with respect to one
independent variable, the most suitable parametric test would be a One-Way ANOVA. However, it assumes the data

25https://www.ehri-project.eu/
26https://github.com/herminiogg/shexml-performance-evaluation/tree/main/statistics

https://www.ehri-project.eu/
https://github.com/herminiogg/shexml-performance-evaluation/tree/main/statistics

14 H. García-González / Optimising the ShExML engine through code profiling

Fig. 3. Violin plot comparing the distribution of the peak memory used results in megabytes for the different inputs and engines under the test.
Results for the ShExML-v0.3.2 under the EHRI institutions input are not shown as only one result was yielded whose value is 1926.30 MB. The
y axis has been adapted according to a log10 scale to increase the interpretability of this graphic.

Fig. 4. Violin plot comparing the distribution of the CPU kernel time results in seconds for the different inputs and engines under the test. Results
for the ShExML-v0.3.2 under the EHRI institutions input are not shown as only one result was yielded whose value is 45.53 s. The y axis has
been adapted according to a log10 scale to increase the interpretability of this graphic.

to be distributed normally, having homogeneous variances and the observations being independent. Upon applying
the Spahiro-Wilk test to verify the normality of the distributions, these are not guaranteed to be normally distributed
which imposes the use of a non-parametric counterpart, that is, a Kruskal-Wallis test which delivered very signif-
icant differences (p < 0.001) for all the combinations of the measured variables, inputs and engines. Taking the
elapsed time as the main variable to assess RQ1, I analysed the different improvements and their degree of influence
on the performance by means of the post hoc tests (which determine the differences between groups) and the effect
sizes (allowing to measure the meaningfulness of the discovered differences). The results for these can be consulted
in Table 2. The analysis is based on the elapsed time variable and how it correlates with the differences seen on
the other four variables (capturing CPU and RAM usage), answering RQ3. For the p-values the conventional sig-
nificance levels are used (p < 0.05 significant differences and p < 0.001 very significant differences) and for the
effect size, the Cohen’s r suggested thresholds [6] (above 0.50 is considered a large effect size, above 0.30 a medium
effect size and below 0.30 a small effect size).

H. García-González / Optimising the ShExML engine through code profiling 15

Fig. 5. Violin plot comparing the distribution of the CPU user time results in seconds for the different inputs and engines under the test. Results
for the ShExML-v0.3.2 under the EHRI institutions input are not shown as only one result was yielded whose value is 2261.28 s. The y axis has
been adapted according to a log10 scale to increase the interpretability of this graphic.

Fig. 6. Violin plot comparing the distribution of the CPU usage results in percentages for the different inputs and engines under the test. Results
for the ShExML-v0.3.2 under the EHRI institutions input are not shown as only one result was yielded whose value is 105%. The y axis has
been adapted according to a log10 scale to increase the interpretability of this graphic.

This comparison between engines shows that there are significant differences in the elapsed time between v0.3.2
and v0.3.3 for the three inputs with a medium effect size, relating those results to the same medium effect size in
the CPU user time and CPU usage, however, only a medium effect size is present on the XML input for the CPU
kernel time and a small one on the JSON input for the peak memory usage.

Between v0.3.3 and v0.4.0 there are significant differences in the elapsed time, and a medium effect size, for the
XML and the institutions entries, but the JSON input shows very significant differences and a large effect size which
translates equally to the CPU user time. For the CPU kernel time, the JSON and EHRI institutions entries show a
large effect size while the XML one has a medium effect size. The three inputs yield large effect sizes for the CPU
usage and the peak memory usage.

When comparing v0.4.0 and v0.4.2 only the institutions entry shows significant differences and a medium effect
size for the elapsed time and the CPU user variables.

Finally, there are significant differences in the elapsed times and a medium effect size between the v0.4.2 and the

16 H. García-González / Optimising the ShExML engine through code profiling

Fig. 7. Plot of the three most performant engines distributions against the input JSON films 1000 entries.

v0.5.1 for the three inputs. This also translates to the peak memory usage which shows a medium effect size for the
JSON input and a large one for the other two. The CPU kernel time variable has a small effect size for the XML
input and a medium one for the EHRI institutions entry, while the CPU user time variable shows a medium effect
size for the XML and EHRI institutions entries alike.

As a general note, the CPU user time is normally related quite steadily to the results collected in the elapsed time
variable. This is explained due to the reason that the engine process normally spends most of its time in the user
mode. There is also a general increase on the CPU usage, as shown in Fig. 6, which can be explained by a better use
of the CPU user time to resolve the same tasks in less time, avoiding idle time.

A closer look to the elapsed time distributions allows to further explain these differences or the lack of them. In the
case of the JSON films entry, the distributions for the three most performant versions (as it can be seen in Fig. 7) are
quite close and they overlap among them, explaining, therefore, the lack of significant differences between v0.4.0
and v0.4.2 and the effect size being very close to a small one between v0.4.2 and v0.5.1.

For the XML input (represented in Fig. 8), the v0.5.1 is more performant, but in the case of v0.4.2 and v0.4.0
(which do not present significant differences) both of them tend to have less performant iterations that fall under
the v0.3.3 distribution values. Nevertheless, v0.4.2 shows a more unified shape suggesting a slight improvement on
performance over v0.4.0 (even though not quite appreciable).

Finally, when the EHRI institutions input is analysed (see Fig. 9), the three most performant versions (v0.5.1,
v0.4.2 and v0.4.0) show very defined and almost not overlapping distributions.

6.1.3. Discussion
In the light of these results, I analyse the effects that each of the introduced modifications, across the ShExML

engine versions, have in the overall performance given the three cases under study.
Firstly, the alleviation of IO operations and caching some of the iteration queries (from v0.3.2 to v.0.3.3) resulted,

consequently, in a very substantial performance improvement in bigger inputs, like the EHRI institutions one. This
also reflects quite clearly on the decrease of the CPU kernel time for the XML input in opposition to the JSON
input, as XML files tend to be larger and require longer IO operations. Moreover, when having a lot of hierarchical
information, caching these iteration queries (that tend to be repeated) also suposses a decent improvement over not
doing so. However, this improvement might seem more limited when the inputs are not very long nor they contain
hierarchical data, as it is the case for the JSON and XML films inputs. Special attention requires the caching of
iteration queries for small and flat inputs as they can increase memory usage, like in the case of the JSON input.

As already anticipated earlier, the transition from v0.3.3 to v0.4.0 introduced a great deal of improvement, coming
mainly from the changes on the calculation of ids and the enhanced filtering function. Thus, this has translated to
a significant and steady improvement over all kinds of inputs. The bigger effect size on the JSON films entries for
the elapsed time can be explained by the JSON parser cache also introduced in this version which can be clearly

H. García-González / Optimising the ShExML engine through code profiling 17

Table 2

This table shows the results for the post hoc tests (p-value as p) and the effect size (as r) for each of the comparisons. Only the comparisons
between consecutive versions are preserved in this table. p int. refers to the interpretation of the p-value, where * means significant differences
and *** very significant differences. r int. refers to the interpretation of the effect size where + means a small effect size, ++ a medium effect
size, and + + + a large effect size

Input Variable Comparison p p int. r r int.

JSON Films 1000 entries Elapsed time ShExML-v0.3.2–ShExML-v0.3.3 < 0.05 * 0.345 ++
ShExML-v0.3.3–ShExML-v0.4.0 < 0.001 *** 0.555 + + +
ShExML-v0.4.0–ShExML-v0.4.2 0.695 0.0506

ShExML-v0.4.2–ShExML-v0.5.1 < 0.05 * 0.307 ++
CPU Kernel ShExML-v0.3.2–ShExML-v0.3.3 0.050 0.272

ShExML-v0.3.3–ShExML-v0.4.0 < 0.001 *** 0.630 + + +
ShExML-v0.4.0–ShExML-v0.4.2 0.618 0.0643

ShExML-v0.4.2–ShExML-v0.5.1 0.235 0.161

CPU User ShExML-v0.3.2–ShExML-v0.3.3 < 0.05 * 0.345 ++
ShExML-v0.3.3–ShExML-v0.4.0 < 0.001 *** 0.545 + + +
ShExML-v0.4.0–ShExML-v0.4.2 0.343 0.122

ShExML-v0.4.2–ShExML-v0.5.1 0.152 0.192

CPU Percentage ShExML-v0.3.2–ShExML-v0.3.3 < 0.05 * 0.346 ++
ShExML-v0.3.3–ShExML-v0.4.0 < 0.001 *** 0.944 + + +
ShExML-v0.4.0–ShExML-v0.4.2 < 0.05 * 0.302 ++
ShExML-v0.4.2–ShExML-v0.5.1 0.266 0.156

Max Memory ShExML-v0.3.2–ShExML-v0.3.3 < 0.05 * 0.261 +
ShExML-v0.3.3–ShExML-v0.4.0 < 0.001 *** 0.801 + + +
ShExML-v0.4.0–ShExML-v0.4.2 0.757 0.0399

ShExML-v0.4.2–ShExML-v0.5.1 < 0.001 *** 0.498 ++
XML Films 1000 entries Elapsed time ShExML-v0.3.2–ShExML-v0.3.3 < 0.05 * 0.347 ++

ShExML-v0.3.3–ShExML-v0.4.0 < 0.05 * 0.422 ++
ShExML-v0.4.0–ShExML-v0.4.2 0.149 0.186

ShExML-v0.4.2–ShExML-v0.5.1 < 0.05 * 0.425 ++
CPU Kernel ShExML-v0.3.2–ShExML-v0.3.3 < 0.05 * 0.430 ++

ShExML-v0.3.3–ShExML-v0.4.0 < 0.001 *** 0.456 ++
ShExML-v0.4.0–ShExML-v0.4.2 0.736 0.0436

ShExML-v0.4.2–ShExML-v0.5.1 < 0.05 * 0.279 +
CPU User ShExML-v0.3.2–ShExML-v0.3.3 < 0.05 * 0.345 ++

ShExML-v0.3.3–ShExML-v0.4.0 < 0.001 *** 0.455 ++
ShExML-v0.4.0–ShExML-v0.4.2 0.333 0.125

ShExML-v0.4.2–ShExML-v0.5.1 < 0.001 *** 0.455 ++
CPU Percentage ShExML-v0.3.2–ShExML-v0.3.3 < 0.05 * 0.355 ++

ShExML-v0.3.3–ShExML-v0.4.0 < 0.001 *** 0.633 + + +
ShExML-v0.4.0–ShExML-v0.4.2 0.053 0.250

ShExML-v0.4.2–ShExML-v0.5.1 < 0.001 *** 0.650 + + +
Max Memory ShExML-v0.3.2–ShExML-v0.3.3 0.211 0.169

ShExML-v0.3.3–ShExML-v0.4.0 < 0.001 *** 1.09 + + +
ShExML-v0.4.0–ShExML-v0.4.2 0.952 0.0077

ShExML-v0.4.2–ShExML-v0.5.1 < 0.001 *** 0.589 + + +

18 H. García-González / Optimising the ShExML engine through code profiling

Table 2

(Continued)

Input Variable Comparison p p int. r r int.

EHRI institutions (JSON) Elapsed time ShExML-v0.3.3–ShExML-v0.4.0 < 0.05 * 0.431 ++
ShExML-v0.4.0–ShExML-v0.4.2 < 0.05 * 0.437 ++
ShExML-v0.4.2–ShExML-v0.5.1 < 0.05 * 0.420 ++

CPU Kernel ShExML-v0.3.3–ShExML-v0.4.0 < 0.001 *** 0.619 + + +
ShExML-v0.4.0–ShExML-v0.4.2 0.194 0.168

ShExML-v0.4.2–ShExML-v0.5.1 < 0.05 * 0.396 ++
CPU User ShExML-v0.3.3–ShExML-v0.4.0 < 0.05 * 0.431 ++

ShExML-v0.4.0–ShExML-v0.4.2 < 0.001 *** 0.463 ++
ShExML-v0.4.2–ShExML-v0.5.1 < 0.05 * 0.368 ++

CPU Percentage ShExML-v0.3.3–ShExML-v0.4.0 < 0.001 *** 1.25 + + +
ShExML-v0.4.0–ShExML-v0.4.2 < 0.001 *** 0.755 + + +
ShExML-v0.4.2–ShExML-v0.5.1 < 0.05 * 0.361 ++

Max Memory ShExML-v0.3.3–ShExML-v0.4.0 < 0.001 *** 0.612 + + +
ShExML-v0.4.0–ShExML-v0.4.2 0.593 0.0690

ShExML-v0.4.2–ShExML-v0.5.1 < 0.001 *** 0.612 + + +

Fig. 8. Plot of the three closest (on performance) engines distributions against the input XML films 1000 entries.

seen in the CPU user effect sizes (large for the JSON input and medium for the other two inputs). Conversely, the
EHRI institutions case, which also uses an input in the JSON format, deals with many files in comparison to a single
file entry in the films case, mitigating partially this effect. In general, a big decrease on memory consumption is
appreciated across inputs.

Making the data types inference and URI normalisation systems optional (from v0.4.0 to v0.4.2) did not have a
very big impact on smaller inputs (like in both films entries) but, as the result of the EHRI institutions entry demon-
strates, it can have a bigger impact when longer inputs are used. At the same time, from a usability perspective,
having these systems enabled by default can cause some confusion to users, so making them optional seemed a
good alternative both from the performance and usability points of view.

Finally, changing the XPath and JSONPath libraries for more performant alternatives drove to a better response
time and memory usage in the ShExML engine for the three inputs. When other bottleneck problems are resolved,
the main core of these data mapping engines relies on the query system which is normally delegated to an external
library. Therefore, a wise choice in this regard can have a great impact on the engines performance. Besides, the

H. García-González / Optimising the ShExML engine through code profiling 19

Fig. 9. Plot of the three most performant engines distributions against the input EHRI institutions.

introduction of the XML document parser results cache system seems to improve the general XML processing time
even for smaller inputs, at the cost, however, of an increase on the memory consumption.

6.2. Replication study of the SPARQL-Anything experiment

In this section the methodology followed to replicate the SPARQL-Anything experiment is introduced. After-
wards, the results arisen from it are exposed and discussed.

6.2.1. Methodology
For this replication study, I based the methodology on the one followed by the authors in the original paper [3]

which consists of two different tests: one containing 12 different integration cases (q1 to q12) and an incremental
in size input based on the q12 data (containing 10, 100, 1000, 10000, 100000, 1000000 entities respectively). In
the original experiment the inputs ranging from q1 to q8 were only run on the SPARQL-Anything and SPARQL-
Generate engines, as they are intended for query evaluation retrieval, which RML and ShExML are not capable of
doing, therefore, I omitted those from the experiment. Each input is executed against each engine thrice and the
average execution time is preserved for comparison, as in the original experiment. In order to answer RQ2, not only
the replication study, using the engines original versions, was run but also the same experiment using the version
0.5.1 of the ShExML engine and its coetaneous versions from the other engines (i.e., version 6.5.1 for RMLMapper,
version 0.9.0 for SPARQL-Anything and 2.1.0 for SPARQL-Generate).

6.2.2. Results and discussion
The previously introduced methodology was run on the same environment described in Section 6.1.2 and the

resources and results can be accessed on Github.27

Looking to the results of the four discrete inputs (q9, q10, q11 and q12), represented in Fig. 10, it can be seen how
the optimised version of the ShExML engine shows a similar behaviour performance-wise to the other engines, even
though in some cases, like q11, it still employs a bit more time. Interestingly, the newer version of the RMLMapper
seems to perform rather bad in comparison with its predecesor, in some cases using double the time for the same
task. This leads to, as a side effect, RMLMapper not being the most performant engine in most of the cases as it
was before. On their turn, also SPARQL-Generate and SPARQL-Anything engines perform a bit worse for almost
all the cases than their old versions, but in their case the difference is not so acute.

Focusing on the incremental input experiment, the optimised ShExML engine stands side to side to other engines,
offering a similar performance (see Fig. 12). Moreover, the ShExML engine starts with a very good performance

27https://github.com/herminiogg/shexml-performance-evaluation/tree/main/sparql-anything-experiment/experiment.

https://github.com/herminiogg/shexml-performance-evaluation/tree/main/sparql-anything-experiment/experiment

20 H. García-González / Optimising the ShExML engine through code profiling

Fig. 10. Bar chart containing the execution time in milliseconds for the four common inputs under the SPARQL-Anything experiment. ShExML-
v0.2.7 results are not included as they always exceeded the timeout of 3 minutes.

Fig. 11. Line chart comparing the results for the incremental input of the SPARQL-Anything experiment executed over the versions of the engines
used in the original experiment. The results on the y axis have been transformed using a log10 scale in order to make them more comparable.
Results on the inputs 10000, 100000, 1000000 for the engine ShExML-v0.2.7 exceeded the timeout and are represented here as higher values
only for representational purposes following the original graphic published in [3].

for the smallest case, it uses a bit more time for the middle range cases, but it seems to improve for the largest case.
Here, it is also quite noticeable how the RML engine performs worse than the other three engines only showing a
more comparable performance for the two larger inputs. This is a huge difference in comparison with the old ver-
sions where RMLMapper used to yield the best performance metrics (see Fig. 11). Between SPARQL-Generate and
SPARQL-Anything, in the old experiment both engines showed a similar performance for almost all the cases, how-
ever, with the newer versions, SPARQL-Generate performs worse than SPARQL-Anything for the smaller inputs
while, on bigger cases, SPARQL-Anything is performing worse than SPARQL-Generate.

H. García-González / Optimising the ShExML engine through code profiling 21

Fig. 12. Line chart comparing the results for the incremental input of the SPARQL-Anything experiment executed over the new versions of the
engines. The results on the y axis have been transformed using a log10 scale in order to make them more comparable.

7. Future work

While a lot of performance improvements have been introduced with this work in the ShExML engine, there is
still some room for further refinement. The main enhancement relates to the possibility of executing the engine in
parallel. As introduced earlier, some parts of the engine are not thread-safe (e.g., the cache systems) so it would be
necessary to change their implementation for their thread-safe counterpart. Similarly, it should be studied in which
parts of the engine code the foreseen parallelisation could provide an improvement on the performance, taking into
account the additional overheads of managing different threads within an application.

Following the rationale behind the creation of the custom-made evaluation of this paper, it is envisaged to expand
it to cover more cases, data mapping languages and engines. This statistically-based methodology can be used to
better determine the differences between engines, providing a better picture of mapping rules engines capabilities in
relation to multiple – and heterogeneously-shaped – data, and driving future optimisations in these kinds of tools.

8. Conclusions

In this work, the optimisation of the ShExML engine has been tackled using a profiling tool as a means for detect-
ing the bottlenecks and verifying the delivered enhancements. In order to corroborate the success of this method-
ology, the consequent optimised versions of the ShExML engine were tested and analysed using a performance
evaluation whose results were analysed using statistical methods. The contrast of the statistical analysis against the
introduced improvements gives a set of watch points over the optimisation of such engines, which can be wide-
applicable for other practitioners whose engines suffer from similar problems. Upon this analysis, the ShExML en-
gine shows an improved performance, utilising the CPU cores more efficiently and reducing the consumed memory.
Furthermore, as a result of the replication study, it has been demonstrated that due to the optimisations performed
on the ShExML engine, it now manifests a comparable performance to other similar ones, letting ShExML users
benefit from a much faster and reliable tool.

Funding

This work has been carried out in the context of the EHRI-3 project funded by the European Commission under
the call H2020-INFRAIA-2018-2020, with grant agreement ID 871111 and DOI 10.3030/871111.

22 H. García-González / Optimising the ShExML engine through code profiling

Appendix A. Examples for the inputs used in the evaluation described in Section 6.1

Listing 8. Extract of the 1000 films input in JSON used for the evaluation. ... represents data that has been omitted from the extract for space
limit reasons

Listing 9. Extract of the 1000 films input in XML used for the evaluation. ... represents data that has been omitted from the extract for space
limit reasons

H. García-González / Optimising the ShExML engine through code profiling 23

Listing 10. Extract of the EHRI institutions input in JSON used for the evaluation. ... represents data that has been omitted from the extract
for space limit reasons

24 H. García-González / Optimising the ShExML engine through code profiling

Appendix B. Descriptive statistics for the evaluation described in Section 6.1

Table 3

This table shows the descriptive statistics for the execution time (measured in milliseconds) of the tested engine for the JSON films input where
n is the size of the sample, x̄ is the mean, x̃ is the median, s is the standard deviation, max is the maximum value of the sample, and min is the
minimum value of the sample

Input Engine Variable n x̄ x̃ s min max

JSON Films
1000 entries

ShExML-v0.3.2 Elapsed time (ms) 30 30488.20000 30572.00000 2015.11590 26696.00000 34699.00000

CPU Kernel (s) 30 0.66933 0.67500 0.09801 0.49000 0.88000

CPU Percentage 30 115.26667 115.00000 0.90719 114.00000 117.00000

CPU User (s) 30 32.46033 32.36000 0.95310 30.48000 35.03000

MaxMemory (KB) 30 499383.60000 499742.00000 15019.11828 470328.00000 526156.00000

ShExML-v0.3.3 Elapsed time (ms) 30 19220.23333 18984.50000 1190.45815 17780.00000 22109.00000

CPU Kernel (s) 30 0.52833 0.52000 0.06884 0.39000 0.76000

CPU Percentage 30 122.16667 122.00000 1.08543 120.00000 125.00000

CPU User (s) 30 21.49000 21.29000 0.70155 20.35000 23.26000

MaxMemory (KB) 30 529061.33333 524394.00000 21785.55926 487264.00000 584120.00000

ShExML-v0.4.0 Elapsed time (ms) 30 2888.56667 2823.00000 202.72721 2670.00000 3418.00000

CPU Kernel (s) 30 0.26767 0.26000 0.05888 0.17000 0.42000

CPU Percentage 30 219.30000 217.00000 10.87278 208.00000 253.00000

CPU User (s) 30 5.80333 5.61500 0.76290 4.71000 7.48000

MaxMemory (KB) 30 254791.86667 253972.00000 11966.66950 229668.00000 291692.00000

ShExML-v0.4.2 Elapsed time (ms) 30 2935.83333 2843.00000 583.90600 2496.00000 5740.00000

CPU Kernel (s) 30 0.25767 0.24000 0.05643 0.18000 0.39000

CPU Percentage 30 207.86667 207.00000 7.54176 196.00000 227.00000

CPU User (s) 30 5.45033 5.36000 0.53050 4.67000 7.49000

MaxMemory (KB) 30 252594.66667 253438.00000 9881.96347 236272.00000 277340.00000

ShExML-v0.5.1 Elapsed time (ms) 30 2591.50000 2527.00000 242.94894 2271.00000 3220.00000

CPU Kernel (s) 30 0.21767 0.22500 0.05667 0.10000 0.31000

CPU Percentage 30 201.70000 199.50000 9.42539 186.00000 221.00000

CPU User (s) 30 5.08900 5.06000 0.50569 4.23000 6.54000

MaxMemory (KB) 30 192980.93333 192632.00000 3794.64765 185368.00000 200164.00000

H. García-González / Optimising the ShExML engine through code profiling 25

Table 4

This table shows the descriptive statistics for the execution time (measured in milliseconds) of the tested engine for the XML films input where
n is the size of the sample, x̄ is the mean, x̃ is the median, s is the standard deviation, max is the maximum value of the sample, and min is the
minimum value of the sample

Input Engine Variable n x̄ x̃ s min max

XML Films
1000 entries

ShExML-v0.3.2 Elapsed time (ms) 30 107352.33333 106644.50000 5239.70542 100762.00000 117625.00000

CPU Kernel (s) 30 1.04233 1.05500 0.11013 0.74000 1.23000

CPU Percentage 30 107.36667 107.00000 0.49013 107.00000 108.00000

CPU User (s) 30 111.59133 111.78500 4.65845 103.99000 125.72000

MaxMemory (KB) 30 449475.06667 440568.00000 21540.67984 415636.00000 502536.00000

ShExML-v0.3.3 Elapsed time (ms) 30 26724.26667 26358.00000 690.67777 26144.00000 28271.00000

CPU Kernel (s) 30 0.53667 0.53000 0.07712 0.39000 0.72000

CPU Percentage 30 121.06667 121.00000 0.52083 120.00000 122.00000

CPU User (s) 30 31.78433 31.86500 0.93517 30.27000 33.73000

MaxMemory (KB) 30 463119.20000 461158.00000 18609.17452 419384.00000 502620.00000

ShExML-v0.4.0 Elapsed time (ms) 30 22787.36667 22858.00000 1463.50730 20980.00000 26207.00000

CPU Kernel (s) 30 0.42267 0.42000 0.05552 0.30000 0.59000

CPU Percentage 30 125.30000 125.00000 0.87691 124.00000 127.00000

CPU User (s) 30 26.74133 26.87500 0.75558 25.07000 27.95000

MaxMemory (KB) 30 341774.80000 339024.00000 15982.38534 313932.00000 376128.00000

ShExML-v0.4.2 Elapsed time (ms) 30 21596.10000 21195.00000 906.07613 20770.00000 24324.00000

CPU Kernel (s) 30 0.41333 0.41500 0.07341 0.27000 0.62000

CPU Percentage 30 123.83333 124.00000 1.08543 121.00000 126.00000

CPU User (s) 30 26.19167 26.17000 0.91638 24.21000 28.22000

MaxMemory (KB) 30 343694.26667 337638.00000 18843.19582 309764.00000 375540.00000

ShExML-v0.5.1 Elapsed time (ms) 30 4867.26667 4825.50000 244.74800 4663.00000 5953.00000

CPU Kernel (s) 30 0.35167 0.33500 0.06608 0.24000 0.51000

CPU Percentage 30 163.80000 164.00000 3.37741 153.00000 171.00000

CPU User (s) 30 7.19900 7.09500 0.31453 6.80000 8.13000

MaxMemory (KB) 30 421860.53333 418216.00000 19650.89765 387988.00000 469364.00000

26 H. García-González / Optimising the ShExML engine through code profiling

Table 5

This table shows the descriptive statistics for the execution time (measured in milliseconds) of the tested engine for the EHRI institutions input
where n is the size of the sample, x̄ is the mean, x̃ is the median, s is the standard deviation, max is the maximum value of the sample, and min
is the minimum value of the sample

Input Engine Variable n x̄ x̃ s min max

EHRI
institutions
(JSON)

ShExML-v0.3.2 Elapsed time (ms) 1 2188032 2188032 0 2188032 2188032

CPU Kernel (s) 1 45.53000 45.53000 0 45.53000 45.53000

CPU Percentage 1 105.00000 105.00000 0 105.00000 105.00000

CPU User (s) 1 2261.28000 2261.28000 0 2261.28000 2261.28000

MaxMemory (KB) 1 1972528.00000 1972528.00000 0 1972528.00000 1972528.00000

ShExML-v0.3.3 Elapsed time (ms) 30 157217.16667 154946.00000 5966.55622 149673.00000 171430.00000

CPU Kernel (s) 30 3.00433 3.03500 0.18511 2.70000 3.41000

CPU Percentage 30 110.30000 110.00000 0.46609 110.00000 111.00000

CPU User (s) 30 162.60067 163.47000 2.63503 157.86000 167.26000

MaxMemory (KB) 30 1074020.93333 1089692.00000 56317.43558 978308.00000 1158068.00000

ShExML-v0.4.0 Elapsed time (ms) 30 7434.16667 7376.50000 302.49162 6757.00000 8132.00000

CPU Kernel (s) 30 0.57833 0.55000 0.13432 0.40000 0.96000

CPU Percentage 30 269.90000 270.00000 4.95740 261.00000 280.00000

CPU User (s) 30 19.12867 18.85500 1.51962 16.75000 23.19000

MaxMemory (KB) 30 689118.40000 686316.00000 32148.11219 629764.00000 761776.00000

ShExML-v0.4.2 Elapsed time (ms) 30 6228.93333 6230.50000 138.71279 5997.00000 6611.00000

CPU Kernel (s) 30 0.50900 0.49000 0.06261 0.39000 0.63000

CPU Percentage 30 249.10000 248.50000 5.58539 238.00000 258.00000

CPU User (s) 30 14.87800 14.90000 0.71282 13.71000 16.04000

MaxMemory (KB) 30 679173.20000 686988.00000 22991.05882 627304.00000 718052.00000

ShExML-v0.5.1 Elapsed time (ms) 30 5601.83333 5623.00000 197.05663 5283.00000 6124.00000

CPU Kernel (s) 30 0.41333 0.41000 0.07194 0.24000 0.57000

CPU Percentage 30 259.13333 259.50000 6.94179 245.00000 271.00000

CPU User (s) 30 13.43867 13.24000 0.67281 12.06000 15.02000

MaxMemory (KB) 30 464956.26667 460516.00000 27515.69036 421024.00000 523796.00000

H. García-González / Optimising the ShExML engine through code profiling 27

Appendix C. Results for the evaluation described in Section 6.2

Table 6

This table shows the average results for the elapsed time in milliseconds of the discrete inputs experiment obtained after running each input
against each engine three times. Results for the engine ShExML-v0.2.7 under the four inputs reached the timeout of 3 minutes

Engine Input Elapsed time (ms)

ShExML-v0.2.7 q9 180017

ShExML-v0.2.7 q10 180014

ShExML-v0.2.7 q11 180016

ShExML-v0.2.7 q12 180016

sparql-generate-2.0.9 q9 1771

sparql-generate-2.0.9 q10 2238

sparql-generate-2.0.9 q11 3484

sparql-generate-2.0.9 q12 1507

rmlmapper-v4.12.0 q9 1681

rmlmapper-v4.12.0 q10 2086

rmlmapper-v4.12.0 q11 3298

rmlmapper-v4.12.0 q12 1248

sparql-anything-0.4.1 q9 1993

sparql-anything-0.4.1 q10 2741

sparql-anything-0.4.1 q11 3852

sparql-anything-0.4.1 q12 1611

ShExML-v0.5.1 q9 3500

ShExML-v0.5.1 q10 3882

ShExML-v0.5.1 q11 6471

ShExML-v0.5.1 q12 2753

sparql-generate-2.1.0 q9 2213

sparql-generate-2.1.0 q10 2628

sparql-generate-2.1.0 q11 3816

sparql-generate-2.1.0 q12 1967

rmlmapper-6.5.1 q9 3467

rmlmapper-6.5.1 q10 4123

rmlmapper-6.5.1 q11 5259

rmlmapper-6.5.1 q12 2787

sparql-anything-0.9.0 q9 1647

sparql-anything-0.9.0 q10 2884

sparql-anything-0.9.0 q11 4010

sparql-anything-0.9.0 q12 1791

28 H. García-González / Optimising the ShExML engine through code profiling

Table 7

This table shows the average results for the elapsed time in milliseconds of the incremental input experiment obtained after running each input
against each engine three times. Results for the engine ShExML-v0.2.7 under input sizes 10000, 100000, 1000000 reached the timeout of 3
minutes

Engine Input Elapsed time (ms)

ShExML-v0.2.7 10 1654

ShExML-v0.2.7 100 2713

ShExML-v0.2.7 1000 57127

ShExML-v0.2.7 10000 180017

ShExML-v0.2.7 100000 180024

ShExML-v0.2.7 1000000 180064

sparql-anything-0.4.1 10 1145

sparql-anything-0.4.1 100 1207

sparql-anything-0.4.1 1000 1359

sparql-anything-0.4.1 10000 2346

sparql-anything-0.4.1 100000 8140

sparql-anything-0.4.1 1000000 74924

rmlmapper-v4.12.0 10 881

rmlmapper-v4.12.0 100 983

rmlmapper-v4.12.0 1000 1183

rmlmapper-v4.12.0 10000 2156

rmlmapper-v4.12.0 100000 6542

rmlmapper-v4.12.0 1000000 52285

sparql-generate-2.0.9 10 1114

sparql-generate-2.0.9 100 1206

sparql-generate-2.0.9 1000 1431

sparql-generate-2.0.9 10000 2412

sparql-generate-2.0.9 100000 6469

sparql-generate-2.0.9 1000000 80734

ShExML-v0.5.1 10 1525

ShExML-v0.5.1 100 1644

ShExML-v0.5.1 1000 2158

ShExML-v0.5.1 10000 3543

ShExML-v0.5.1 100000 11158

ShExML-v0.5.1 1000000 69564

sparql-anything-0.9.0 10 1625

sparql-anything-0.9.0 100 1520

sparql-anything-0.9.0 1000 1744

sparql-anything-0.9.0 10000 2821

sparql-anything-0.9.0 100000 8624

sparql-anything-0.9.0 1000000 71299

rmlmapper-6.5.1 10 2517

rmlmapper-6.5.1 100 2406

rmlmapper-6.5.1 1000 2587

rmlmapper-6.5.1 10000 4289

rmlmapper-6.5.1 100000 9632

rmlmapper-6.5.1 1000000 82971

sparql-generate-2.1.0 10 1779

sparql-generate-2.1.0 100 1665

sparql-generate-2.1.0 1000 1901

sparql-generate-2.1.0 10000 2620

sparql-generate-2.1.0 100000 6543

sparql-generate-2.1.0 1000000 60203

H. García-González / Optimising the ShExML engine through code profiling 29

References

[1] J. Arenas-Guerrero, D. Chaves-Fraga, J. Toledo, M.S. Pérez and O. Corcho, Morph-KGC: Scalable knowledge graph materialization with
mapping partitions, Semantic Web 15(1) (2024), 1–20. doi:10.3233/SW-223135.

[2] J. Arenas-Guerrero, M. Scrocca, A. Iglesias-Molina, J. Toledo, L. Pozo-Gilo, D. Doña, Ó. Corcho and D. Chaves-Fraga, Knowledge graph
construction with R2RML and RML: an ETL system-based overview, in: Proceedings of the 2nd International Workshop on Knowledge
Graph Construction Co-Located with 18th Extended Semantic Web Conference (ESWC 2021), June 6, 2021, D. Chaves-Fraga, A. Dimou,
P. Heyvaert, F. Priyatna and J.F. Sequeda, eds, CEUR Workshop Proceedings, Vol. 2873, CEUR-WS.org, Online, 2021, https://ceur-ws.org/
Vol-2873/paper11.pdf.

[3] L. Asprino, E. Daga, A. Gangemi and P. Mulholland, Knowledge graph construction with a façade: A unified method to access heteroge-
neous data sources on the web, ACM Transactions on Internet Technology 23(1) (2023), 1–31. doi:10.1145/3555312.

[4] S. Bin, C. Stadler and L. Bühmann, KGCW2023 challenge report RDFProcessingToolkit / Sansa, in: Proceedings of the 4th International
Workshop on Knowledge Graph Construction Co-Located with 20th Extended Semantic Web Conference (ESWC 2023), May 28, 2023,
D. Chaves-Fraga, A. Dimou, A. Iglesias-Molina, U. Serles and D.V. Assche, eds, CEUR Workshop Proceedings, Vol. 3471, CEUR-WS.org,
Hersonissos, Greece, 2023, https://ceur-ws.org/Vol-3471/paper12.pdf.

[5] D. Chaves-Fraga, F. Priyatna, A. Cimmino, J. Toledo, E. Ruckhaus and O. Corcho, GTFS-Madrid-bench: A benchmark for virtual knowl-
edge graph access in the transport domain, Journal of Web Semantics 65 (2020), 100596. doi:10.1016/j.websem.2020.100596.

[6] J. Cohen, A power primer, Psychological Bulletin 112(1) (1992), 155–159. doi:10.1037/0033-2909.112.1.155.
[7] H.K. Dhalla, A performance analysis of native JSON parsers in Java, Python, MS.NET Core, JavaScript, and PHP, in: 16th International

Conference on Network and Service Management (CNSM), IEEE, Online, 2020, pp. 1–5. doi:10.23919/CNSM50824.2020.9269101.
[8] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens and R. Van de Walle, RML: a generic language for integrated RDF

mappings of heterogeneous data, in: Proceedings of the 7th Workshop on Linked Data on the Web, C. Bizer, T. Heath, S. Auer and T. Berners-
Lee, eds, CEUR Workshop Proceedings, Vol. 1184, Seoul, Korea, 2014, ISSN 1613-0073, http://ceur-ws.org/Vol-1184/ldow2014_paper_
01.pdf.

[9] H. García-González, A ShExML perspective on mapping challenges: Already solved ones, language modifications and future required
actions, in: Proceedings of the 2nd International Workshop on Knowledge Graph Construction Co-Located with 18th Extended Semantic
Web Conference (ESWC 2021), D. Chaves-Fraga, A. Dimou, P. Heyvaert, F. Priyatna and J.F. Sequeda, eds, CEUR Workshop Proceedings,
Vol. 2873, CEUR-WS.org, Online, 2021, http://ceur-ws.org/Vol-2873/paper2.pdf.

[10] H. García-González, I. Boneva, S. Staworko, J.E.L. Gayo and J.M.C. Lovelle, ShExML: Improving the usability of heterogeneous data
mapping languages for first-time users, PeerJ Computer Science 6 (2020), e318. doi:10.7717/peerj-cs.318.

[11] H. García-González and M. Bryant, The holocaust archival material knowledge graph, in: The Semantic Web – ISWC 2023, T.R. Payne,
V. Presutti, G. Qi, M. Poveda-Villalón, G. Stoilos, L. Hollink, Z. Kaoudi, G. Cheng and J. Li, eds, Vol. 14266, Springer Nature, Switzerland,
Athens, Greece, 2023, pp. 362–379. ISBN 978-3-031-47243-5. doi:10.1007/978-3-031-47243-5_20.

[12] H. García-González and A. Dimou, Why to tie to a single data mapping language? Enabling a transformation from ShExML to RML, in:
Proceedings of Poster and Demo Track and Workshop Track of the 18th International Conference on Semantic Systems Co-Located with
18th International Conference on Semantic Systems (SEMANTiCS 2022), U. Simsek, D. Chaves-Fraga, T. Pellegrini and S. Vahdat, eds,
CEUR Workshop Proceedings, Vol. 3235, CEUR-WS.org, Vienna, Austria, 2022, https://ceur-ws.org/Vol-3235/paper11.pdf.

[13] S.L. Graham, P.B. Kessler and M.K. McKusick, Gprof: A call graph execution profiler, ACM Sigplan Notices 17(6) (1982), 120–126.
doi:10.1145/872726.806987.

[14] G. Haesendonck, W. Maroy, P. Heyvaert, R. Verborgh and A. Dimou, Parallel RDF generation from heterogeneous big data, in: SBD ’19,
Proceedings of the International Workshop on Semantic Big Data, Association for Computing Machinery, Amsterdam, Netherlands, 2019,
pp. 1–6. doi:10.1145/3323878.3325802.

[15] P. Henderson and J.H. Morris Jr., A lazy evaluator, in: POPL ’76: Proceedings of the 3rd ACM SIGACT-SIGPLAN Symposium on Principles
on Programming Languages, Atlanta, Georgia, 1976, pp. 95–103. doi:10.1145/800168.811543.

[16] E. Iglesias, S. Jozashoori, D. Chaves-Fraga, D. Collarana and M.-E. Vidal, SDM-RDFizer: An RML interpreter for the efficient creation of
RDF knowledge graphs, in: CIKM ’20: Proceedings of the 29th ACM International Conference on Information & Knowledge Management,
Association for Computing Machinery, Virtual Event, Ireland, 2020, pp. 3039–3046. doi:10.1145/3340531.3412881.

[17] E. Iglesias, S. Jozashoori and M.-E. Vidal, Scaling up knowledge graph creation to large and heterogeneous data sources, Journal of Web
Semantics 75 (2023), 100755. doi:10.1016/j.websem.2022.100755.

[18] E. Iglesias and M. Vidal, Knowledge graph creation challenge: Results for SDM-RDFizer, in: Proceedings of the 4th International Work-
shop on Knowledge Graph Construction Co-Located with 20th Extended Semantic Web Conference ESWC 2023, May 28, 2023, D. Chaves-
Fraga, A. Dimou, A. Iglesias-Molina, U. Serles and D.V. Assche, eds, CEUR Workshop Proceedings, Vol. 3471, CEUR-WS.org, Hersonis-
sos, Greece, 2023, https://ceur-ws.org/Vol-3471/paper13.pdf.

[19] E. Iglesias, M.-E. Vidal, D. Collarana and D. Chaves-Fraga, Empowering the SDM-RDFizer tool for scaling up to complex knowledge
graph creation pipelines, Semantic Web Pre-press(Pre-press) (2024), 1–28. doi:10.3233/SW-243580.

[20] A. Iglesias-Molina, A. Cimmino and Ó. Corcho, Devising mapping interoperability with mapping translation, in: Proceedings of the 3rd
International Workshop on Knowledge Graph Construction (KGCW 2022) Co-Located with 19th Extended Semantic Web Conference
(ESWC 2022), May 30, 2022, D. Chaves-Fraga, A. Dimou, P. Heyvaert, F. Priyatna and J. Sequeda, eds, CEUR Workshop Proceedings,
Vol. 3141, CEUR-WS.org, 2022, https://ceur-ws.org/Vol-3141/paper6.pdf.

https://doi.org/10.3233/SW-223135
https://ceur-ws.org/Vol-2873/paper11.pdf
https://ceur-ws.org/Vol-2873/paper11.pdf
https://doi.org/10.1145/3555312
https://ceur-ws.org/Vol-3471/paper12.pdf
https://doi.org/10.1016/j.websem.2020.100596
https://doi.org/10.1037/0033-2909.112.1.155
https://doi.org/10.23919/CNSM50824.2020.9269101
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
http://ceur-ws.org/Vol-2873/paper2.pdf
https://doi.org/10.7717/peerj-cs.318
https://doi.org/10.1007/978-3-031-47243-5_20
https://ceur-ws.org/Vol-3235/paper11.pdf
https://doi.org/10.1145/872726.806987
https://doi.org/10.1145/3323878.3325802
https://doi.org/10.1145/800168.811543
https://doi.org/10.1145/3340531.3412881
https://doi.org/10.1016/j.websem.2022.100755
https://ceur-ws.org/Vol-3471/paper13.pdf
https://doi.org/10.3233/SW-243580
https://ceur-ws.org/Vol-3141/paper6.pdf

30 H. García-González / Optimising the ShExML engine through code profiling

[21] A. Iglesias-Molina, A. Cimmino, E. Ruckhaus, D. Chaves-Fraga, R. García-Castro and O. Corcho, An ontological approach for representing
declarative mapping languages, Semantic Web 15(1) (2024), 191–221. doi:10.3233/SW-223224.

[22] A. Iglesias-Molina, D. Van Assche, J. Arenas-Guerrero, B. De Meester, C. Debruyne, S. Jozashoori, P. Maria, F. Michel, D. Chaves-Fraga
and A. Dimou, The RML ontology: A community-driven modular redesign after a decade of experience in mapping heterogeneous data to
RDF, in: The Semantic Web – ISWC 2023, T.R. Payne, V. Presutti, G. Qi, M. Poveda-Villalón, G. Stoilos, L. Hollink, Z. Kaoudi, G. Cheng
and J. Li, eds, Springer Nature, Switzerland, Athens, Greece, 2023, pp. 152–175. doi:10.1007/978-3-031-47243-5_9.

[23] A. Kumar, Software Architecture Styles a Survey, International Journal of Computer Applications 87(9) (2014). doi:10.5120/15234-3768.
[24] M. Lefrançois, A. Zimmermann and N. Bakerally, A SPARQL extension for generating RDF from heterogeneous formats, in: The Semantic

Web: 14th International Conference, ESWC 2017, May 28–June 1, 2017, Proceedings, Part I 14, E. Blomqvist, D. Maynard, A. Gangemi,
R. Hoekstra, P. Hitzler and O. Hartig, eds, Lecture Notes in Computer Science, Vol. 10249, Springer, Cham, Portorož, Slovenia, 2017,
pp. 35–50. doi:10.1007/978-3-319-58068-5_3.

[25] B. Oliveira, V. Santos and O. Belo, Processing XML with Java – a performance benchmark, International Journal of New Computer
Architectures and their Applications (IJNCAA) 3(1) (2013), 72–85.

[26] S.M. Oo, B.D. Meester, R. Taelman and P. Colpaert, Towards algebraic mapping operators for knowledge graph construction, in: Proceed-
ings of the ISWC 2023 Posters, Demos and Industry Tracks: From Novel Ideas to Industrial Practice Co-Located with 22nd International
Semantic Web Conference (ISWC 2023), November 6–10, 2023, I. Fundulaki, K. Kozaki, D. Garijo and J.M. Gómez-Pérez, eds, CEUR
Workshop Proceedings, Vol. 3632, CEUR-WS.org, Athens, Greece, 2023, https://ceur-ws.org/Vol-3632/ISWC2023_paper_412.pdf.

[27] T. Parr, the definitive ANTLR 4 reference, The Pragmatic Bookshelf (2013), 1–326. ISBN 1934356999.
[28] E. Prud’hommeaux, J.E. Labra Gayo and H. Solbrig, Shape expressions: An RDF validation and transformation language, in: SEM ’14:

Proceedings of the 10th International Conference on Semantic Systems, Association for Computing Machinery, Leipzig, Germany, 2014,
pp. 32–40. doi:10.1145/2660517.2660523.

[29] M. Scrocca, A. Carenini, M. Comerio and I. Celino, Semantic conversion of transport data adopting declarative mappings: An evaluation
of performance and scalability, in: Proceedings of the 3rd International Workshop Semantics and the Web for Transport Co-Located with
Semantics Conference (SEMANTiCS 2021), September 6, 2021, D. Chaves-Fraga, P. Colpaert, M. Sadeghi, M. Scrocca and M. Comerio,
eds, CEUR Workshop Proceedings, Vol. 2939, CEUR-WS.org, Online, 2021, https://ceur-ws.org/Vol-2939/paper2.pdf.

[30] U. Simsek, E. Kärle and D. Fensel, RocketRML – a NodeJS implementation of a use case specific RML mapper, in: Joint Proceedings of the
1st International Workshop on Knowledge Graph Building and 1st International Workshop on Large Scale RDF Analytics Co-Located with
16th Extended Semantic Web Conference (ESWC 2019), June 3, 2019, D. Chaves-Fraga, P. Heyvaert, F. Priyatna, J.F. Sequeda, A. Dimou,
H. Jabeen, D. Graux, G. Sejdiu, M. Saleem and J. Lehmann, eds, CEUR Workshop Proceedings, Vol. 2489, CEUR-WS.org, Portorož,
Slovenia, 2019, pp. 46–53, https://ceur-ws.org/Vol-2489/paper5.pdf.

[31] C. Stadler, L. Bühmann, L. Meyer and M. Martin, Scaling RML and SPARQL-based knowledge graph construction with apache spark,
in: Proceedings of the 4th International Workshop on Knowledge Graph Construction Co-Located with 20th Extended Semantic Web Con-
ference (ESWC 2023), May 28, 2023, D. Chaves-Fraga, A. Dimou, A. Iglesias-Molina, U. Serles and D.V. Assche, eds, CEUR Workshop
Proceedings, Vol. 3471, CEUR-WS.org, Hersonissos, Greece, 2023, https://ceur-ws.org/Vol-3471/paper8.pdf.

[32] D.A. Turner, Recursion equations as a programming language, in: A List of Successes That Can Change the World: Essays Dedicated
to Philip Wadler on the Occasion of His 60th Birthday, S. Lindley, C. McBride, P. Trinder and D. Sannella, eds, Springer International
Publishing, Cham, 2016, pp. 459–478. ISBN 978-3-319-30936-1. doi:10.1007/978-3-319-30936-1_24.

[33] D. Van Assche, T. Delva, G. Haesendonck, P. Heyvaert, B. De Meester and A. Dimou, Declarative RDF graph generation from heteroge-
neous (semi-) structured data: A systematic literature review, Journal of Web Semantics 75 (2023), 100753. doi:10.1016/j.websem.2022.
100753.

https://doi.org/10.3233/SW-223224
https://doi.org/10.1007/978-3-031-47243-5_9
https://doi.org/10.5120/15234-3768
https://doi.org/10.1007/978-3-319-58068-5_3
https://ceur-ws.org/Vol-3632/ISWC2023_paper_412.pdf
https://doi.org/10.1145/2660517.2660523
https://ceur-ws.org/Vol-2939/paper2.pdf
https://ceur-ws.org/Vol-2489/paper5.pdf
https://ceur-ws.org/Vol-3471/paper8.pdf
https://doi.org/10.1007/978-3-319-30936-1_24
https://doi.org/10.1016/j.websem.2022.100753
https://doi.org/10.1016/j.websem.2022.100753

	Introduction
	Related work
	Introduction to the ShExML language
	ShExML engine
	Engine architecture
	RDF generation algorithm

	Profiling the ShExML engine and performance improvements
	Version 0.3.3
	Version 0.4.0
	Version 0.4.2
	Version 0.5.1

	Evaluation
	ShExML optimisation experiment
	Methodology
	Results
	Discussion

	Replication study of the SPARQL-Anything experiment
	Methodology
	Results and discussion

	Future work
	Conclusions
	Funding
	Appendix A. Examples for the inputs used in the evaluation described in Section 6.1
	Appendix B. Descriptive statistics for the evaluation described in Section 6.1
	Appendix C. Results for the evaluation described in Section 6.2
	References

