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Abstract. The capabilities of Large Language Models (LLMs,) such as Mistral 7B, Llama 3, GPT-4, present a significant
opportunity for knowledge extraction (KE) from text. However, LLMs’ context-sensitivity can hinder obtaining precise and
task-aligned outcomes, thereby requiring prompt engineering. This study explores the efficacy of five prompt methods with
different task demonstration strategies across 17 different prompt templates, utilizing a relation extraction dataset (RED-FM)
with the aforementioned LLMs. To facilitate evaluation, we introduce a novel framework grounded in Wikidata’s ontology. The
findings demonstrate that LLMs are capable of extracting a diverse array of facts from text. Notably, incorporating a simple
instruction accompanied by a task demonstration – comprising three examples selected via a retrieval mechanism – significantly
enhances performance across Mistral 7B, Llama 3, and GPT-4. The effectiveness of reasoning-oriented prompting methods such
as Chain-of-Thought, Reasoning and Acting, while improved with task demonstrations, does not surpass alternative methods.
This suggests that framing extraction as a reasoning task may not be necessary for KE. Notably, task demonstrations leveraging
examples selected via retrieval mechanisms facilitate effective knowledge extraction across all tested prompting strategies and
LLMs.

Keywords: Prompt engineering, Generative Knowledge Extraction, Ontology based evaluation, GPT-4, Mistral 7B, Llama-3,
Wikidata

1. Introduction

Knowledge Extraction (KE), or Knowledge Triple Extraction, aims to identify entities and their semantic rela-
tions. KE is a crucial task towards automatically constructing large-scale knowledge graphs [20].

Large Language Models (LLMs) have shown state-of-the-art performance on knowledge extraction tasks [12,15,
32]. Current leading models use a generative approach where sequence-to-sequence models are trained end-to-end
to go from raw texts to <subject–predicate–object> triples. While generative knowledge extraction approaches rely
on fine-tuning models, recent work [17] has suggested that there is potential in using in-context learning (ICL) [3]
to perform knowledge extraction. ICL leverages the concept of “learning by demonstration”, a method where the
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Fig. 1. A knowledge extraction example: RED-FM target graph vs. triples extracted by GPT-4.

model is trained to recognize and replicate tasks by examining provided examples. This phenomenon allows the
model to mimic task-specific behavior by adjusting its generated responses to match the demonstrated examples,
regardless of the task or LLM involved. This can be beneficial when having large amount of parameters (as LLMs
do), as it eliminates the need to train or fine-tune models. By providing a well devised input sequence (e.g. a textual
prompt), LLMs can therefore learn to perform knowledge extraction tasks. However, the question is how to devise
such a good input prompt, and this is where prompt engineering comes into play.

To answer this question, our study investigates which state-of-the-art prompt engineering methods work best for
the task of knowledge extraction. We adapt chain-of-thought [31], reasoning and acting [33], self-consistency [30],
and generated knowledge [18] with different task demonstration strategies to the context of knowledge extraction
and test their respective performance with three potent generative large language models, i.e. GPT-4 [22], Mistral
7B [11], Llama 3 [1]. To evaluate these methods, we utilize a relation extraction dataset, i.e. RED-FM [10], in an
Open Information Extraction setup. Specifically, given a piece of text, we aim to extract all potential triples (e.g.
relations) from the text, without supplying any predetermined labels nor imposing constraints within the prompt as
in Closed Information Extraction settings [17].

Figure 1 displays an example of our task performed by the GPT-4 [22] model using a simple instruction followed
by a task demonstration with three examples selected by a retrieval mechanism. The input text and the target triples
are both taken from RED-FM. According to the classical, strict match-based evaluation metrics measuring the
exact correspondence between the extracted triples and a predefined set of target triples, there is only one correct
extraction – the one we highlighted in yellow in the figure. However, the LLM is capable of extracting finer-grained
relations from the given text as, for instance, the founding member of relation instead of member of. Furthermore,
it is capable of extracting event facts, highlighted in orange in the figure, which are out of the scope of the original
RED-FM task. These strict evaluation metrics and language variability are a bottleneck for the evaluation of the
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LLM’s extractions, as they complicate the task of devising evaluation criteria that are both robust and universally
applicable across different contexts and applications [7].

To overcome these limitations, our study presents a novel evaluation approach rooted in Wikidata [28] and the
semantics of the Wikidata schema or ontology. This method involves a comprehensive examination of all extracted
triples against Wikidata. In order to identify the most effective prompt engineering method for extracting knowledge,
the validity of triples extracted via the prompt engineering methods is assessed by cross-referencing them with the
knowledge retrieved from Wikidata. This benchmarking exercise provides a quantifiable metric to ascertain the
accuracy and reliability of the factual knowledge extracted by LLMs.

In summary, this work provides two main contributions:

1. The adaptation and evaluation of state-of-the-art prompt engineering methods with different task demonstra-
tion strategies in the context of KE using three LLMs (Mistral 7B [11], Llama 3 [1], GPT-4 [22]).

2. The introduction of an evaluation protocol based on Wikidata to asses the performance of open information
extraction approaches.

The complete data utilized in this study, as well as the source code which underpins the paper, can be accessed
from the GitHub repository .1

2. Background

2.1. Generative knowledge extraction

Extracting knowledge triples from text has been a continuous research topic for the Natural Language Process-
ing (NLP) and Semantic Web (SW) communities [20]. Traditionally this task has been approached as a two-step
problem. First, the entities are extracted from text as in Named Entity Recognition (NER). Second, Relation Classi-
fication (RC) checks whether there exists any pairwise relation between the extracted entities [35,37]. This two-step
approach requires additional annotations to identify which entities share a relation.

Recent approaches tackle both tasks simultaneously as a sequence-to-sequence learning problem referred to as
End-to-End Relation Extraction (RE). In this approach, a model is trained simultaneously on both NER and RC
objectives [9,12,13]. Training both tasks simultaneously in multi-task setups results in improving performance on
the end-to-end RE task without additional annotation. However, it still requires significant amount of training data.

Scaling up language models has improved task-agnostic few-shot performance [3]. ICL is an emergent capability
of Large Language Models (LLMs) in particular those with billions of parameters such as GPT-3 [3], LLaMDA
[26], PaLM [5], LLaMA [27], and GPT-4 [22]. The capability became prominent in GPT models particularly start-
ing from GPT-3 [3]. ICL is a way to use language models to learn tasks given only a few examples without any
additional training or finetuning. The model performs a task just by conditioning on prompts, without optimizing
any parameters. Our approach focuses on ICL (i.e. prompting, few-shot learning), which combines the capabilities
of LLMs with the contextual information available in the text.

2.2. Prompt engineering

Prompts serve as instructive cues for LLMs, directing them to generate desired outputs. They can range from
straightforward direct questions, such as “What are the capital cities in the European Union?” to more instructional
formulations like “List the capital cities in the European Union.” It is crucial to recognize that LLMs, being inher-
ently context-sensitive, may produce different responses based on the specific formulation of the prompt. Prompt
engineering focuses on the development and optimization of prompts [19]. This practice aims to enhance the ef-
ficiency of LLMs across a diverse spectrum of tasks and applications. By carefully crafting and refining prompts,
researchers and practitioners seek to harness the full potential of LLMs, tailoring their responses to align with the
intricacies of various tasks and objectives.

1https://github.com/FinaPolat/Prompt-Engineering-for-KE

https://github.com/FinaPolat/Prompt-Engineering-for-KE
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A comprehensive prompt comprises multiple elements, including a task description, context, a request or question,
and examples. Certain components of a prompt, such as the task description, can be expressed in various ways,
introducing a layer of flexibility. On the other hand, the selection of context and/or examples is inherently dynamic,
involving a retrieval mechanism for optimal relevance. In order to incorporate different components in a coherent
way, designing a prompt template is essential [19]. For a more in-depth exploration of prompting strategies and
associated architectures in NLP, the reader is directed to the survey conducted by Min et al. [21].

2.3. Evaluation challenges in generative approaches

The open-ended nature of open information extraction using generative approaches creates a challenge for auto-
matic evaluation [7]. The expressiveness of LLMs as illustrated in Fig. 1 coupled with the open-endedness of extrac-
tion of knowledge triples makes evaluation non-trivial. The reliance on exact matches to predefined targets becomes
impractical due to the variability in expression present in generated text. Prior research has predominantly em-
ployed a strict evaluation methodology, necessitating exact matches between generated triples and references. This
approach proves suitable for evaluating smaller conditional generation models designed for RE such as REBEL [9]
that is based on BART [15]. These models, having undergone extensive finetuning on large datasets, and hence
consistently produce standardized outputs.

In contrast, larger and more expressive language models like Llama 3 exhibit the capacity to generate a diverse ar-
ray of output formats that convey similar content to targets as demonstrated in Fig. 1. Unlike traditional approaches
where NER and RE models classify or label input tokens, generative language models such as Mistral 7B gen-
erate new tokens from a large vocabulary, rather than selecting from a pre-defined set of classes [29]. Given the
open-ended nature of outputs from such models and the challenge of aligning them with predefined standards, prac-
titioners often opt for human evaluation. Although this approach is time-consuming and more expensive, it provides
a qualitative assessment that better displays the performance of the generative model and the quality and correctness
of the generated triples [17,29].

3. Prompt engineering methods

Our approach involves adapting prominent prompt engineering methods to KE with the goal of identifying the
most effective prompting strategy for it. Prompt engineering methods generally follow a similar pattern. Initially, a
prompt template is formulated, defining the structure and placeholders. Subsequently, depending on the specific en-
gineering method, input data and examples are inserted into the template. Below we describe the prompt engineering
methods used in this study.

3.1. Simple instruction: Zero-shot, one-shot, few-shots prompts

LLMs acquire knowledge from text corpora during training, as outlined in [23]. The pre-training objective for
LLMs typically involves minimizing contextual word prediction errors on extensive corpora. However, achieving
an understanding of user intent and effectively following instructions represents a more intricate Natural Language
Understanding (NLU) task. This level of understanding does not automatically emerge as a result of scaling; rather,
it necessitates a deliberate alignment with user intent, as highlighted in [36].

Prompting with a simple instruction without any task demonstration leverages a LLM’s acquired NLU capabilities
and, to some extent, its internal knowledge to execute a specified task. We call this type of instruction only prompts
“zero-shot” prompts. Typically, a zero-shot prompt comprises a direct instruction. However, ICL performs well
when a prompt is combined with a task description and an example showing the execution of the described task.
ICL allows for an expansion in the number of examples within the constraints of the context window. This approach
enhances the model’s ability to execute tasks within a given context. In our zero-shot test setting, there is no task
description or any task demonstration incorporated into the prompt; instead it is only a simple direct instruction
followed by the input text and a signal phrase, i.e. Your answer. The signal phrase is included to demarcate the
conclusion of the prompt. The following example illustrates a zero-shot prompt.
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Extract knowledge triples from the text. Return the triples in JSON format.
Text: The Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe)
manufactured by the German automobile manufacturer Porsche. It is front-engined and
has a rear-wheel-drive layout, with all-wheel drive versions also available.
Your answer:

Then, we add task demonstration into the prompts, and name versions according to the number of examples used.
One-shot prompts have one canonical example along with the instruction. The example, ie. “Text: The Amazon River
flows through Brazil and Peru. {“Triples”: [[“Amazon River”, “country”, “Brazil”], [“Amazon River”, “country”,
“Peru”]]}” remains the same for all of the inputs. The following example illustrates a one-shot prompt.

Extract knowledge triples from the text. Return the triples in JSON format.
Here is an example.
Text: The Amazon River flows through Brazil and Peru.
Your answer: {“Triples”: [[“Amazon River”, “country”, “Brazil”], [“Amazon River”,
“country”, “Peru”]]}
Text: The Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe)
manufactured by the German automobile manufacturer Porsche. It is front-engined and
has a rear-wheel-drive layout, with all-wheel drive versions also available.
Your answer:

One-shot prompting with a fixed example provides a reference point to understand the intended task and output
format, and execute it accordingly. Few-shot prompts retain the same instruction and the first example, but the
number of examples is extended to three (canonical examples) for the few-shot test. Much like the one-shot setting,
these examples remain uniform across all data points. The following example displays a few-shots prompt.

Extract knowledge triples from the text. Return the triples in JSON format.
Here are a few examples.
Text: The Amazon River flows through Brazil and Peru.
Your answer: {“Triples”: [[“Amazon River”, “country”, “Brazil”], [“Amazon River”,
“country”, “Peru”]]}
Text: COVID-19 symptoms include fever, cough, and shortness of breath.
Your Answer: {“Triples”: [[“COVID-19”, “symptom”, “fever”], [“COVID-19”, “symptom”,
“cough”], [“COVID-19”, “symptom”, “shortness of breath”]]}
Text: The American Civil War took place from 1861 to 1865.
Your answer: {“Triples”: [[“American Civil War”, “start date”, “1861”],
[“American Civil War”, “end date”, “1865”]]}
Text: The Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe)
manufactured by the German automobile manufacturer Porsche. It is front-engined and
has a rear-wheel-drive layout, with all-wheel drive versions also available.
Your answer:

3.2. Selecting examples for task demonstration

LLMs shows significant capability in learning from the context within prompts, underscoring the importance
of incorporating relevant examples. One-shot and few-shot prompts exploit canonical examples that remains the
same for all of the input instances regardless of their relevance. However, using relevant examples contributes
ICL capabilities of LLMs. One notable advantage of ICL is its diminished dependence on extensive amounts of
annotated data. In scenarios such as our test setting, training data remains untapped. With a retrieval mechanism,
however, training data can be a valuable source for finding contextually relevant examples to input instances, as a
result of improving the performance of ICL.
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The retrieval of examples from the training set for a generation task can be facilitated through several search
mechanisms. The choice of a specific example retriever is non-trivial, as it significantly impacts the retrieved exam-
ples and their subsequent contribution to task execution. For our experiments, we employ a state-of-the-art example
retrieval mechanism based on maximal marginal relevance [34]. The Maximal Marginal Relevance (MMR) [4] ap-
proach selects exemplars that are both relevant as well as diverse. The underlying rationale for the selection of MMR
is reducing redundancy in the selected examples. Additionally, a diverse set of exemplars is more likely to showcase
complementary signal that is required to extract accurate triples from the input text.

All examples in the following prompt engineering methods are selected by the MMR example retriever [34].

3.2.1. Incorporating retrieved examples into the prompts
The ability of LLMs accessing to knowledge and precisely manipulating it remains limited. To address this limita-

tion, a differentiable access mechanism to explicit non-parametric memory can be employed. Retrieval Augmented
Generation (RAG) is a general-purpose fine-tuning recipe for LLMs which combines pre-trained parametric and
non-parametric memories for language generation [16]. The RAG formulation involves the convergence of key
components, namely a knowledge base/documents, an embedder, a retriever, and a generator. In this process, the
knowledge base undergoes an embedding operation facilitated by the embedder. Then, the retriever conducts search
on the embedded knowledge base and retrieves the context similar to the input query. Finally, the retrieved context
combined with the input is fed into the generation module.

Our approach does not apply RAG formulation directly but instead it augments prompt content by retrieving an
example/examples from a randomly selected subset of training data. For that, we randomly sample 300 instances
from training data. Test inputs and training sample for example retrieval are embedded using an open source state-
of-the-art instruction-finetuned text embedding model [25]. We distinguish this type of prompts which contains task
demonstrations selected by a retrieval mechanism from those with canonical examples, and call this type of prompts
RAG prompts. For example, an example retrieved by the MMR [34] gets incorporated into the prompt as the task
demonstration for one-shot RAG prompts, and three examples for few-shot RAG prompts. The following example
shows a one-shot RAG prompt.

Extract knowledge triples from the text.
Here is an example:
Text: Audi AG () is a German automobile manufacturer that designs, engineers,
produces, markets and distributes luxury vehicles. Audi is a subsidiary of
Volkswagen Group and has its roots at Ingolstadt, Bavaria, Germany. Audi
vehicles are produced in nine production facilities worldwide.
Your answer: {“Triples”: [[“Audi”, “Country”, “German”], [“Audi”, “Owned by”,
“Volkswagen Group”], [“Audi”, “Headquarters location”, “Ingolstadt”]]}
The example ends here.
Text: The Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe)
manufactured by the German automobile manufacturer Porsche. It is front-engined and
has a rear-wheel-drive layout, with all-wheel drive versions also available.
Your answer:

The difference between one-shot/few-shot and one-shot RAG/few-shot RAG prompts lays in the incorporation of
examples. The retrieving module dynamically selects the most relevant examples from the sample. The following
example displays the effectiveness of the retrieval module on a few-shots RAG prompt.

Extract knowledge triples from the text. Here are a few examples:
Text: Audi AG () is a German automobile manufacturer that designs, engineers,
produces, markets and distributes luxury vehicles. Audi is a subsidiary of
Volkswagen Group and has its roots at Ingolstadt, Bavaria, Germany. Audi vehicles
are produced in nine production facilities worldwide.
Your answer: {“Triples”: [[“Audi”, “Country”, “German”], [“Audi”, “Owned by”,
“Volkswagen Group”], [“Audi”, “Headquarters location”, “Ingolstadt”]]}
Text: Atlas V is an expendable launch system and the fifth major version in the
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Atlas rocket family. It was originally designed by Lockheed Martin, now being
operated by United Launch Alliance (ULA), a joint venture between Lockheed Martin
and Boeing. Atlas V is also a major NASA launch vehicle.
Your answer: {“Triples”: [[“Atlas V”, “Manufacturer”, “United Launch Alliance”]]}
Text: The main product lines from Altera were the Stratix, mid-range Arria, and
lower-cost Cyclone series system on a chip FPGAs, the MAX series complex program-
mable logic device and non-volatile FPGAs, Intel Quartus Prime design software,
and Enpirion PowerSoC DC-DC power solutions.
Your answer: {“Triples”: [[“FPGAs”, “Manufacturer”, “Altera”]]}
Examples end here.
Text: The Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe)
manufactured by the German automobile manufacturer Porsche. It is front-engined
and has a rear-wheel-drive layout, with all-wheel drive versions also available.
Your answer:

3.3. Chain-of-thought prompts

A chain of thought is a series of intermediate natural language reasoning steps that lead to the final output, this
approach is referred as chain-of-thought prompting (CoT). CoT prompting aims to enable LLMs’ complex rea-
soning capabilities through intermediate reasoning steps. Empirical evidence suggests that this technique facilitates
improved performance across diverse domains, including arithmetic problem-solving, commonsense reasoning, and
symbolic logic tasks. The efficacy of CoT prompting in enhancing the reasoning capabilities of LLMs is studied in
recent research [31].

The exploration of CoT prompting within the context of KE represents a novel strategy aimed at enhancing the
ability of LLMs in extracting structured information from text. The premise underpinning this methodology is that
by guiding LLMs to reason explicitly about entities, their respective types, and the relations between them, the
quality of the extracted knowledge triples may be improved.

In a zero-shot CoT setting, along with the direct instruction the task description of KE is also presented: “A
knowledge triple consists of three elements: subject – predicate – object. Subjects and objects are entities and the
predicate is the relation between them.” This can also be considered as a concept definition which is different from
a direct instruction: “Extract knowledge triples from the text”. Then, the LLM is instructed to “think step by step,”
thereby engaging in a sequential reasoning process without prior exposure to explicit examples. In one-shot and
few-shot settings, we only employ retrieved examples to demonstrate the execution of the task in three intermediate
steps since empirical evidence suggest that retrieved examples contributes to model performance more than fixed
canonical examples. These three steps are widely used in traditional KE pipelines, i.e., entity extraction, entity
typing, and relation extraction. RED-FM contains entity type annotation along with entities and relations. We use
a template to convert entity type annotation into natural language descriptions. An example of our CoT application
on KE is demonstrated below.

Your task is extracting knowledge triples from text. A knowledge triple consists
of three elements: subject – predicate – object. Subjects and objects are entities
and the predicate is the relation between them. Before extracting triples, let’s
think step by step.
Here is an example:
Text: Audi AG () is a German automobile manufacturer that designs, engineers,
produces, markets and distributes luxury vehicles. Audi is a subsidiary of
Volkswagen Group and has its roots at Ingolstadt, Bavaria, Germany. Audi vehicles
are produced in nine production facilities worldwide.
Let’s extract the entities first. Here is the list of the entities in this text:
[“Audi”, “German”, “automobile manufacturer”, “luxury vehicle”, “Volkswagen Group”,
“Ingolstadt”, “Bavaria”]
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What do you know about the entities?
[“Automobile manufacturer is a/an concept.”, “Luxury vehicle is a/an concept.”]
Now we think about the potential relations between these entities:
[“country”, “owned by”, “headquarters location”]
Now we can extract the triples:
[[“Audi”, “Country”, “German”], [“Audi”, “Owned by”, “Volkswagen Group”],
[“Audi”, “Headquarters location”, “Ingolstadt”]]
Example ends here.
Extract the triples from the following text thinking step by step.
Text: The Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe)
manufactured by the German automobile manufacturer Porsche. It is front-engined and
has a rear-wheel-drive layout, with all-wheel drive versions also available.
Your answer:

3.4. Self-consistency prompts

CoT’s initial implementations rely on naive greedy decoding, which does not account for exploring alternative
reasoning pathways or correcting misconceptions during the reasoning process. To improve upon this, the concept
of self-consistency prompting has been introduced [30]. Self-consistency prompting allows LLMs to consider mul-
tiple reasoning paths and offers a mechanism for identifying and correcting errors. This method aims to enhance the
decision-making process of LLMs by shifting from the original CoT’s simplistic decoding strategy to a more com-
prehensive reasoning approach. The advantages and implications of self-consistency prompting are further explored
in [30].

In the application of self-consistency prompting to KE, we enhance prompts by incorporating an additional layer
of reflection into the task execution sequence. In zero-shot setting, the following instruction is used: “First, think
about entities and relations that you want to extract from the text. Then, look at the potential triples. Think like a
domain expert and check the validity of the triples. Filter out the invalid triples. Return the valid triples in JSON
format.” In one-shot and few-shot settings, execution of the task is demonstrated on the retrieved examples.

The main distinction between CoT and the self-consistency prompts lies in the request for the creation of a
preliminary list for potential extractions and then critically evaluating this list. In one-shot/few-shot self-consistency
prompts, an erroneous triple in the drafts is deliberately included. Then, the incorrect triple is shown to the LLM,
accompanied by an explanation. The following example shows the full application of self-consistency prompting on
KE.

Your task is extracting knowledge triples from text.
A knowledge triple consists of three elements: subject – predicate – object.
Subjects and objects are entities and the predicate is the relation between them.
Let’s use an example:
Text: The Airbus A380 is a wide-body aircraft manufactured by Airbus. It is the
world’s largest passenger airliner. Let’s extract the entities first.
Here is the list of the entities in this text:
[“Airbus A380”, “380”, “wide-body aircraft”, “Airbus”]
What do you know about the entities?
[“380 is a/an number.”, “Wide-body aircraft is a/an concept.”]
Now we think about the potential relations between these entities:
[“manufacturer”]
Let’s make a draft of the triples.
[[“Airbus A380”, “manufacturer”, “Airbus”], [“380”, “manufacturer”, “Airbus”],
[“Wide-body aircraft”, “manufacturer”, “Airbus”]]
Now it is time to think and filter out incorrect triples if there is any.
The following triples seem to be incorrect:
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[[“Wide-body aircraft”, “manufacturer”, “Airbus”], [“380”, “manufacturer”, “Airbus”]].
Here is the reason why I think these triples are incorrect:
[“The relation – manufacturer – does not hold for Wide-body aircraft and Airbus.”,
“The relation – manufacturer – does not hold for 380 and Airbus.”] Therefore,
final triples should be:
[[“Airbus A380”, “manufacturer”, “Airbus”]]
Think like a domain expert and check the validity of the triples. Keep track of
your thinking as shown in the example and extract triples from the following text.
Text: The Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe)
manufactured by the German automobile manufacturer Porsche. It is front-engined and
has a rear-wheel-drive layout, with all-wheel drive versions also available.
Your answer:

3.5. Generated knowledge prompts

Generated knowledge prompting involves leveraging a language model to create knowledge, which is then used
as supplementary context when addressing a query. This methodology is noteworthy for its independence from task-
specific oversight during knowledge integration and its lack of reliance on a structured knowledge base. The appli-
cation of the generated knowledge prompting has been found to enhance the performance of large-scale, cutting-
edge models across a variety of commonsense reasoning tasks. Notably, this approach has attained leading results
on benchmarks encompassing numerical commonsense (NumerSense), general commonsense (CommonsenseQA
2.0), and scientific commonsense (QASC), indicating its effectiveness in strengthening model reasoning capabilities
in the absence of traditional knowledge sources [18].

The implementation of generated knowledge prompting for KE seeks to harness the parametric knowledge em-
bedded within LLMs regarding entities and their relationships prior to the actual extraction process. The premise
underpinning this methodology is that by using LLMs parametric knowledge about entities such as their type and
potential relations, the quality of the extracted knowledge triples may be improved. In our zero-shot setting, the
task sequence is augmented with instructions that includes the task description, directing LLM to first generate
knowledge concerning the entities mentioned in the text and any potential relations among them. This pre-generated
knowledge serves as a primer for the subsequent extraction of knowledge triples.

In one-shot and few-shot experiments, examples for task demonstration are selected by the retriever. The entity
type annotation from the dataset which is verbalized with the help of a template is utilized as the demonstration of
generated knowledge. The following example shows the full adaptation.

Your task is extracting knowledge triples from text.
A knowledge triple consists of three elements: <subject – predicate – object>.
Subjects and objects are entities and the predicate is the relation between them.
Before extracting triples, generate knowledge about the entities in the text and
potential relations between them.
Here is an example:
Text: Audi AG () is a German automobile manufacturer that designs, engineers,
produces, markets and distributes luxury vehicles. Audi is a subsidiary of
Volkswagen Group and has its roots at Ingolstadt, Bavaria, Germany. Audi vehicles
are produced in nine production facilities worldwide.
Knowledge:[“Automobile manufacturer is a/an
concept.”, “Luxury vehicle is a/an concept.”]
The following triples can be extracted considering the knowledge.
Triples: [[“Audi”, “Country”, “German”], [“Audi”, “Owned by”, “Volkswagen Group”],
[“Audi”, “Headquarters location”, “Ingolstadt”]]
The example ends here.
Generate knowledge as shown in the example and extract knowledge triples from
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the text.
Text: The Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe)
manufactured by the German automobile manufacturer Porsche. It is front-engined and
has a rear-wheel-drive layout, with all-wheel drive versions also available.
Your answer:

3.6. Reason and act prompts

Combining task-oriented actions with verbal reasoning, or inner speech, is a distinct feature of human intelli-
gence. It is believed that this capability play an important role in human cognition for enabling self-regulation or
strategization and maintaining a working memory [33]. Inspired from human intelligence, Yao et al. explore the use
of LLMs to generate both reasoning traces and task-specific actions in an combined manner, fostering a cooperative
dynamic between the two: Reasoning and Acting, or ReAct, prompt engineering method. ReAct involves generating
thoughts, action points, and observations iteratively until a task is completed, making it well-suited for interactive
agents. Unlike chain of thought and chain of thought with self-consistency algorithms, which do not involve user
interaction, ReAct engages users by breaking queries into intermediate steps and developing thoughts and action
plans in an interactive environment. This user involvement leads to more meaningful interactions, helping agents
achieve their goals and respond to user queries more satisfactorily.

Our experimental setup does not involve users, so our results do not fully capture the real potential of the ReAct
method. ReAct’s strength lies in its ability to generate thoughts, action points, and observations iteratively in an
interactive environment, engaging users throughout the process. Without user interaction, our evaluation may not
accurately reflect the method’s effectiveness in achieving goals and responding to queries in a more satisfactory
manner. However, we demonstrate how the ReAct method can be implemented in the context of knowledge ex-
traction. Despite the absence of user interaction in our experimental setup, we illustrate the method’s capability to
generate thoughts, action points, and observations iteratively.

The ReAct prompting method is applied to KE by incorporating additional instructions. After the task description,
LLM is asked to generate thoughts and make an action plan until knowledge triples are extracted. For one-shot and
few-shot experiments, the execution of the task is demonstrated to LLM on the retrieved example as below.

Your task is extracting knowledge triples from text.
A knowledge triple consists of three elements: subject – predicate – object.
Subjects and objects are entities and the predicate is the relation between them.
Let’s use an example:
Text: Audi AG () is a German automobile manufacturer that designs, engineers, pro-
duces, markets and distributes luxury vehicles. Audi is a subsidiary of Volkswagen
Group and has its roots at Ingolstadt, Bavaria, Germany. Audi vehicles are produced
in nine production facilities worldwide.
Thought 1: I need to determine the entities.
Act 1: Named entity extraction.
Observation 1: [“Audi”, “German”, “automobile manufacturer”, “luxury vehicle”,
“Volkswagen Group”, “Ingolstadt”, “Bavaria”]
Thought 2: What type of entities do I have?
Act 2: Named entity tagging
Observation 2: [“Automobile manufacturer is a/an concept.”, “Luxury vehicle is
a/an concept.”]
Thought 3: What are the potential relations between these entities?
Act3: List the potential relations
Observation3: [“country”, “owned by”, “headquarters location”]
Thought 4: What are the triples?
Act4: Form the triples
Observation4: [[“Audi”, “Country”, “German”], [“Audi”, “Owned by”, “Volkswagen
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Group”], [“Audi”, “Headquarters location”, “Ingolstadt”]]
Thought5: I have extracted knowledge triples from the input text.
Act5: Finish
Observation5: Task is completed.
Before answering a query, think and decide your act. Extract the knowledge triples
from the following text.
Text: The Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe)
manufactured by the German automobile manufacturer Porsche. It is front-engined and
has a rear-wheel-drive layout, with all-wheel drive versions also available.
Your answer:

4. Evaluation

Our proposed evaluation procedure is based on Wikidata and comprises two key steps. First, it is a prerequisite to
establish links between the components, i.e. subject-predicate-object, of each triple and their corresponding Wiki-
data identifiers. Subsequently, SPARQL queries are executed to acquire semantic information pertaining to entities
and relations. We scrutinize the alignment of entity types with the specified subject type restrictions (e.g. rdfs:do-
main) and the value type restrictions (e.g. rdfs:range) of the predicates. Conforming entity types and the domain
and range are taken as a semantic confirmation of the correctness of an extracted triple. In addition to assessing
correctness, the method also determines the novelty of extractions by verifying whether the extracted triples already
exist within Wikidata. This comprehensive evaluation methodology not only assesses the alignment with semantics
but also takes into account the novelty of the extracted triple within the broader knowledge base.

All SPARQL queries used for the evaluation can be found in Appendix A. A comprehensive example of the
resulting output of the evaluation process is provided in Appendix B.

4.1. Data

We utilize RED-FM, which stands for a Filtered and Multilingual Relation Extraction Dataset, as detailed by
Huguet Cabot et al., 2023 [10]. This dataset, refined through human review, encompasses 32 relations across seven
different languages and is designed to facilitate the assessment of multilingual RE systems. RED-FM derives its
content and structure from both Wikipedia and Wikidata [28]. The reader is referred to the original paper [10] for
further details about the dataset.

For the assessment of our selected prompt engineering methods, our focus is concentrated on the human-annotated
segment of the RED-FM dataset, specifically RED-FM, English. This subset contains a total of 3,770 data points.
Our evaluation process of the different prompting methods utilizes the designated test split, which includes 446
instances. Furthermore, to select examples for task demonstrations for one-shot and few-shot prompts, a random
selection of 300 instances has been extracted from the training section of the dataset. The chosen instances within
this sample serve as exemplars to illustrate the implementation of the tasks within the prompt.

4.2. LLMs

To evaluate the effectiveness of our chosen prompt engineering strategies, we put them to the test on three different
state-of-the-art LLMs: GPT-4, Mistral 7B, and Llama 3.

4.2.1. Mistral 7B
Mistral 7B [11] is a language model that has been engineered for superior performance and efficiency in NLP. It

is released under the Apache 2.0 license. The model architecture is based on a transformer architecture with seven
billion parameters. Mistral 7B introduces features like sliding window attention, rolling buffer cache, and pre-fill
and chunking to optimize its performance. Mistral 7B has a specialized variant called Mistral 7B – Instruct, which is
fine-tuned to follow instructions and outperforms several other models in benchmarks. We employ this specialized
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variant2 to test the selected prompt engineering methods. We run inference using LangChain HuggingFaceEndpoint
3 with the following parameters: Temperature 0.5, maximum number of new tokens 512.

4.2.2. Llama 3
Meta developed and released the Meta Llama 3 [1] family of large language models, comprising a collection of

pretrained and instruction-tuned generative text models in 8 and 70 billion parameter sizes – referred to as 8B and
70B respectively. Llama 3 is an auto-regressive language model that uses an optimized transformer architecture.
The tuned versions use supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF) [6]
to align with human preferences for helpfulness and safety. Both the 8 and 70B versions use Grouped-Query Atten-
tion (GQA) for improved inference scalability. Llama 3 is a gated model, requiring users to request access and it is
released under the Meta Llama 3 Community License Agreement. For our experiments with Llama 3, we use 8B In-
struct model4 and run inference via LangChain HuggingFaceEndpoint with the following parameters: Temperature
0.5, maximum number of new tokens 512.

4.2.3. GPT-4
GPT-4 [22], the latest iteration in the Generative Pre-trained Transformer series, represents a significant advance-

ment in large-scale, multimodal artificial intelligence models. It is important to note that GPT-4 is a proprietary
technology, with access provided exclusively via an API. Regarding the performance of the model, it is reported
that GPT-4 is capable of showing human-level performance on par with the top 10% of test takers in a simulated bar
exam [22]. As its antecedents, it is pre-trained to predict the next token in a document using both publicly available
data, i.e., internet data, and data licensed from third-party providers. The model is then finetuned using Reinforce-
ment Learning from Human Feedback (RLHF) [6]. OpenAI (2023) [22] reports improved performance on measures
of factuality and adherence to desired behavior after the post-training alignment process. For the experiments, we
use OpenAI API. The temperature of the model is set to 0.5, and maximum number of tokens to 2000.

4.3. Parsing extracted triples

In this study, we observed that extracted triples can be presented in various formats, including lists of lists, lists of
dictionaries, enumerated dictionaries, enumerated lists, enumerated strings with a separator (e.g., “-”), enumerated
lists of tuples, JSON strings, and dictionaries of triples. The format variability necessitates a robust post-processing
approach, as the outcomes may differ based on the method employed.

Our post-processing approach is designed to parse all extracted triples effectively. We operate under two key
assumptions:

1. Direct Structure Assumption: We assume that the generated text inherently represents a structured format.
Consequently, we attempt to load it directly. The possible structures include:

(a) List of lists
(b) List of dictionaries
(c) A dictionary where each key corresponds to a list of dictionaries (triple dictionary)
(d) JSON string

2. Mixed Content Assumption: We assume that the generated text may contain the structure intermixed with
explanatory content or be presented as enumerated items. To address this, we employ regular expressions to
extract the structured data before attempting to load it. This extraction process accounts for various shapes,
including enumerated items such as lists, dictionaries, and tuples.

This dual-assumption approach ensures comprehensive parsing of the generated text, accommodating a wide
range of formats and improving the reliability of our post-processing results.

2https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
3https://python.langchain.com/v0.2/docs/integrations/llms/huggingface_endpoint/
4https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3 
https://python.langchain.com/v0.2/docs/integrations/llms/huggingface_endpoint/
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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4.4. Wikidata as reference

Wikidata operates as the structured data counterpart of Wikipedia, serving as a collaborative platform where users
collectively curate and manage a knowledge graph. Knowledge within Wikidata is systematically transformed into
a Semantic Web representation, ensuring that it adheres to standards suitable for integration and interoperability
across various web technologies [28]. The test dataset employed in this research is sourced from Wikipedia and
Wikidata, including the Wikidata identifiers of the entities and relations. While the dataset is structured to align
with the specific entities and relations identified in RED-FM, inputs may semantically contain a variety of triples
such as event triples, as exemplified in Fig. 1, that do not fall into RED-FM schema. This implies that the input text
could potentially feature extraneous relations, not explicitly captured or categorized by the RED-FM framework.
This creates an environment that includes entities and relationships outside the defined scope of the target triples in
RED-FM.

The evaluation protocol used in this study involves a post-processing phase for the responses produced by the
LLM in response to the prompts. As detailed in Section 4.1, these responses are parsed to identify segments that cor-
respond to linearized triples by using Python’s JSON and REGEX (regular expressions) modules. These segments
are then transformed into lists that organize the data into distinct triples, each comprising a subject, a predicate, and
an object. After the parsing phase, each component of the triple is validated against Wikidata through an API call,
employing a greedy keyword search methodology for the purpose of entity linking. Entity linking is a prerequisite
for the implementation of our evaluation framework. Upon successful linking of a triple’s subject, predicate, and
object to their respective Wikidata counterparts, a SPARQL “ASK” query is executed. This query serves to ascertain
the existence of the triple within Wikidata. If the query returns True, it validates the LLM’s output as a factual piece
of knowledge. In cases that the query returns False, it indicates a novel extraction that may be added to Wikidata.

4.5. Ontology-based triple assessment

To navigate the challenges of open extraction and the expressiveness of LLMs, this study introduces an ontology-
based method for assessment of the extracted triples. Ontology based triple assessment aims to reduce dependence
on human evaluation. By leveraging the underlying data semantics and property restrictions present in Wikidata, it
is possible to automate the validation process for the extracted triples.

The evaluation process starts by querying Wikidata for predicates to obtain their domain, identified by the subject
type constraint (Q21503250), and range, identified by the value-type constraint (Q21510865). Additionally, type
information for entities is extracted from Wikidata up to four hierarchical levels using the instance of (P31) and
subclass of (P279) properties. The method then checks whether the predicate’s domain and range align with the
subject’s and object’s types at any level of the extracted hierarchy. This verification ensures that the subject and
object types are consistent with the properties of the predicate according to Wikidata constraints. Figure 2 illustrates
the assesment of the following triple: “Porsche Panamera”, “manufacturer”, “Porsche”. The first step is checking
Wikidata to find corresponding Wikidata identifiers for the triple components. In this case, all components of this
triples have a Wikidata identifier: “Q501349”, “P176”, “Q40993”. Then, we query Wikidata to check whether the
predicate “P176” has a defined domain and range. “P176” is a well-defined predicate that has both domain and
range restrictions.

In a triple where the predicate is “P176”, the subject should be a member of one of the following classes:
“software”: “Q7397”, “physical object”: “Q223557”, “model series”: “Q811701”, “concrete object”: “Q4406616”,
“product model”: “Q10929058”. Additionally, the object of the triple should be a member of one of the follow-
ing classes: “human”: “Q5”, “animal”: “Q729”, “profession”: “Q28640”, “organization”: “Q43229”, “factory”:
“Q83405”, “fictional character”: “Q95074”, “industry”: “Q268592”, “artisan”: “Q1294787”, “group of fictional
characters”: “Q14514600”. The third step is checking the subject and object types up to the fourth level in depth, then
comparing those classes with the domain and range of the predicate. The subject “Porsche Panamera”: “Q501349” is
a “Model Series”: “Q811701” that aligns with the domain of the predicate “P176”. The property path to “Model Se-
ries”: “Q811701” is a follows: “Automobile Model Series”: “Q59773381” » “Vehicle Model Series”: “Q29048319”
» “Model Series”: “Q811701”. The object “Porsche”: “Q40993” is an “Organization”: “Q43229” that aligns with
the range of the predicate. The property path to “Organization”: “Q43229” is as folows: “Racecar Constructor”:
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Fig. 2. An example of ontology based triple assessment.

“Q15648574” » “Organization”: “Q43229”. According to our ontology based evaluation framework, this extraction
is deemed correct.

5. Results

This study examines the effectiveness of diverse prompting strategies applied to the RED-FM dataset, focus-
ing on the correctness, novelty, and alignment with an ontology of extracted triples. Seventeen distinct prompt
templates generated by employing five prompting methods with distinct task demonstration strategies are systemat-
ically adapted to KE and tested on Mistral 7B, Llama 3, and GPT-4 using a test set comprising 446 instances. All
the applied prompting methods are listed in Table 1. The table categorizes these methods based on the prompt type
as we name them, and provides details on the task demonstration approach, methodological strategy, and specific in-
structions used for each method. Each method contains specific instructions provided to guide LLMs in performing
the KE task. These instructions outline the steps and considerations necessary for executing the task effectively, tai-
lored to the methodology and approach of each prompting method. The table serves as a consolidated summary and
comparison of the different prompting methods explored in our research. Effectiveness of each prompting method
is measured through the extraction of triples. Our evaluation protocol contains following assessments:

1. Standard evaluation metrics, i.e. precision, recall, F1 score in reference to RED-FM gold standards.
2. Alignment with Wikidata ontology.
3. Additional analysis of ontological alignment such as entity and predicate linking rates in reference to Wikidata

and ontological alignment level where we check domain and range matches.
4. Novelty analysis where we check whether extracted triples are novel or already in Wikidata.

The results section includes several detailed tables. The primary table, Table 2, identifies the most effective
prompting method. Additionally, Table 3 presents an ontology-based assessment of the extracted triples, focusing
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Table 1

Summary of tested prompting methods

Prompt Type Demonstration Method Instruction

0-shot 0 task demonstration Direct instruction “Extract knowledge triples from the text.
Return the triples in JSON format.”

1-shot 1 canonical example Direct instruction Same as 0-shot

Few-shot 3 canonical examples Direct instruction Same as 0-shot

RAG 1-shot 1 retrieved example Direct instruction Same as 0-shot

RAG few-shot 3 retrieved examples Direct instruction Same as 0-shot

CoT 0-shot 0 task demonstration Chain of Thought “Your task is extracting knowledge triples
from text. A knowledge triple consists of three
elements: subject – predicate – object.
Subjects and objects are entities and the
predicate is the relation between them. Before
extracting triples, let’s think step by step.”

CoT 1-shot 1 retrieved example Chain of Thought Same as CoT 0-shot

CoT few-shot 3 retrieved examples Chain of Thought Same as CoT 0-shot

Self-cons 0-shot 0 task demonstration Chain of thought with self-consistency “Your task is extracting knowledge triples
from text. A knowledge triple consists of three
elements: subject – predicate – object.
Subjects and objects are entities and the
predicate is the relation between them. First,
think about entities and relations that you want
to extract from the text. Then, look at the
potential triples. Think like a domain expert
and check the validity of the triples. Filter out
the invalid triples. Return the valid triples in
JSON format.”

Self-cons 1-shot 1 retrieved example Chain of Thought with Self-consistency Same as Self-cons 0-shot

Self-cons few-shot 3 retrieved examples Chain of Thought with Self-consistency Same as Self-cons 0-shot

GenKnow 0-shot 0 task demonstration Generated Knowledge “Your task is extracting knowledge triples
from text. A knowledge triple consists of three
elements: subject – predicate – object. Subjects
and objects are entities and the predicate is the
relation between them. First, generate
knowledge about the entities in the text and
potential relations between them. Then, extract
the triples. Return the triples in JSON format.”

GenKnow 1-shot 1 retrieved example Generated Knowledge Same as GenKnow 0-shot

GenKnow few-shot 3 retrieved examples Generated Knowledge Same as GenKnow 0-shot

ReAct 0-shot 0 task demonstration Reasoning and Acting “Your task is extracting knowledge triples
from text. A knowledge triple consists of three
elements: subject – predicate – object.
Subjects and objects are entities and the
predicate is the relation between them.
Generate thoughts and make an action plan for
each step until you extract the knowledge
triples from the following text. Return the
triples in JSON format.”

ReAct 1-shot 1 retrieved example Reasoning and Acting Same as ReAct 0-shot

ReAct few-shot 3 retrieved examples Reasoning and Acting Same as ReAct 0-shot
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Table 2

Comparing prompting methods across LLMs

Mistral – 7B – Instruct Llama 3 – 8B – Instruct GPT-4

Prompt type F1 Score Domain &
Range

Statement
Match

F1 Score Domain &
Range

Statement
Match

F1 Score Domain &
Range

Statement
Match

0-shot 0.00 0.43 0.14 0.00 0.24 0.07 0.00 0.48 0.15

1-shot 0.04 0.48 0.18 0.03 0.44 0.14 0.02 0.53 0.14

Few-shot 0.04 0.50 0.18 0.03 0.52 0.19 0.03 0.56 0.16

RAG 1-shot 0.09 0.56 0.25 0.08 0.48 0.17 0.07 0.60 0.27

RAG few-shot 0.10 0.61 0.28 0.10 0.47 0.19 0.11 0.61 0.29

CoT 0-shot 0.00 0.36 0.15 0.00 0.29 0.07 0.00 0.34 0.09

CoT 1-shot 0.06 0.50 0.20 0.07 0.47 0.18 0.05 0.54 0.21

CoT few-shot 0.06 0.49 0.19 0.05 0.46 0.16 0.06 0.50 0.22

Self-cons 0-shot 0.00 0.36 0.12 0.00 0.24 0.06 0.00 0.44 0.15

Self-cons 1-shot 0.06 0.39 0.17 0.07 0.41 0.16 0.04 0.46 0.18

Self-cons few-shot 0.07 0.46 0.18 0.03 0.44 0.12 0.06 0.51 0.18

GenKnow 0-shot 0.00 0.39 0.12 0.00 0.22 0.05 0.00 0.46 0.12

GenKnow 1-shot 0.07 0.54 0.22 0.05 0.43 0.16 0.04 0.54 0.23

GenKnow few-shot 0.07 0.53 0.22 0.06 0.52 0.20 0.09 0.61 0.26

ReAct 0-shot 0.00 0.47 0.11 0.00 0.32 0.08 0.00 0.46 0.12

ReAct 1-shot 0.04 0.43 0.14 0.04 0.45 0.17 0.04 0.50 0.19

ReAct few-shot 0.06 0.48 0.21 0.04 0.40 0.14 0.07 0.50 0.23

on the performance of Mistral 7B while the assessments for GPT-4 and Llama 3 are available in the Appendix C.
Table 5 offers a comprehensive novelty analysis of the extracted triples for GPT-4 with similar analyses for the other
two models found in the Appendix C. There is also a table detailing the analysis of extracted entities and relations for
Llama 3 with corresponding details for the other two models in the Appendix C. Furthermore, the section includes
Fig. 3 analyzing the ontological alignment levels, with supplementary data for the other two models provided in the
Appendix C. Finally, a summary chart, Fig. 4 encapsulates all analyses for the best performing prompting method.

5.1. Comparing prompting methods across LLMs

Table 2 encapsulates the major outcomes of our experiments where we try to answer which prompt engineering
method performs the best for KE from text. The first column denotes the abbreviation of the applied prompting
strategy. For each of the three LLMs, the table reports the performance metrics for all the prompt engineering
methods summarized in Table 1. The highest scores in each column are highlighted in bold font. The table includes
the following metrics for each prompting method: F1 Score, Domain & Range Match, and Statement Match.

F1 Score: This metric is calculated in reference to RED-FM target triples.
Domain & Range Match: This column indicates the percentage of extracted triples that have a matching domain
and range according to our ontology-based assessment.
Statement Match: This column represents the percentage of triples that are already present in Wikidata as
statements.

Key observations from the table reveal that all tested LLMs perform poorly on the task when evaluated against
the target triples annotated in the RED-FM test set, with the highest F1 score recorded at 0.11. However, the F1
score alone does not sufficiently indicate the quality of the extraction because of the language variation comes with
generative language models in open information extraction setting as discussed in detail in previous sections and
illustrated in Fig. 1. The Domain & Range Match and Statement Match metrics indicate the ontological alignment of
the extraction with reference to Wikidata, providing insights into the quality and correctness of the extraction. These
two metrics display more variation than the F1 score, offering deeper insights into the efficacy of the implemented
prompting strategy.
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Table 3

Ontology based triple assessment results of Mistral 7B

Prompt type Number of
extracted triples

Triples with a
well-defined

predicate

Triples with a
well-defined

predicate and both
entity types known

Domain & Range
matching triples

Nr % Nr % Nr %

0-shot 2284 400 0.18 182 0.46 78 0.43

1-shot 5047 1300 0.26 941 0.72 454 0.48

Few-shot 4018 1162 0.29 853 0.73 428 0.50

RAG 1-shot 2839 924 0.33 727 0.79 406 0.56

RAG few-shot 2498 813 0.33 656 0.81 398 0.61

CoT 0-shot 3078 432 0.17 185 0.43 67 0.36

CoT 1-shot 3739 972 0.26 727 0.75 367 0.50

CoT few-shot 3532 952 0.27 672 0.71 331 0.49

Self-cons 0-shot 3022 501 0.18 276 0.55 99 0.36

Self-cons 1-shot 4801 1406 0.29 1043 0.74 405 0.39

Self-cons few-shot 4231 1224 0.29 924 0.75 422 0.46

GenKnow 0-shot 2696 493 0.18 267 0.54 103 0.39

GenKnow 1-shot 3633 979 0.27 735 0.75 396 0.54

GenKnow few-shot 3531 971 0.30 741 0.76 392 0.53

ReAct 0-shot 2223 282 0.18 120 0.43 56 0.47

ReAct 1-shot 3684 918 0.25 605 0.66 263 0.43

ReAct few-shot 3599 822 0.27 597 0.73 287 0.48

Incorporating task demonstrations consistently improves performance, particularly for the Domain & Range
Match and Statement Match metrics. The best performing prompt is task demonstrations selected by a retrieval
mechanism (RAG few-shot), which achieves the highest F1 scores and Statement Match rates across a majority of
models, indicating superior extraction with this method. Notably, Domain & Range Match scores show an improve-
ment of +0.5 for Mistral 7B and +0.1 for GPT-4, although Llama 3’s performance on this metric is negatively
impacted by the addition of retrieved examples. Llama 3 seems to benefit more from canonical examples as it is
reflected on Domain & Range, and Statement Match metrics. The Self-Consistency and Generated Knowledge meth-
ods show significant improvements across all metrics when task demonstrations are incorporated into the prompts,
particularly Llama 3. However, these methods exhibit moderate improvements or some degradation in few-shot sce-
narios, as seen in the performance of Mistral 7B with Generated Knowledge or Llama 3 with Reasoning and Acting
prompts in the Domain & Range Match metric. Finally, Reasoning and Acting prompting demonstrate competitive
performance with Chain of Thought or Self consistency methods in one-shot and few-shot approaches compared to
zero-shot scenarios.

5.2. Ontological alignment

Ontologies serve as the backbone of knowledge representation within knowledge graphs, providing a structured
framework that delineates the classes, properties, and interrelationships of the included information [8]. Taking this
into account, an extensive analysis of the extracted triples, entities and relations is undertaken. The methodology
employed harnesses the hierarchical structure of Wikidata, examining entity types up to the fourth level in depth.
Domain and range specifications of relations are also taken into account to ascertain their designated function within
the knowledge graph.

The findings, detailed in Table 3, encapsulate the major outcomes of our ontology-based assessment for the
extraction performed by Mistral 7B. Results for the other two LLMs can be found in Appendix C as in Table 6
and Table 7. These models demonstrate comparable trends. Notably, both GPT-4 and Mistral achieve a Domain
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& Range matching rate of 0.61. Upon examination of the aggregate results, GPT-4 exhibits a marginally superior
performance. However, for the purpose of demonstrating overall ontology-based triple assessment results, we have
opted to focus on Mistral 7B.

The initial column in Table 3, Number of extracted triples enumerates the total count of extracted triples by
Mistral 7B for each prompting strategy, computed across the 446 test instances. The second column Triples with
a well-defined predicate denotes the quantity of triples linked to Wikidata and featuring a well-defined predicate,
i.e. rdfs:domain and rdfs:range. The third column articulates the proportion of such triples relative to the overall
extracted set. Additionally, the table includes further details to provide a comprehensive overview. The fourth and
fifth columns Triples with a well-defined predicate and both entity types known detail the number of triples with a
well-defined predicate and both subject and object are also linked to Wikidata, as well as the percentage relative to
the total triples with a well-defined predicate. The last two columns Domain and Range matching triples provide
insights into the alignment between the well-defined predicates and the types of entities which form the triple under
assessment. Specifically, the seventh column details the number of triples where the type of the subject matches the
domain of the predicate, and the range of the predicate aligns with the type of the object. The last column presents
the percentage of such domain and range-matched triples relative to all triples with a well-defined predicate. These
statistics offer a refined evaluation of the semantic coherence and structural alignment within the extracted triples.

Analyzing Table 3 consolidates our analyses in Table 2. Consistent lowest performance of zero-shot prompts em-
phasizes the challenges in generating accurate extractions without specific task demonstrations. Zero-shot prompts
are designed to consist solely of a brief directive, instructing the model to extract knowledge triples from the text.
Interestingly, empirical findings indicate that this minimalist prompting approach yields performance comparable
to that of the Self-consistency method, which employs a more intricate strategy of generating multiple outputs and
selecting the most consistent answer. Moreover, this direct zero-shot technique demonstrates a performance advan-
tage, outpacing other zero-shot methods by 4-6% in Domain & Range Match. These alternative methods, such as
Chain of Thought (CoT), Self consistency (Self-cons), and Generated Knowledge (GenKnow) incorporate addi-
tional context or steps to guide the language model. The effectiveness of the straightforward instruction employed
in the zero-shot prompt underscores the capability of advanced language models to execute tasks with minimal
instructions.

In-context Learning (ICL) leverages the concept of learning by demonstration. This phenomenon enables LLMs
to adjust their generated responses to align with the demonstrated examples, emulating the showcased task-specific
behavior [14]. Our experimental results supports the phenomena since the introduction of task demonstrations into
the prompts significantly enhances performance, with a notable increase, i.e. from 36% (CoT 0-shot) up to 50%
(CoT 1-shot), compared to the zero-shot approaches as shown in Table 3. Incorporating a single canonical example
notably elevates the model’s performance, evidenced by an increase from a baseline of 0.43 to an enhanced measure
of 0.48. However, incorporating an additional pair of canonical examples within a few-shot learning scenario yields a
marginal enhancement in model performance, indicated by a mere 2% increment. The marginal impact of additional
examples suggests a saturation point in the model’s ability to benefit from increased prompt complexity, in some
cases adding more examples negatively impacts the performance as reflected on the results of Chain of Thought and
Generated Knowledge prompts.

The selection of demonstration examples in ICL is important due to several reasons that influence the performance
of the model. The examples prime the model with an indication of what the task entails. Following the incorporation
of examples retrieved from the training sample, observed decrease in the number of extracted triples, e.g, from 2839
to 2498 in Table 3 while F1 score is increasing in RAG few-shot prompts may suggest that the selected examples are
influencing the extraction process. This could potentially indicate a refinement in the model’s focus or an alignment
of its extraction criteria more closely with the characteristics of the provided examples, consequently impacting the
volume of extracted triples. The reported decrease in the total amount of extracted triples, coupled with the observed
increase in triples conforming to the Wikidata ontology (Domain&Range match), implies a qualitative enhancement
in the extraction method subsequent to the incorporation of the retrieved examples.

Intriguingly, the adaption of prompting methods such as Chain-of-Thought (CoT), Self-consistency, and Reason-
ing and Acting (ReAct), devised to improve model’s reasoning aptitude does not appear to yield any substantial
enhancements in the performance of open knowledge triple extraction. This pattern intimates that the integration
of reasoning-focused cues within the prompts does not markedly improve the model’s proficiency in formulating
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Table 4

Analysis of entities and relations extracted by Llama 3

Prompt type Entity Analysis Relation Analysis

All Linked All Linked has Domain&Range

Nr Nr % Nr Nr % Nr %

0-shot 3815 1824 0.48 1604 479 0.30 192 0.40

1-shot 4123 2368 0.57 1562 538 0.34 226 0.42

Few-shot 4582 2639 0.58 1728 482 0.28 210 0.44

RAG 1-shot 4311 3185 0.74 1303 669 0.51 298 0.45

RAG few-shot 3598 2809 0.78 1043 577 0.55 243 0.42

CoT 0-shot 8865 2572 0.29 1574 496 0.32 228 0.46

CoT 1-shot 4176 2746 0.66 1627 668 0.41 305 0.46

CoT few-shot 4307 306 0.70 1579 647 0.41 287 0.44

Self-cons 0-shot 6191 2496 0.40 2030 569 0.28 247 0.43

Self-cons 1-shot 4733 2666 0.56 1991 610 0.31 272 0.45

Self-cons few-shot 4189 2183 0.52 1770 526 0.30 242 0.46

GenKnow 0-shot 4521 2369 0.52 1806 559 0.31 240 0.43

GenKnow 1-shot 3464 2266 0.65 1318 555 0.42 252 0.45

GenKnow few-shot 3839 2649 0.69 1296 546 0.42 242 0.44

ReAct 0-shot 2339 1260 0.54 1090 323 0.30 134 0.41

ReAct 1-shot 4240 2269 0.54 1844 657 0.36 298 0.45

ReAct few-shot 4693 2557 0.54 2025 652 0.32 293 0.45

correct responses or tackling intricate problems within the examined experimental framework. However, it can be
argued that reasoning about entity types may assist humans in extracting more accurate triples from text.

When examining the efficacy of these three reasoning-oriented prompting methods individually, it is noted that
their performance metrics cluster within a similar range. Across the methods tested, there is no recognizable perfor-
mance gap substantial enough to distinguish any single method as being superior. This lack of significant differenti-
ation in performance further reinforces the findings that, within the experimental parameters set for open knowledge
triple extraction, reasoning-enhanced prompting does not markedly benefit the model’s output.

5.2.1. Analysis of extracted entities and relations
The evaluation process for the extracted triples is anchored in the semantics delineated by the Wikidata ontology.

A focus on semantic integrity is prevalent for confirming the ontological agreement of the extracted data with the
structure of Wikidata. Additionally, we postulate that looking into unique extractions is indicative to understand the
quality of the extraction and the efficacy of the implemented prompting strategy. In addition to the results presented
in Table 3, we look into the entities and relations extracted through studied prompting strategies in Table 4, that
is offering a deeper perspective on the effect of applied prompt engineering method on the performance of the
extraction regarding the alignment with Wikidata.

The entity analysis section in Table 4 displays the total number of unique entities extracted by Llama 3, those
successfully linked to Wikidata, and the percentage of linked entities relative to the overall extractions. Analysis of
entities and relations extracted by GPT-4 and Mistral 7B can found in Appendix C as they are presented in Table 10
and Table 11. These two models demonstrate trends similar to Llama 3. However, for the purpose of displaying
overall entity and relation linking analysis, we have opted to focus on Llama 3 due to its superior performance in
relation linking rate. The relation analysis segment of Table 4 shows the total count of unique relations extracted,
the subset successfully linked to Wikidata, and the corresponding percentages. Moreover, it assesses the presence
of domain and range restrictions within the linked relations, providing a deeper understanding of the availability of
data semantics.

Table 4 provides insights into the linking rates of entities and relations. Compared to relations, entities demon-
strate higher linking rates in all prompting methods. Linking rate reaches up to 78% for the RAG prompts in the
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Fig. 3. Analysis of domain & range matching levels of Mistral 7B.

few-shots setting. Relations, however, exhibit a significantly lower linking rate, capped at 55% again for the RAG
prompts in the few-shots setting. Furthermore, the statistics show that only 40 to 46% of linked predicates are
actually well-defined in Wikidata, highlighting potential areas for improvement.

5.2.2. Matching level
Another aspect that we investigate for a deeper understanding of ontological alignment of extractions is the Do-

main & Range matching level. The studies presented in Fig. 3 detail the distribution of domain and range matching
levels for each prompting method. We have opted to focus on Mistral 7B in this section to ensure consistency and
facilitate easier comparison, as we previously showed the Domain & Range match rate in Table 3. The Domain &
Range matching level analyses for the other two models exhibit similar trends and can be found in Appendix C,
specifically in Fig. 5 and Fig. 6.

The matching levels include 0-Hop (direct match), 1-Hop (match one level above), 2-Hop (match two levels
above), and 3-Hop (match three levels above). These levels provide insights into the depth of semantic alignment
between entities and predicates. The majority of matches occurs on the upper levels, particularly on the 3-hops that
corresponds to the 4th level, underscores the necessity of using different levels of granularity and hierarchy in an
ontology.

5.3. Novelty of the extraction

Our empirical results suggest that LLMs possess the capability to mine novel information in the form of knowl-
edge triples from Wikipedia text, which align with the existing schema of the Wikidata ontology. These novel
extractions represent the potential for improving knowledge graphs in terms of comprehensiveness. The novelty
evaluation, presented in Table 5, also provides a comprehensive overview of the extracted triples by GPT-4 and
their alignment with Wikidata. The other two novelty evaluations show similar trends and can found in Appendix C
as they are presented in Table 8 and Table 9. We have chosen to present the results of GPT-4 in this section because
it yields the highest percentage of triples (26%) that are already in Wikidata, with Mistral 7B closely following with
a mere 1% difference.

The structure of Table 5 follows a similar pattern with Table 3. Triples linked to Wikidata columns highlights
the number of triples with all components linked to Wikidata, and the percentage compared to the total extractions.
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Table 5

Assessing novelty of the extraction of GPT-4

Prompt type Triples linked to Wikidata Triples already in Wikidata Novel Triples

Nr % Nr % Nr %

0-shot 470 0.13 72 0.15 398 0.85

1-shot 1273 0.33 183 0.14 1090 0.86

Few-shot 1150 0.40 188 0.16 962 0.84

RAG 0-shot 1357 0.40 361 0.27 996 0.73

RAG few-shot 1515 0.52 436 0.29 1079 0.71

CoT 0-shot 420 0.11 37 0.09 383 0.91

CoT 1-shot 1420 0.42 293 0.21 1127 0.79

CoT few-shot 1324 0.49 293 0.22 1031 0.78

Self-cons 0-shot 508 0.15 75 0.15 433 0.85

Self-cons 1-shot 1510 0.45 279 0.18 1231 0.82

Self-cons few-shot 1536 0.54 281 0.18 1255 0.82

GenKnow 0-shot 426 0.12 51 0.12 375 0.88

GenKnow 1-shot 1322 0.40 306 0.23 1016 0.77

GenKnow few-shot 1462 0.49 373 0.26 1089 0.74

ReAct 0-shot 432 0.14 53 0.12 379 0.87

ReAct 1-shot 1290 0.44 251 0.19 1039 0.81

ReAct few-shot 1208 0.52 273 0.23 935 0.77

Triples already in Wikidata columns provides the count and percentage of the triples that already exist in Wikidata
as statements, obtained through SPARQL “ASK” queries, this metric is also referred as Stament Match in Table 2.
The central point of interest is the last two columns Novel Triples, showcasing the number of extracted triples
whose components are all linked to Wikidata but are not present in Wikidata as a statement. This number reflects
the LLM’s capability to extract novel triples that could contribute to completion of knowledge graphs like Wikidata.
These novel triples represent potential additions to the existing knowledge graphs.

Examining Table 5, it becomes evident that the LLM demonstrates the capacity to extract a substantial amount of
triples that can easily be linked to Wikidata. A significant proportion of the extracted triples, i.e. ranging between
40% to 54% in few-shot settings, can be easily linked to Wikidata. It is particularly notable that within this subset
of triples, maximum 29% is already present in Wikidata. The novel extractions present an opportunity to expand
the knowledge graph. From the extraction quality perspective, it can also be argued that a higher Statement Match
(Triples already in Wikidata) score may indicate superior extraction capabilities. This is because a higher Statement
Match score suggests that the model can generate triples that closely resemble those already present in Wikidata.
The ability to produce such similar triples implies that the model effectively captures the structure and semantic
relationships inherent in the data. Consequently, a higher Statement Match score reflects the model’s proficiency in
accurately replicating the factual information found in a reliable and comprehensive knowledge base like Wikidata.
This metric, therefore, may serve as an indicator of the model’s overall extraction quality and its effectiveness in
generating precise and contextually relevant information.

5.4. Reviewing the best performing prompt method

Among the all tested prompt engineering methods and LLMs, RAG (Retrieval Augmented Generation) few-shot
emerges as the most effective strategy, achieving an F1 score of 0.11 by GPT-4, closely followed by Mistral 7B and
Llama 3 with an F1 score of 0.10. Precision and recall scores can be found in Appendix C as they are presented in
Table 12.

Figure 4 summarizes all evaluation metrics obtained by employing RAG few-shot prompting on Mistral 7B,
Llama 3, and GPT-4. Each metric reflects a different aspect of the models’ performance in the task of knowledge
triple extraction. Linked Entities measures the proportion of entities linked to an entry in Wikidata. Mistral achieves a
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Fig. 4. Reviewing RAG few-shot evaluation results.

score of 0.80, Llama 3 scores 0.78, and GPT-4 scores 0.75. Linked Predicates measures the proportion of predicates
linked to entries in Wikidata. Mistral scores 0.46, Llama 3 scores 0.55, and GPT-4 scores 0.48. Statement Match
measures how well the extracted triples match the statements in Wikidata. Mistral has a statement match score
of 0.28, Llama 3 scores 0.19, and GPT-4 scores 0.29. Domain & Range Match measures how well the extracted
triples match the expected domain and range of the predicates. Mistral and GPT-4 both score 0.61, while Llama 3
scores 0.47. In summary, GPT-4 generally performs better in terms of F1 score and Statement Match, while Mistral
performs better in precision, Linked Entities and Domain & Range Match. Llama 3 shows relatively higher recall
and Linked Predicates.

6. Discussion

Our investigation into prompt engineering methods for knowledge extraction from text has yielded several salient
outcomes. First, it is feasible to evaluate extracted triples in reference to a knowledge graph which has an ontology
such as Wikidata. A prerequisite for this evaluation is entity and relation linking, and a simple keyword-search-based
linking approach proved effective, allowing us to connect up to 80% of the extracted entities and 55% of relations
to Wikidata. This linking process also revealed that, although half of the linked relations are well-defined within
Wikidata, a significant portion lacks precise specifications.

Despite the feasibility of this type of evaluation, there are some concerns that we must take into account. The
Wikidata ontology is dynamic, and minor user edits in top-level classes or metaclasses could significantly affect
instance data. Therefore, we perform the complete evaluation within a short, well-documented time frame to ensure
that potential ontology edits during the evaluation process have minimal or no effect on the results. Additionally,
using Wikidata as a ground truth has certain shortcomings because the Wikidata ontology can be quite noisy and
prone to various types of errors [2]. Morover, the entity and property linking performed in this work is relatively
rudimentary and has several limitations such as linking errors. Our method sometimes fails to find a match when one
exists (false negatives) or links to the wrong entity or relation (false positives). These errors can significantly affect
the evaluation, leading to inaccuracies in the assessment of our knowledge extraction methods. To address these
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limitations, employing more sophisticated linking algorithms could improve the accuracy of entity and property
matches. Techniques like embedding-based entity linking, which considers the context of entities, could reduce
false positives and negatives. Regardless of those shortcomings, our study successfully demonstrates the potential
of this evaluation approach.

Our second finding is that LLMs are capable of extracting up to 61 triples per instance, suggesting substantial
extractive capability. Notably, the addition of a single task demonstration to the prompts elevates extraction perfor-
mance significantly, with diminishing returns yielded by subsequent examples. Interestingly, while 26% (max) of
the extracted triples has preexisting entries in Wikidata, the majority represents novel extractions. Third, among the
various prompting strategies assessed, reasoning-focused methods did not show improvement over simpler prompt
engineering methods. Retrieval augmentation, however, improved the model’s ability to accurately extract triples
without necessitating complex instructions.

RED-FM constitutes a dataset designed for the purpose of relation extraction, centering on 32 discrete relations.
For this study, this dataset is utilized in the context of open knowledge extraction task. The scores obtained by
Mistral 7B, Llama 3 and GPT-4 are significantly lower than the fully supervised models, i.e. mREBEL and its
variants, presented in [10]. In the best case scenario, GPT-4 reaches up to 0.11 F1 score while mREBEL [10]
achieves 0.54 F1 score on the same English RED-FM test set. Additionally, it is important to note that Mistral
7B, Llama 3, and GPT-4 differ in size. Mistral has 7 billion parameters, while the version of Llama 3 used in this
study has 8 billion parameters. GPT-4 is significantly larger than these open-source models and it has 1.76 trillion
parameters. The size of a LLM indicates its capacity to store information in its parameters, which can influence its
performance in tasks such as knowledge extraction.

Finally, the analysis of the studied prompt engineering methods uncovered their relative effectiveness in the
open extraction setting. This examination sheds light on the promise of LLMs in augmenting Knowledge Graphs
while highlighting the intricacies involved in aligning model outputs with external knowledge bases. These insights
suggest that the translation of unstructured text into structured knowledge may be more akin to a format conversion
task rather than a reasoning task. Hence, conceptualizing the extraction process as a reasoning exercise may not align
with the task’s intrinsic nature or LLMs’ inner working. Rather, the outcomes suggest an interpretation of extraction
as a transformation from unstructured to structured format, underscoring the role of well-formulated examples in
optimizing this “translation”.

7. Conclusion

In this study, we investigated the efficacy of state-of-the-art prompt engineering methods for the KE task. We
evaluate using both standard metrics as well as using a new evaluation protocol based on Wikidata. Our results
show that few-shot RAG prompts perform best across multiple LLMs. Future work would benefit from test-
ing the approach against a diverse array of datasets, utilizing varying linking mechanisms. Such an expansion
would robustly ascertain the generalizability and efficacy of the ontology-based evaluation framework introduced
here, refining the strategies for knowledge extraction and graph enrichment across broader and more varied do-
mains.
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Appendix A. SPARQL queries

A.1. Domain query template

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX p: <http://www.wikidata.org/prop/>
PREFIX ps: <http://www.wikidata.org/prop/statement/>

SELECT ?domain ?domainLabel
WHERE {

wd:$item p:P2302 [ps:P2302 wd:Q21503250; pq:P2308 ?domain].

SERVICE wikibase:label { bd:serviceParam wikibase:
language “[AUTO_LANGUAGE], en”. }
}

A.2. Range query template

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX p: <http://www.wikidata.org/prop/>
PREFIX ps: <http://www.wikidata.org/prop/statement/>

SELECT ?range ?rangeLabel
WHERE {

wd:$item p:P2302 [ps:P2302 wd:Q21510865; pq:P2308 ?range].

SERVICE wikibase:label { bd:serviceParam wikibase:
language “[AUTO_LANGUAGE], en”. }
}

A.3. Entity type query templates

A.3.1. Instance of
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX bd: <http://www.bigdata.com/rdf#>
PREFIX wikibase: <http://wikiba.se/ontology#>

SELECT ?instanceOf ?instanceOfLabel ?superClass ?superClassLabel
?superSuperClass ?superSuperClassLabel ?superSuperSuperClass
?superSuperSuperClassLabel

WHERE { wd:$item wdt:P31 ?instanceOf.
?instanceOf wdt:P279 ?superClass.
?superClass wdt:P279 ?superSuperClass.
?superSuperClass wdt:P279 ?superSuperSuperClass.

SERVICE wikibase:label { bd:serviceParam wikibase:language
“[AUTO_LANGUAGE], en”. }
}
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A.3.2. Subclass of
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX bd: <http://www.bigdata.com/rdf#>
PREFIX wikibase: <http://wikiba.se/ontology#>

SELECT ?subclassOf ?subclassOfLabel ?superClass ?superClassLabel
?superSuperClass ?superSuperClassLabel ?superSuperSuperClass
?superSuperSuperClassLabel

WHERE { wd:$item wdt:P279 ?subclassOf.
?instanceOf wdt:P279 ?superClass.
?superClass wdt:P279 ?superSuperClass.
?superSuperClass wdt:P279 ?superSuperSuperClass.

SERVICE wikibase:label { bd:serviceParam wikibase:language
“[AUTO_LANGUAGE], en”. }
}

A.4. Statement checking query template

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX p: <http://www.wikidata.org/prop/>
PREFIX ps: <http://www.wikidata.org/prop/statement/>

ASK WHERE {{
wd:{subject} p:{predicate} ?statement.
?statement ps:{predicate} wd:{object}.
}}

Appendix B. A comprehensive example of conducted analysis on an extracted triple

“porsche panamera && manufacturer && porsche”: {
“Extracted from”: “The Porsche Panamera is a mid/full-sized luxury
vehicle (E-segment in Europe) manufactured by the German automobile
manufacturer Porsche. It is front-engined and has a rear-wheel-drive
layout, with all-wheel drive versions also available.”,
“String triple”: [
“porsche panamera”,
“manufacturer”,
“porsche”
],

“Wiki triple”: [
“Q501349”,
“P176”,
“Q40993”
],

“has Domain”: true,
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“Domain”: {
“software”: “Q7397”,
“physical object”: “Q223557”,
“model series”: “Q811701”,
“concrete object”: “Q4406616”,
“product model”: “Q10929058”
},

“has Range”: true,
“Range”: {
“human”: “Q5”,
“animal”: “Q729”,
“profession”: “Q28640”,
“organization”: “Q43229”,
“factory”: “Q83405”,
“fictional character”: “Q95074”,
“industry”: “Q268592”,
“artisan”: “Q1294787”,
“group of fictional characters”: “Q14514600”
},

“Predicate has Domain & Range”: true,
“Subject instanceOf”: {
“zero_hop”: {
“automobile model series”: “Q59773381”
},
“one_hop”: {

“vehicle model series”: “Q29048319”
},

“two_hop”: {
“model series”: “Q811701”
},

“three_hop”: {
“series”: “Q20937557”
},

}
“Subject subclassOf”: {
“zero_hop”: {},
“one_hop”: {},
“two_hop”: {},
“three_hop”: {},
},

“Domain match”: true,
“Domain matching level”: 2,
“Domain matched label”: “model series”,
“Domain matched wikiID”: “Q811701”,
“Object instanceOf”: {
“zero_hop”: {
“public company”: “Q891723”,
“automobile manufacturer”: “Q786820”,
“racecar constructor”: “Q15648574”,
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“car brand”: “Q10429667”
},

“one_hop”: {
“joint-stock company”: “Q134161”,
“enterprise”: “Q6881511”,
“organization”: “Q43229”,
“automobile manufacturer”: “Q786820”,
“manufacturer”: “Q13235160”,
“brand”: “Q431289”
},

“two_hop”: {
“limited company”: “Q33685”,
“juridical person”: “Q155076”,
“operation”: “Q362482”,
“social system”: “Q1639378”,
“business”: “Q4830453”,
“enterprise”: “Q6881511”,
“manufacturer”: “Q13235160”,
“provider”: “Q13420330”,
“group of humans”: “Q16334295”,
“artificial object”: “Q16686448”,
“class”: “Q16889133”,
“person or organization”: “Q106559804”
},

“three_hop”: {
“commercial company”: “Q567521”,
“organization”: “Q43229”,
“legal person”: “Q3778211”,
“goods”: “Q28877”,
“organizational unit”: “Q679206”,
“economic agent”: “Q1415187”,
“system”: “Q58778”,
“juridical person”: “Q155076”,
“economic entity”: “Q12569864”,
“operation”: “Q362482”,
“business”: “Q4830453”,
“provider”: “Q13420330”,
“group of living things”: “Q16334298”,
“object”: “Q488383”,
“abstract entity”: “Q7048977”,
“collective entity”: “Q99527517”,
“agent”: “Q24229398”
}

},

“Object subclassOf”: {
“zero_hop”: {},
“one_hop”: {},
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“two_hop”: {},
“three_hop”: {},
},

“Range match”: true,
“Range matching level”: 1,
“Range matched label”: “organization”,
“Range matched wikiID”: “Q43229”,
“All components in Wikidata”: true,
“Triple statement in Wikidata”: true,
“Domain&Range Match”: true,
“Triple matching level”: 2,
“Both Statement and Domain&Range Match”: true
},

Appendix C. Supplementary material

Table 6

Ontology based triple assessment results of GPT-4

Prompt type Number of
extracted triples

Triples with a
well-defined

predicate

Triples with a
well-defined

predicate and both
entity types known

Domain & Range
matching triples

Nr % Nr % Nr %

Zero-shot 3506 300 0.09 221 0.74 107 0.48

One-shot 3806 924 0.24 626 0.68 330 0.53

Few-shot 2871 768 0.27 550 0.72 308 0.54

RAG one-shot 3414 955 0.28 692 0.72 413 0.60

RAG few-shot 2939 1021 0.35 774 0.76 474 0.61

CoT zero-shot 3951 418 0.11 160 0.38 54 0.34

CoT one-shot 3348 1024 0.31 737 0.72 395 0.54

CoT few-shot 2710 974 0.36 740 0.76 373 0.50

Self-cons zero-shot 3439 576 0.17 229 0.40 100 0.44

Self-cons one-shot 3353 984 0.29 746 0.76 346 0.46

Self-cons few-shot 2854 974 0.34 775 0.80 392 0.51

GenKnow zero-shot 3448 541 0.16 181 0.33 83 0.46

GenKnow one-shot 3292 952 0.29 694 0.73 378 0.54

GenKnow few-shot 2996 960 0.32 736 0.77 452 0.61

ReAct zero-shot 3182 508 0.16 199 0.39 92 0.46

ReAct one-shot 2910 931 0.32 703 0.76 354 0.50

ReAct few-shot 2329 861 0.37 672 0.78 339 0.50
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Table 7

Ontology based triple assessment results of Llama 3

Prompt type Number of
extracted triples

Triples with a
well-defined

predicate

Triples with a
well-defined

predicate and both
entity types known

Domain & Range
matching triples

Nr % Nr % Nr %

0-shot 4310 706 0.18 388 0.55 92 0.24

1-shot 3934 940 0.24 670 0.71 298 0.44

Few-shot 5067 1201 0.24 879 0.73 453 0.52

RAG 1-shot 5655 1611 0.28 1253 0.78 607 0.48

RAG few-shot 5202 1651 0.32 1366 0.83 641 0.47

CoT 0-shot 9644 1504 0.17 273 0.18 80 0.29

CoT 1-shot 8654 2233 0.26 1765 0.79 838 0.47

CoT few-shot 7568 2266 0.30 1872 0.83 864 0.46

Self-cons 0-shot 6510 1147 0.18 574 0.50 139 0.24

Self-cons 1-shot 7040 1775 0.25 1419 0.80 588 0.41

Self-cons few-shot 5259 1283 0.24 1062 0.83 469 0.44

GenKnow 0-shot 4677 936 0.20 585 0.63 131 0.22

GenKnow 1-shot 4005 1012 0.25 752 0.74 326 0.43

GenKnow few-shot 4676 1271 0.27 1057 0.83 546 0.52

ReAct 0-shot 2550 428 0.20 246 0.57 78 0.32

ReAct 1-shot 5248 1321 0.26 932 0.71 415 0.45

ReAct few-shot 4674 1195 0.26 916 0.77 370 0.40

Table 8

Assessing novelty of the extraction of Mistral 7B

Prompt type Triples linked to Wikidata Triples already in
Wikidata

Novel Triples

Nr % Nr % Nr %

0-shot 443 0.19 64 0.14 379 0.86

1-shot 2590 0.51 478 0.18 2112 0.82

Few-shot 1953 0.49 360 0.18 1593 0.82

RAG 0-shot 1519 0.54 382 0.25 1137 0.75

RAG few-shot 1398 0.56 398 0.28 1000 0.72

CoT 0-shot 379 0.15 56 0.15 323 0.85

CoT 1-shot 1557 0.42 306 0.20 1251 0.80

CoT few-shot 1438 0.41 277 0.19 1161 0.81

Self-cons 0-shot 631 0.22 75 0.12 556 0.88

Self-cons 1-shot 2232 0.47 387 0.17 1845 0.83

Self-cons few-shot 2120 0.50 372 0.18 1748 0.82

GenKnow 0-shot 678 0.25 84 0.12 594 0.88

GenKnow 1-shot 1646 0.46 364 0.22 1282 0.78

GenKnow few-shot 1631 0.50 353 0.22 1278 0.78

ReAct 0-shot 345 0.21 39 0.11 306 0.89

ReAct 1-shot 1282 0.35 183 0.14 1099 0.86

ReAct few-shot 1227 0.40 254 0.21 973 0.79



30 F. Polat et al. / Testing prompt engineering methods for knowledge extraction

Table 9

Assessing novelty of the extraction of Llama 3

Prompt type Triples linked to Wikidata Triples already in
Wikidata

Novel Triples

Nr % Nr % Nr %

0-shot 1046 0.26 74 0.07 972 0.93

1-shot 1744 0.44 245 0.14 1499 0.86

Few-shot 2380 0.47 441 0.19 1936 0.81

RAG 0-shot 3287 0.58 556 0.17 2731 0.83

RAG few-shot 3235 0.62 603 0.19 2632 0.81

CoT 0-shot 1005 0.11 73 0.07 932 0.93

CoT 1-shot 4658 0.54 824 0.18 3834 0.82

CoT few-shot 4365 0.58 714 0.16 3651 0.84

Self-cons 0-shot 1557 0.24 101 0.06 1456 0.94

Self-cons 1-shot 3602 0.51 564 0.16 3038 0.84

Self-cons few-shot 2703 0.51 317 0.12 2386 0.88

GenKnow 0-shot 1496 0.33 78 0.05 1418 0.95

GenKnow 1-shot 2062 0.52 327 0.16 1735 0.84

GenKnow few-shot 2633 0.56 519 0.20 2114 0.80

ReAct 0-shot 582 0.27 49 0.08 533 0.92

ReAct 1-shot 2235 0.43 373 0.17 1862 0.83

ReAct few-shot 1986 0.43 275 0.14 1711 0.86

Table 10

Analysis of extracted entities and relations by GPT-4

Prompt type Entity Analysis Relation Analysis

All Linked All Linked has Domain&Range

Nr Nr % Nr Nr % Nr %

0-shot 4477 1672 0.37 1617 355 0.22 150 0.42

1-shot 4106 2539 0.62 1574 542 0.34 235 0.43

Few-shot 2996 2075 0.69 1156 469 0.41 207 0.44

RAG 1-shot 3712 2477 0.67 1497 604 0.40 268 0.44

RAG few-shot 3120 2348 0.75 1014 488 0.48 243 0.50

CoT 0-shot 4941 1571 0.32 1926 283 0.15 121 0.43

CoT 1-shot 3714 2602 0.70 1455 601 0.41 290 0.48

CoT few-shot 3057 2281 0.75 1111 562 0.51 265 0.47

Self-cons 0-shot 4301 1735 0.40 1614 278 0.17 121 0.44

Self-cons 1-shot 3661 2735 0.75 1320 524 0.40 245 0.47

Self-cons few-shot 3118 2509 0.80 984 506 0.51 241 0.48

GenKnow 0-shot 4421 1667 0.38 1661 305 0.18 127 0.42

GenKnow 1-shot 3579 2513 0.70 1525 547 0.36 266 0.49

GenKnow few-shot 3236 2440 .075 1131 514 0.45 241 0.47

ReAct 0-shot 4129 1629 0.39 1652 298 0.18 129 0.43

ReAct 1-shot 3284 2362 0.72 1314 536 0.41 255 0.48

ReAct few-shot 2716 2121 0.78 976 479 0.49 243 0.51
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Table 11

Analysis of extracted entities and relations by Mistral 7B

Prompt type Entity Analysis Relation Analysis

All Linked All Linked has Domain&Range

Nr Nr % Nr Nr % Nr %

0-shot 2745 1264 0.46 1289 294 0.23 127 0.43

1-shot 4174 2913 0.70 1532 659 0.43 277 0.42

Few-shot 3778 2712 0.72 1334 594 0.45 255 0.43

RAG 1-shot 3093 2365 0.76 1050 497 0.47 248 0.50

RAG few-shot 2750 2198 0.80 933 426 0.46 218 0.51

CoT 0-shot 3161 1276 0.40 1410 253 0.18 109 0.43

CoT 1-shot 3920 2667 0.68 1644 637 0.39 291 0.46

CoT few-shot 3781 2419 0.64 1638 658 0.40 303 0.46

Self-cons 0-shot 3188 1607 0.50 1525 325 0.21 127 0.39

Self-cons 1-shot 4277 2858 0.67 1851 757 0.41 356 0.47

Self-cons few-shot 4005 2887 0.72 1664 772 0.46 378 0.49

GenKnow 0-shot 3071 1637 0.53 1402 328 0.23 133 0.41

GenKnow 1-shot 3956 2593 0.66 1474 541 0.37 257 0.48

GenKnow few-shot 3620 2502 0.69 1172 476 0.41 215 0.45

ReAct 0-shot 2017 940 0.47 944 241 0.26 108 0.45

ReAct 1-shot 4158 2348 0.56 1911 663 0.35 307 0.46

ReAct few-shot 3351 2092 0.62 1505 566 0.38 268 0.47

Fig. 5. Analysis of domain & range matching level of GPT-4.
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Fig. 6. Analysis of domain & range matching level of Llama 3.

Table 12

Precision, recall, F1 score

Precision Recall F1 Score

Prompt type Mistral Llama3 GPT-4 Mistral Llama3 GPT-4 Mistral Llama3 GPT-4

0-shot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1-shot 0.02 0.02 0.01 0.08 0.06 0.04 0.04 0.03 0.02

Few-shot 0.03 0.02 0.02 0.08 0.06 0.06 0.04 0.03 0.03

RAG 1-shot 0.07 0.05 0.05 0.12 0.14 0.11 0.09 0.08 0.07

RAG few-shot 0.09 0.07 0.08 0.14 0.16 0.15 0.10 0.10 0.11

CoT 0-shot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CoT 1-shot 0.05 0.05 0.03 0.10 0.15 0.07 0.06 0.07 0.05

CoT few-shot 0.04 0.03 0.05 0.09 0.11 0.08 0.06 0.05 0.06

Self-cons 0-shot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Self-cons 1-shot 0.05 0.05 0.03 0.10 0.13 0.06 0.06 0.07 0.04

Self-cons few-shot 0.04 0.02 0.05 0.13 0.08 0.10 0.07 0.03 0.06

GenKnow 0-shot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GenKnow 1-shot 0.05 0.03 0.03 0.12 0.09 0.07 0.07 0.05 0.04

GenKnow few-shot 0.05 0.04 0.07 0.12 0.11 0.13 0.07 0.06 0.09

ReAct 0-shot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ReAct 1-shot 0.03 0.02 0.03 0.07 0.07 0.06 0.04 0.04 0.04

ReAct few-shot 0.04 0.02 0.06 0.09 0.08 0.09 0.06 0.04 0.07
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