
Semantic Web -1 (2024) 1–48 1
DOI 10.3233/SW-243611
IOS Press
CORRECTED PROOF

Formalizing and validating Wikidata’s
property constraints using SHACL and
SPARQL
Nicolas Ferranti a,*, Jairo Francisco De Souza b, Shqiponja Ahmetaj c and Axel Polleres a,d

a Department of Information Systems and Operations Management, Vienna University of Economics and Business,
Austria
E-mails: nicolas.ferranti@wu.ac.at, axel.polleres@wu.ac.at
b Department of Computer Science, Federal University of Juiz de Fora, Brazil
E-mail: jairo.souza@ufjf.edu.br
c Vienna University of Technology, Austria
E-mail: shqiponja.ahmetaj@tuwien.ac.at
d Complexity Science Hub Vienna, Austria

Editors: Lucie-Aimée Kaffee, Applied Policy Researcher at Hugging Face, Berlin, Germany; Simon Razniewski, Institute for Artificial
Intelligence, Dresden, Germany; Pavlos Vougiouklis, Huawei Technologies, Edinburgh, United Kingdom
Solicited reviews: Jose Emilio Labra Gayo, Web Semantics Oviedo (WESO) research group, University of Oviedo, Spain; One anonymous
reviewer

Abstract. In this paper, we delve into the crucial role of constraints in maintaining data integrity in knowledge graphs with a
specific focus on Wikidata, one of the most extensive collaboratively maintained open data knowledge graphs on the Web. The
World Wide Web Consortium (W3C) recommends the Shapes Constraint Language (SHACL) as the constraint language for
validating Knowledge Graphs, which comes in two different levels of expressivity, SHACL-Core, as well as SHACL-SPARQL.
Despite the availability of SHACL, Wikidata currently represents its property constraints through its own RDF data model,
which relies on Wikidata’s specific reification mechanism based on authoritative namespaces, and – partially ambiguous – natural
language definitions. In the present paper, we investigate whether and how the semantics of Wikidata property constraints, can be
formalized using SHACL-Core, SHACL-SPARQL, as well as directly as SPARQL queries. While the expressivity of SHACL-
Core turns out to be insufficient for expressing all Wikidata property constraint types, we present SPARQL queries to identify
violations for all 32 current Wikidata constraint types. We compare the semantics of this unambiguous SPARQL formalization
with Wikidata’s violation reporting system and discuss limitations in terms of evaluation via Wikidata’s public SPARQL query
endpoint, due to its current scalability. Our study, on the one hand, sheds light on the unique characteristics of constraints defined
by the Wikidata community, in order to improve the quality and accuracy of data in this collaborative knowledge graph. On the
other hand, as a “byproduct”, our formalization extends existing benchmarks for both SHACL and SPARQL with a challenging,
large-scale real-world use case.

Keywords: Wikidata, data quality, knowledge graphs, constraints, Shapes Constraint Language, SPARQL

*Corresponding author. E-mail: nicolas.ferranti@wu.ac.at.

1570-0844 © 2024 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:nicolas.ferranti@wu.ac.at
mailto:axel.polleres@wu.ac.at
mailto:jairo.souza@ufjf.edu.br
mailto:shqiponja.ahmetaj@tuwien.ac.at
mailto:nicolas.ferranti@wu.ac.at
https://creativecommons.org/licenses/by/4.0/

2 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

1. Introduction

A Knowledge Graph (KG) uses a graph-based model to represent real-world entities, their attributes, and relation-
ships [40]. Entities are anything that can be uniquely identified and described, such as people, places, things, or con-
cepts, but also the relationships between those. The “graph” metaphor stems from the idea of depicting statements
representing relationships between entities as directed graph edges. A wide range of information can be represented
using KGs, including encyclopedic knowledge, scientific data, corporate data, and, – along with meta-information
attached to statements – also contextual information, such as who provenance, preference amongst statements, or
temporal context (e.g. when a statement was added, so-called transaction time, or was valid, called validity time, cf.
e.g. [30,61]). The Semantic Web initiative within the World Wide Web Consortium (W3C) has established a set of
essential standards, readily available to manage and process KGs:

– the Resource Description Framework (RDF) [54] to publish and interchange KGs;
– the SPARQL Protocol and RDF Query Language [32] to query KGs;
– RDF Schema (RDFS) [15] and the Web Ontology Language (OWL) [37] to define and describe the schema of

KGs in RDF itself;
– the Shapes Constraint Language (SHACL) [29,41] to validate KGs.

The goal of said standards is to enable interoperability, but also the ability to unambiguously describe the (allowed)
schema and semantics of knowledge graphs, which in turn is a crucial aspect in order to maintain KG quality, as
more and more KGs are published in a decentralized, collaboratively created fashion across the Web.

Since its creation by the Wikimedia Foundation in 2012, Wikidata has become one of the largest such KGs,
publicly available on the Web, with more than 100M items1 and 14B triples.2 One of the main factors responsible
for this growth is Wikidata’s user community, with more than 24k active users (humans and bots). At the beginning
of Wikidata, the large user community was primarily motivated by enriching Wikipedia with structured data, as
Wikipedia pages increasingly incorporate content from Wikidata [24]; yet, in the meantime, Wikidata has gained
importance and usage far beyond and independent of Wikipedia.

In terms of supporting the above-mentioned Semantic Web standards, the Wikidata KG is available in standard
RDF format and can be queried via a public SPARQL endpoint. Yet, Wikidata does neither adhere to OWL/RDFS,
nor SHACL: while other knowledge graphs often have predefined formal ontologies or schemas defined in RDFS
and OWL, Wikidata takes a different approach, with its community focusing on the development of the data layer (A-
box) and the terminology layer (T-Box) evolving alongside with it. This means that Wikidata does not have a single,
pre-defined formal ontology [50] adhering to RDFS/OWL’s well-defined semantics. In fact, while some Wikidata
properties, such as subclassOf (P279) or subproperty of (P1647), loosely correspond to constructs of the OWL and
RDFS vocabularies [31], Wikidata does not make any formal ontological commitment on these properties in terms
of OWL’s Description Logics based semantics, and the respective properties are rather freely used and usable by
the community. Rather, in order to reinforce consistent usage of the community-developed terminology, separate
Wikidata projects have emerged to specify constraints, which serve as a means to identify errors in the data layer
wrt. vocabulary usage. However, none of these projects deploys the current W3C recommendation for validating
RDF graphs against constraints, namely, SHACL.

In the current paper, we focus on the largest and most widely supported amongst these constraints approaches in
Wikidata, namely the Wikidata Property Constraints Project:3 in this project, Wikidata has developed its own “rep-
resentation model” to describe constraints on properties, both on property values in statements, but also contextual
meta-data aspects on the usage of such properties. We estimate that 99% of Wikidata properties are affected by at
least one property constraint, while further projects that define constraints on the class level only cover around 0.2%
of the classes (for details on those other approaches and constraint projects cf. Section 7).

When it comes to how property constraints should be interpreted/checked, there is a description in natural
language for each constraint type available on a respective help page, for instance, the single-value constraint

1https://www.wikidata.org/wiki/Wikidata:Statistics, as from January 2023.
2https://short.wu.ac.at/7t66, last accessed 13 February 2023.
3https://www.wikidata.org/wiki/Help:Property_constraints_portal

https://www.wikidata.org/wiki/Wikidata:Statistics
https://short.wu.ac.at/7t66
https://www.wikidata.org/wiki/Help:Property_constraints_portal

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 3

(Q19474404).4) As opposed to W3C’s standard, SHACL, which relies on standardized validators to identify incon-
sistencies, Wikidata calculates its own violation reports, the so-called Wikidata Database reports with an ad-hoc
extension of Wikibase (Wikidata’s underlying software framework [55]). Violations per constraint type are pub-
lished as parts of these reports on separate HTML pages.5 Yet, the approach behind the generation of these reports
is not published, and there is a maximum limit of violations displayed for each constraint type in the respective
property pages. For a community-based KG with billions of triples, efforts like the Property Constraints project
represent a key resource for creating tools to assist in the analysis and refinement of inconsistent data on Wikidata.
However, we believe that the development of such tools is hampered by the way this data is currently collected
and made available: since the only official description of how to check property constraints is in natural language,
and their verification is not entirely transparent, the semantics of property constraints may be subject to ambiguous
interpretations.

In the present paper, we explore the use of both SHACL and SPARQL as tools for formalizing Wikidata’s prop-
erty constraints; the use of these standardized tools should provide more accurate, open, and efficient means of
identifying and addressing inconsistencies in Wikidata and resolving potential ambiguities. To this end, our main
contributions are as follows:

– We provide a gentle and comprehensive introduction to Wikidata’s specific, namespace-based RDF reification
model with many illustrative examples, that show how Wikidata’s wide range of different property constraints
are represented using this model.

– We study to what extent the expressiveness of the SHACL-Core language is sufficient to express Wikidata
property constraints and come to the conclusion that the SHACL-Core language is not expressive enough to
represent all Wikidata property constraints: Among the 32 investigated property constraint types, SHACL-
Core lacks components to express two of them. In addition, we argue that another four constraint types are not
reasonably, or only partially expressible.

– For the Wikidata property constraints expressible in SHACL-Core, we present a tool to automatically translate
such constraints; the tool can benefit also other Wikibase KGs that import Wikidata property constraints.

– We show how the non-SHACL-Core-expressible remaining constraints can be formalized in full SHACL (using
the SHACL-SPARQL extension), and argue for an, in our opinion more effective, formalization in SPARQL
alone.

– We consequently unambiguously formalize all 32 Wikidata property constraint types as SPARQL queries
which provide a declarative means to express constraints, directly operationalizable via Wikidata’s SPARQL
endpoint.6 SPARQL queries offer the possibility of checking the violations in real-time on the Wikidata
SPARQL endpoint, as well as the flexibility to collect useful information to analyze the usage of a constraint
such as status, reasons for deprecation, and exceptions.

– We present a comparison of our SPARQL approach to the current Wikidata violation reports, demonstrating
the feasibility of using SPARQL to actually check constraints: particularly, we highlight potential ambiguities
and reasons for deviations in violations found with our approach compared to the Wikidata violation reports;
we believe that our approach as such helps clarifying such ambiguities in a reproducible manner.

– We note that, due to the known scalability limits of Wikidata’s SPARQL endpoint, we still run into timeouts
in checking some of the most violated constraints; yet we argue that our work, can be understood as providing
challenging benchmarks for both (i) SHACL validators and (ii) SPARQL engines, based on the real-world use
case of Wikidata; as such we extend and go beyond recent related benchmarks.7

4https://www.wikidata.org/wiki/Help:Property_constraints_portal/Single_value
5https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/Summary
6Notably, as it turns out, some constraint types can only be partially evaluated online due to incomplete RDF representation of Wikidata’s own

RDF data model on Wikidata’s SPARQL query endpoint.
7For instance, our constraint checking queries are not restricted to “truthy” statements, as opposed to the recent WDbench [6] SPARQL

benchmark.

https://www.wikidata.org/wiki/Help:Property_constraints_portal/Single_value
https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/Summary

4 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

The remainder of this paper is structured as follows. Section 2 presents an exhaustive, tutorial-style introduc-
tion to Wikidata’s property constraints, diving into Wikidata’s RDF meta-modeling, and explaining how property
constraints are represented within this model.

Section 3 discusses how to represent the semantics of Wikidata property constraints in SHACL-Core. We also
present wd2shacl, a tool that automatically generates expressible SHACL constraints from Wikidata property con-
straints, and as such could be viewed as a “benchmark generator” for SHACL motivated by a real use case.

Yet, as not all Wikidata property constraints are expressible in SHACL-Core, in Section 4 we instead present
a complete mapping of all Wikidata property constraints to SPARQL: we argue that SPARQL can be used for
operationalizing all property constraints’ verification continuously, directly on the Wikidata SPARQL endpoint.

As a demonstration of feasibility, we present a detailed analysis and experiments, comparing violations found by
our approach with the officially reported constraint violations by Wikidata itself in Sections 5 and 6.

Finally, after discussing related works on constraint formalization and quality analysis for Wikidata and other
KGs in Section 7, we conclude in Section 8 with pointers to future research directions.

2. Background

As mentioned already in the introduction, standard ontological inference as a means to detect inconsistencies
is not directly applicable to the approach taken by Wikidata. Firstly, Wikidata’s data model may arguably be de-
scribed as extending RDF’s plain, triple-based model, by various meta-modeling features for adding references and
other contextual qualifiers to statements. Indeed, Wikidata’s data model is mapped to RDF via a specific reification
mechanism. Secondly, there is neither a strict distinction between the data and terminology layers nor does Wiki-
data’s terminology rely on OWL/RDFS [31]. Rather, the terminology layer evolves in the background as editors
add/update new facts, potentially introducing new properties and classes in a community-based approach. Addition-
ally, proprietary, community-driven, ad-hoc processes have been set up within Wikidata to define constraints on the
terminology used. In particular, the Property Constraints project,8 which we will focus on in this paper, aims at
defining restrictions applied to the usage of Wikidata properties.

In order to provide the required background, in the following subsections we introduce the RDF data represen-
tation adopted by Wikidata (Section 2.1) with several examples, followed by illustrating details of how Wikidata’s
property constraints are represented within this data model (Section 2.2), in particular focusing on qualifiers used
as “parameters” for constraint definitions (Section 2.3). Finally, we discuss both (i) challenges in understanding the
exact meaning of these property constraints (the semantics of which are largely described in natural language only),
as well as (ii) potential issues in verifying them on Wikidata’s RDF representation (Section 2.4).

2.1. Data modeling in Wikidata

In this section, we describe how Wikidata’s data model – and specifically property constraints – are modeled in
RDF and can be queried with SPARQL.9

To this end, let us start with the bare basics of RDF and SPARQL and then gradually dive into the specifics of
Wikidata. When talking about RDF, as usual, we will refer to RDF graphs and their subgraphs as sets of triples

(subject, predicate, object)

where subjects and predicates are typically URIs, whereas objects can be either plain, typed, or language-tagged
literal values. These triples can be viewed as directed edges in a graph, such that we may consider a simple graph

8https://www.wikidata.org/wiki/Wikidata:WikiProject_property_constraints
9For details, we refer the reader to https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format, focusing on the part of Wiki-

data’s RDF representation relevant to and affected by constraints.

https://www.wikidata.org/wiki/Wikidata:WikiProject_property_constraints
https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 5

Fig. 1. Simple RDF (sub-)graph example from Wikidata, showing two statements/triple, indicating that Lionel Messi (URL: wd:Q615) has two
citizenships (property URL: wdt:P27): Spain (wd:Q29) and Argentina (wd:Q414).

Table 1

The most important namespaces used in Wikidata’s RDF representation; we omit some additional standard namespaces such as dct: (Dublin core
terms), schema: (Schema.org), rdf : (RDF), owl: (OWL), etc

Prefix Namespace Purpose

wd: http://www.wikidata.org/entity/ used to identify Wikidata concepts (entities or properties).

wdt: http://www.wikidata.org/prop/direct/ used for direct property relationships (claims) between (wd:) concepts.

p: http://www.wikidata.org/prop/ relates a (wd:) concept to a (wds:) statement node further describing the direct
(wdt:) claim.

wds: http://www.wikidata.org/entity/statement/ used for statement nodes, i.e., intermediate nodes that link claims to statement
qualifiers.

pq: http://www.wikidata.org/prop/qualifier/ used for “qualifying”, adding meta-data to (wds:) statements.

ps: http://www.wikidata.org/prop/statement/ used to “re-connect” (wds:) statement nodes to the original claim’s object value.

psv: http://www.wikidata.org/prop/statement/value/ used for statement nodes referring to quantity value nodes in the (wdv:)
namespace.

wdv: http://www.wikidata.org/value/ used for value nodes referring to quantity values.

prov: http://www.w3.org/ns/prov# used in Wikidata exclusively (cf. https://w.wiki/7KX7) for the property
prov:derivedFrom from the PROV ontology [43] to link claims to references.

pr: http://www.w3.org/ns/prov# used in for properties defined by the Wikidata community to further describe
references.

wikibase: http://wikiba.se/ontology# reserved namespace to denote special properties in the Wikibase ontology,
which refers to some special concepts from https://wikiba.se, Wikidata’s
underlying software framework.

ontolex: http://www.w3.org/ns/lemon/ontolex# Wikidata re-uses specific properties from the Ontolex-Lemon [19] vocabulary to
describe lexemes.

as in Fig. 1, stating that Lionel Messi has two citizenships, as a set of two triples

Gsimple = {
(wd:Q615,wdt:P27,wd:Q29),

(wd:Q615,wdt:P27,wd:Q414)
}

Here, URIs are represented as namespace-prefixed identifiers, e.g. wd:Q615 which should be understood as a
shortcut for a full URI, e.g. 〈http://www.wikidata.org/entity/Q615〉, according to the namespace prefixes defined in
Table 1. Additionally – particularly in SHACL examples later on – we will also refer to RDF graphs using Turtle [10]
syntax in the remainder of this paper. As an illustration, Gsimple can be written in Turtle concisely as follows:

For queries over RDF data, we will use SPARQL [32]: indeed the RDF representation of Wikidata can be fully
queried by means of Wikidata’s SPARQL query service. Wikidata’s query service.,10 which allows to formulate

10available at https://query.wikidata.org.

http://www.wikidata.org/entity/
http://www.wikidata.org/prop/direct/
http://www.wikidata.org/prop/
http://www.wikidata.org/entity/statement/
http://www.wikidata.org/prop/qualifier/
http://www.wikidata.org/prop/statement/
http://www.wikidata.org/prop/statement/value/
http://www.wikidata.org/value/
http://www.w3.org/ns/prov#
https://w.wiki/7KX7
http://www.w3.org/ns/prov#
http://wikiba.se/ontology#
https://wikiba.se
http://www.w3.org/ns/lemon/ontolex#
http://www.wikidata.org/entity/Q615
https://query.wikidata.org

6 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

queries over RDF triples in terms of graph patterns, such as for instance:

SELECT ?Citizenship WHERE { wd:Q615 wdt:P27 ?Citizenship }

Here, the triple pattern (wd:Q615, wdt:P27,?Citizenship)would match both countries, Argentina and
Spain on the graph Gsimple.11

Other methods, apart from Wikidata’s query service to access RDF from Wikidata include complete RDF dumps12

or retrieving RDF triples per entity via Wikidata’s Web API directly.13

Statement nodes: Wikidata’s internal data model heavily relies on meta-modeling, i.e., claims such as the ones
represented by the triples in Gsimple can be annotated yet again with contextual meta-information, provenance and
temporal information, etc. In order to map this meta-information to “flat” RDF triples, Wikidata’s RDF represen-
tation relies on the consistent usage of specific, authoritative [31,38]) namespaces,14 the most important of which
are listed in Table 1. We note that Wikidata’s meta-modeling in terms of specific namespaces can be seen as a
custom reification mechanism: here, we mean “custom” in the sense of not following any “standard” reification
scheme, such as the RDF reification vocabulary [34, Appendix D], named graphs [18], singleton reification [46],
RDF-* [33], etc., for a detailed discussion, we refer the interested reader to [36].

In this reification model, Wikidata uses URIs that represent hashes for “anonymous” reified statement nodes and
quantity value nodes as illustrated in our examples in the following: for instance, Fig. 2 shows a more complete
graphical illustration of Wikidata’s RDF model including meta-information about Messi, adding such statement
nodes, which yields the following set of triples G:

G = {
(wd:Q615,wdt:P27,wd:Q29),

(wd:Q615,p:P27,wds:Q615−469B5D33−8EA7−4CAB− 8A71−75AE59EAFD85),

(wds:Q615−469B5D33−8EA7−4CAB−8A71−75AE59EAFD85,ps:P27,wd:Q29),

(wds:Q615−469B5D33−8EA7−4CAB−8A71−75AE59EAFD85,pq:580, "2005− 01− 01"),

(wds:Q615−469B5D33−8EA7−4CAB−8A71−75AE59EAFD85,

Fig. 2. Subgraph example from Wikidata. Direct claims can be stated (using wdt), while metadata is added through qualifiers (using pq). Statement
ranks use the property Wikibase:rank.

11Note that, interestingly, the query from above also returns wd:Q38 (Italy) on Wikidata’s query service, cf. https://w.wiki/8Vqt: we will
occasionally refer to such shortcut URLs to Wikidata’s query service in the following for illustrating notable queries.

12cf. https://www.wikidata.org/wiki/Wikidata:Database_download#RDF_dumps.
13For instance, supporting content negotiation, the result of running curl -L -H “Accept:text/turtle” https://www.wikidata.

org/entity/Q615 retrieves all RDF data for Messi in Turtle syntax.
14In a nutshell, a dataset speaks “authoritatively” about a URI, or likewise a namespace prefix, if it is published/accessible on the same

pay-level-domain. I.e., for instance, Wikidata is authoritative for all URIs (and, resp., namespaces) which start with https://www.wikidata.org.

https://w.wiki/8Vqt
https://www.wikidata.org/wiki/Wikidata:Database_download#RDF_dumps
https://www.wikidata.org/entity/Q615
https://www.wikidata.org/entity/Q615
https://www.wikidata.org

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 7

wikibase:rank,wikibase:NormalRank),

. . .
}

As a side note, let us emphasize that Wikidata’s use of such “hashed” statements nodes is a deliberate choice to
avoid the use of blank nodes [39].15

Entities: Items and properties, and lexemes In principle, any concept in Wikidata is an entity, such as real-world
entities, but also properties, classes, or specific property constraint types; entities can be directly referred to as
subjects or objects in statements via the namespace wd:. Entities are further subdivided into Properties, and Items
which – rather than by prefix – can be distinguished by their numeric identifiers: Q-identifiers are used for Items,
such as Q615, denoting the Item/Entity “Lionel Messi”, whereas P-identifiers are used for properties, such as P27
for the relation “country of citizenship”.

Besides Items and Properties, since a large part of Wikidata is also specialized in linguistics knowledge and mul-
tilinguality, another special kind of entities, so-called Lexemes, i.e., words with their senses and forms in particular
different languages, are identified by separate L-identifiers, cf. Example 5 below.

Claims and statements: Claims made about entities are represented as “flat” RDF triples and use Prop-
erties in the predicate position with the namespace wdt:, such as the triples in Gsimple above. Note that,
just like in the claim “Messi’s country of citizenship is Argentina”, which is represented by the RDF triple
(wd : Q615,wdt : P27,wd : Q414), statements about Properties also use these different namespaces: that is, the
wd: namespace is never used in a predicate position, whereas the wdt: namespace is never used in subject or object
position. As an illustration, the claim that property country of citizenship (P27) is a subproperty of (P1647) country
(P17) is denoted by the triple

(wd:P27, wdt:P1647, wd:P17)

Such direct claims can be further described and annotated with meta-information. That is, for each claim, a
separate, wds:-prefixed statement node is created in Wikidata’s RDF graph, which permits to refer to the claim
itself in meta-statements, such as for instance declaring since when Messi has the Argentinean citizenship. These
statement nodes are connected to the claim’s subject entity via the claim’s property using prefix p: instead of wdt:;
additional meta-information about statement nodes uses specific so-called qualifier properties, denoted by the prefix
pq:, and the statement node itself is connected back to the claim’s object via the claim’s property using prefix ps:.

Example 1. Fig. 2 presents a subgraph of Wikidata that illustrates this RDF representation, containing two claims
about Lionel Messi (Q615), concerning his two nationalities and their different respective start time (P580) as
qualifiers of the respective claims’ statement nodes. We will explain the additional wikibase:rank triples also visible
in the next figure.

Statement ranks and truthy statements: Note that not all statements in Wikidata are represented as directly
queryable wdt: claims, the reason being that statements may be marked as normal (wikibase:NormalRank), pre-
ferred (wikibase:PreferredRank), or deprecated (wikibase:DeprecatedRank), via the special “statement-rank” (wik-
ibase:rank) property. While in Fig. 2, both claims have rank wikibase:NormalRank, i.e. denoting equally valid –
so-called “truthy” claims, let us provide another illustrating example to show a different setting.

Example 2. Fig. 3 shows two claims about the capital of the US, one of which (the current capital) has a wik-
ibase:PreferredRank, while the other has wikibase:NormalRank: when you compare both figures, note that in pres-
ence of a wikibase:PreferredRanked statement, only this preferred statement has a direct, i.e. “truthy” wdt: triple.
Intuitively, in this example, this makes sense, as it allows us to write simple SPARQL queries to Wikidata’s query
service, asking for the capital (P36) of the USA (Q30) just with:

SELECT ?Capital WHERE { wd:Q30 wdt:P36 ?Capital }

15cf. https://www.mail-archive.com/wikidata-tech@lists.wikimedia.org/msg01511.html.

https://www.mail-archive.com/wikidata-tech@lists.wikimedia.org/msg01511.html

8 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

Fig. 3. A subgraph showing claims about two capitals (P36) of the USA (Q30) and their start and end times. According to a single-value constraint
on P36, multiple values are allowed as long as they have different values for start time (P580) (and other so-called “separators”, not shown here).

which will only return the current capital, whereas if we wanted to query for all past and present capitals, we would
need a more complex query using a path expression:

SELECT ?Capital WHERE { wd:Q30 p:P36/ps:P36 ?Capital }

Note that similarly, wikibase:DeprecatedRanked statements (which we do not illustrate at this point in a sep-
arate example, but which we will get back to later) do not have a wdt: claim in Wikidata’s RDF representation.
Following the intuition that only preferred, non-deprecated, normal ranked statements without an “overriding” pre-
ferred statement are represented as wdt: triples, these wdt:statements are also called “truthy” statements in Wikidata
terminology.

Quantity values: quantity values such as numbers, dates, etc. are represented in Wikidata – yet again different
to RDFs typed literals – using a similar, specific reification mechanism, referring to properties using the separate
namespace psv: to refer to quantity values, which can have an amount and unit, referred to by special wikibase:
properties.

References: references can be given for any claims, where all such references are referred to with the prov:derived-
From property. Similar to quantity values, reference nodes are represented by hash values in a separate namespace
(wdref :), which can be further described with property-value pairs, using reference properties – identified by yet
another separate namespace (pr:).

Example 3. The upper half of Fig. 4 illustrates the modeling of quantity values in Wikidata, in this case about
Lionel Messi’s height. The lower part of the figure illustrates another heavily used feature of Wikidata, namely
references: the property “reference URL” (pr:P854) is used to provide a reference source for the quantity claim, in
the form of a URL that reported Lionel Messi’s height.

Labels and descriptions: strings used to name or describe entities, i.e., Items, Properties, or also Lexemes, in
different languages, are denoted in Wikidata’s RDF dump by language tagged literals, using the reserved properties
rdfs:label and schema:description, respectively.

Example 4. Figure 5 illustrates labels and descriptions, where English, Spanish, and Arabic labels and descriptions
for Item Q615 (Messi) are shown.

Special statements about lexemes: linguistic knowledge about lexemes plays a key role in Wikidata, and uses a
yet again dedicated representation; as a final example, we present a subgraph about the lexeme “football”, involving
its senses (ontolex:sense) and lexical forms (ontolex:lexicalForm).

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 9

Fig. 4. A subgraph containing a quantity claim about the height (P2048) of Messi, and a reference for this claim. According to an allowed-units
constraint on P2048, centimetre (Q174728) is an allowed unit for this property.

Fig. 5. A subgraph illustrating additional RDF triples for representing (multi-lingual) labels and descriptions of Wikidata entities, leveraging
RDF’s language-tagged literals.

Fig. 6. A subgraph about the English noun “football”, including normal claims, but also Wikidata-specific additional vocabulary to talk about
languages.

Example 5. As illustrated in Fig. 6, the lexeme football (L6458), is an English noun, with different senses – such
the team sports (L6458-S1) and the physical object (L6458-S2) – and forms – such as its singular (L6458-F1) and
plural (L6458-F2) forms.

As we can see in the example, lexemes can be involved in normal (wdt:) statements as discussed before, such as
carrying external identifiers in particular dictionaries, but also involve lexeme-specific statements for identifying the

10 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

Fig. 7. The Wikidata meta-model in RDF and its namespaces usage illustrated for (a) statements and claims, (b) properties, and (c) property
constraint definitions. Dashed lines represent equivalent entities. Figures 2 and 3 illustrate concrete instantiations of the “Wikidata Statement”
block (a), while Fig. 8(c) illustrates the block “property constraint definition” block (c). Abbreviations: QID = entity ID, PID = property ID.

language (dct:language), category (wikibase:lexicalCategory) and lexicographic forms and senses (prefix ontolex:).
Note that these extra statements have no statement nodes nor qualifiers, somewhat deviating from the standard
Wikidata statement model. Also observe, as opposed to language-tagged literals for labels and descriptions, these
special statements about lexemes represent the language explicitly as an item (in our example Q1860 for English).

Figure 7(a) summarizes the modeling of regular statements and ranks, including the involved namespaces, in
a more abstract manner. As shown in Fig. 7(b), the RDF model contains also triples to “navigate” between the
differently prefixed URIs per property ID (PID); we will need to make use of these connections in our modeling of
constraints in SHACL and SPARQL later on, but let us first turn to how these constraints themselves are actually
represented within RDF model.

2.2. Property constraints modeling by example

Wikidata property constraints make use of the described modeling to represent specific community-defined con-
straint types, where specific instantiations of a constraint type are defined as qualified statements on a particular
property that should fulfill this constraint. To date, Wikidata represents 32 property constraint types as subclasses
(P279) of property constraint (Q21502402). Table 2 gives an overview of all the constraint types.

Whereas each constraint type is modeled as an item – for instance, the item-requires-statement (IRS) constraint
(Q21503247), such constraint types are instantiated and parameterized specifically per property. That is, each such
instantiation is defined by a constraint-definition-statement linked to the respective constrained property P via the
property constraint (P2302) property, as illustrated abstractly in Fig. 7(c).

In terms of parameters, constraint-type specific property qualifiers are used on the constraint-definition-statement:
the overview in Table 2 list all property qualifiers that can be used per constraint type, as well as the number of
different properties that use each constraint type (from February 2023).

For instance, the item-requires-statement (IRS) constraint type (Q21503247), is used to specify that each item with
the constrained property P should also have another given property P ′. The constraint is parameterized through the
qualifiers

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 11

Table 2

Wikidata property constraints types: incl. information about their usage in constraint definitions, information about whether and how we could
express them in SHACL-Core and SPARQL, as well as which qualifiers they use (verified on the status at the writing of the paper using a
variation of this query: https://w.wiki/7KrH; the short links in the SPARQL column refer to our direct links into our Github repository, available
at https://github.com/nicolasferranti/wikidata-constraints-formalization/: besides the SPARQL formalizations you also find all corresponding
SHACL shapes (where expressible) there

ID Name SHACL-Core PropCount SPARQL Qualifiers used in descriptions

Q52004125 allowed entity types Partially 9657 Partially (https://short.wu.ac.at/pdhs) P2303;P2305;P2316;P4680;P6607

Q21510851 allowed qualifiers Not
reasonably
expressible

819 https://short.wu.ac.at/6tnv P2241;P2303;P2304;P2306;P2316;
P6607

Q21514353 allowed units Yes 509 https://short.wu.ac.at/ntff P2303;P2305;P2316;P6607

Q54554025 citation needed Yes 370 https://short.wu.ac.at/fty7 P2303;P2316;P6607

Q21510852 Commons link Yes 89 https://short.wu.ac.at/4c5k P2307;P2316

Q21502838 conflicts-with Yes 1181 https://short.wu.ac.at/6hsf P2303;P2304;P2305;P2306;P2316;
P6607;P6824;P9729

Q25796498 contemporary Yes 128 https://short.wu.ac.at/53m9 P2303;P2316;P6607

Q111204896 description in
language

Yes 7 https://short.wu.ac.at/z759 P424;P2316

Q21510854 difference-within-
range

No 9 https://short.wu.ac.at/cqrs P2303;P2306;P2312;P2313;P2316;
P4680;P6607

Q21502410 distinct-values Partially 7462 https://short.wu.ac.at/6u73 P2303;P2304;P2316;P4155;P6607

Q21502404 format Yes 7690 https://short.wu.ac.at/vfwt P1793;P2241;P2303;P2316;
P2916;P4680;P6607

Q52848401 integer Yes 183 https://short.wu.ac.at/8f39 P2303;P2316

Q21510855 inverse Yes 125 https://short.wu.ac.at/wsz9 P2241;P2303;P2306;P2316;P4680;
P6607

Q21503247 item-requires-
statement

Yes 4171 https://short.wu.ac.at/rmba (only req. prop.)
https://short.wu.ac.at/72ng (also req. val.)

P2241;P2303;P2304;P2305;P2306;
P2316;P4680;P6607

Q108139345 label in language Yes 762 https://short.wu.ac.at/cnfx P2316;P424

Q55819106 lexeme requires
language

Yes 172 https://short.wu.ac.at/68dk P2305;P6607

Q55819078 lexeme requires
lexical category

Yes 13 https://short.wu.ac.at/mne4 P2305

Q64006792 lexeme value
requires lexical
category

Yes 1 https://short.wu.ac.at/fcke P2305

Q21510857 multi-value Yes 36 https://short.wu.ac.at/8t2p P2304;P2316;P6607

Q51723761 no-bounds Yes 76 https://short.wu.ac.at/f7dw P2303;P2316

Q52558054 none-of Yes 115 https://short.wu.ac.at/48jf P2303;P2304;P2305;P2316;P6104;
P6607;P6824;P97

Q21510859 one-of Yes 222 https://short.wu.ac.at/hejz P2241;P2303;P2305;P2316;P6607

Q52712340 one-of qualifier
value property

Yes 10 https://short.wu.ac.at/nj53 P2305;P2306

Q53869507 property scope Yes 9912 https://short.wu.ac.at/pzs3 (as main value)
https://short.wu.ac.at/wxth (as qualifier)
https://short.wu.ac.at/scxh (as reference)

P2303;P2304;P2316;P4680;P5314;
P6607

Q21510860 range Yes 358 https://short.wu.ac.at/tyvx (for values)
https://short.wu.ac.at/9ggg (for dates)

P2303;P2310;P2311;P2312;P2313;
P2316;P6607

Q21510856 required qualifier Yes 391 https://short.wu.ac.at/ym6e P2241;P2303;P2304;P2306;P2316;
P4680;P6607

Q52060874 single-best-value No 207 https://short.wu.ac.at/ad6r P2303;P2316;P4155;P4680;P6607

Q19474404 single-value Partially 7254 https://short.wu.ac.at/8ds8 P2241;P2303;P2304;P2316;P4155;
P4680;P6607

https://w.wiki/7KrH
https://github.com/nicolasferranti/wikidata-constraints-formalization/
https://short.wu.ac.at/pdhs
https://short.wu.ac.at/6tnv
https://short.wu.ac.at/ntff
https://short.wu.ac.at/fty7
https://short.wu.ac.at/4c5k
https://short.wu.ac.at/6hsf
https://short.wu.ac.at/53m9
https://short.wu.ac.at/z759
https://short.wu.ac.at/cqrs
https://short.wu.ac.at/6u73
https://short.wu.ac.at/vfwt
https://short.wu.ac.at/8f39
https://short.wu.ac.at/wsz9
https://short.wu.ac.at/rmba
https://short.wu.ac.at/72ng
https://short.wu.ac.at/cnfx
https://short.wu.ac.at/68dk
https://short.wu.ac.at/mne4
https://short.wu.ac.at/fcke
https://short.wu.ac.at/8t2p
https://short.wu.ac.at/f7dw
https://short.wu.ac.at/48jf
https://short.wu.ac.at/hejz
https://short.wu.ac.at/nj53
https://short.wu.ac.at/pzs3
https://short.wu.ac.at/wxth
https://short.wu.ac.at/scxh
https://short.wu.ac.at/tyvx
https://short.wu.ac.at/9ggg
https://short.wu.ac.at/ym6e
https://short.wu.ac.at/ad6r
https://short.wu.ac.at/8ds8

12 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

Table 2

(Continued)

ID Name SHACL-Core PropCount SPARQL Qualifiers used in descriptions

Q21510862 symmetric Yes 48 https://short.wu.ac.at/7hpr P2303;P2316

Q21503250 subject type Yes 6860 https://short.wu.ac.at/v7uz (instanceOf)
https://short.wu.ac.at/wvzt (subclassOf)
https://short.wu.ac.at/eydg
(instanceOrSubclassOf)

P2241;P2303;P2304;P2308;P2309;
P2316;P4680;P6607

Q21510864 value-requires-
statement

Yes 230 https://short.wu.ac.at/4nht (only req. prop.)
https://short.wu.ac.at/aadh (also req. val.)

P2241;P2303;P2304;P2305;
P2306;P2316;P4680;P6607

Q21510865 value-type Yes 1077 https://short.wu.ac.at/3akc (instanceOf)
https://short.wu.ac.at/xaed (subclassOf)
https://short.wu.ac.at/7pv9
(instanceOrSubclass)

P2303;P2304;P2308;P2309;P2316;
P6607

Fig. 8. Example of a Wikidata property constraint and data graphs with different behaviors (as of 2022-03-29).

– property (P2306), defining the required additional property P ′, as well as
– item of property constraint (P2305), which, if provided, contains permitted values for P ′.

Example 6. Fig. 8a illustrates how these qualifiers are concretely instantiated for an IRS constraint the property P =
P1469, FIFA player ID: this instance of IRS constraint states that if an item has a FIFA player ID (P1469), this very

https://short.wu.ac.at/7hpr
https://short.wu.ac.at/v7uz
https://short.wu.ac.at/wvzt
https://short.wu.ac.at/eydg
https://short.wu.ac.at/4nht
https://short.wu.ac.at/aadh
https://short.wu.ac.at/3akc
https://short.wu.ac.at/xaed
https://short.wu.ac.at/7pv9

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 13

same item should also (i) have an occupation (P106), (ii) with one of the following four items: association football
player (Q937857), futsal player (Q18515558), beach soccer player (Q21057452), or association football manager
(Q628099); (i)+(ii) are defined through the resp. qualifiers P2306+P2305 specific to the particular constraint type.
That is, firstly, the triple

(wd:P1469,p:P2302,wds:P1469-667F9488-5C36-4E3B-BEAA-6FD5834885ED)

connects the property FIFA player ID (wd:P1469) to its constraint-definition-statement via the property property
constraint (P2302).

Further, the IRS-specific qualifier property (pq:P2306) is bound to occupation (wd:P106) through the triple:

(wds:P1469-667F9488-5C36-4E3B-BEAA-6FD5834885ED,pq:P2306,wd:P106)

whereas the respective allowed values are defined via four additional triples using the item of property constraint
(pq:P2305) qualifier, similarly illustrated in Fig. 8a.

Figures 8b and 8c presents data subgraphs for two different items, Messi (Q615) and Thiago Neves (Q370014):
both have a FIFA player ID but only the first one complies with the IRS constraint, having a valid occupation,
whereas the second one violates it.

As a second example, let us look at another constraint type, the so-called single-value constraint (Q19474404),
which imposes that property P is only allowed to have one single value unless there are different values for at least
one separator, parameterizable by the separator (pq:P4155) qualifier.

Example 7. As illustrated in Fig. 9, the property P = P36 (capital) instantiates a single-value constraint
(Q19474404). As shown in Fig. 9a, several separator (pq:P4155) qualifiers can be declared as parameters, only
one of which needs to differ, in order to fulfill the constraint, despite non-single values for P . The item USA (Q30),
shown in Fig. 3, therefore complies with this constraint since the two capitals have different start times (pq:580).
Figure 9 also illustrates, another “feature” of property constraints modeling in Wikidata, exceptions, which we will
turn to next.

Fig. 9. Another example of a Wikidata property constraint and data graphs (as of 2022-08-20).

14 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

Exceptions to constraints Using the dedicated qualifier property exception to constraint (P2303), an instantiation
of a constraint on a specific property can explicitly mention exceptions. These are items which, for various reasons
may be valid, despite violating the constraint.

Example 8. The single-value constraint on P36 in Fig. 9a, lists (amongst others) the Canary Islands (wd:Q5813) as
an exception of the single-value constraint on capital (P36), since it has two co-capitals. Therefore, the data graph
in Fig. 9b should, while not complying with the constraint, be considered an “allowed” violation.

2.3. Constraint qualifiers

We hope that the previous subsection has sufficiently illustrated the most relevant aspects of modeling and param-
eterizing property constraints. Rather than in terms of fully elaborated examples, let us summarize all mentioned
and remaining qualifiers used in the context of constraint modeling and parameterization in the following. To this
end, Table 2 provides an overview of which qualifiers are used in current descriptions of constraints of different
types. For each of the used qualifiers, we will provide a description of how they are used in the context of the differ-
ent constraint types listed in Table 2, along with specific constrained properties P , also mentioning concrete usage
examples. We present these qualifiers in three overall groups:

Core constraint qualifiers (Section 2.3.1), which are essential for modeling the semantics of constraints and for
verifying them; i.e., these will be essential for our formalization in SHACL and SPARQL.

Constraint exception qualifiers (Section 2.3.2), which essentially mark concrete items as exceptions to constraints
or deactivate whole constraints, that do not need to be verified.

Descriptive constraint qualifiers (Section 2.3.3), which have no semantic relevance for formalizing the (verifica-
tion of) constraints as such, but serve other, mostly descriptive purposes.

2.3.1. Core constraint qualifiers
– item of property constraint (P2305): Lists items expected as values, depending on the constraint type, of either

∗ Case 1: P itself, or
∗ Case 2: another path P ′ from the subject of P

Usage examples: as an example for Case 1, the one-of constraint (Q21510859) on the property sex or gender
(P21) uses qualifier P2305 to declare a list of allowed genders. Example 6 provides an instance of Case 2, where
the item requires statement (Q21503247) constraint restrict the values of property P ′ = P1469 defined via
qualifier P2306. Example 3 above illustrates another instance of Case 2: allowed units constraint (Q21514353)
use a P2305 qualifier to restrict the values of the path P ′ = p:P/psv:P/wikibase:quantityUnit to specific
quantity units; for instance, there is an allowed unit constraint on the property height (P2048), which allows
amongst others the unit centimetre (Q174728) – Fig. 4 illustrates this path.

– property (P2306): used to define P ′ as a property used to test for the existence of a path starting at the subject
or object of a constrained property P ; it is optionally combined with the Item of property constraint (P2305),
in order to also restrict the values of path P ′.
Usage examples: Besides our IRS constraint from Example 6 above, where P2305 is used to set to P ′ =
P1469 as mentioned above, as another example allowed qualifier (Q21510851) constraints restrict the usage
of certain qualifier properties on the statement nodes of values of P itself using P2306; for instance, an al-
lowed qualifier constraint on property property constraint (P2302) itself restricts the usage of qualifiers on
constraint-definition-nodes to exactly those listed here. Further, the conflicts-with (Q21502838) constraint uses
both P2306 and also P2305, to disallow conflicting properties P ′ (and potentially also their values) that conflict
with P statements.

– format as a regular expression (P1793): used only by the format constraint to express that the value of the
constrained property P should be a literal value complying with a predefined regular expression. We note that
similar to P2305, nothing prevents this qualifier from also being used in property constraints (in combination
with P2306) to restrict values of another path P ′ in the future, but we have not seen such usage yet.
Usage example: the property Spotify user ID (P11625) uses a format constraint (Q21502404) to restrict its value
to conform to the specific regular expression “[a-z\d_.-]+”, matching sequence of one or more characters that
can be lowercase letters, digits, underscores, periods, or hyphens.

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 15

– language (P424): used by label in language (Q108139345) as well as by description in language
(Q111204896) constraints, this qualifier is used to ensure the existence of either

∗ a label (i.e., the path P ′ = rdfs:label), or, resp.,
∗ a description (i.e., P ′ = schema:description)

for the subject items of constrained property P in a particular language.
Usage example: the property Library of Congress authority ID (P244) uses a label in language (Q108139345)
constraint to ensure subjects have an English label.
As an interesting side observation, we note that the similar-in-spirit lexeme requires language (Q55819106)
constraint rather uses the item of property constraint (P2305) qualifier to specify the required language, inline
with the different modeling of languages for labels and descriptions vs. lexemes, illustrated in Figs 5 and 6.

– separator (P4155): a qualifier property used by constraints that aim to check the uniqueness of the subject or
object of a statement for a given constrained property P . When a respective unique statement is expected but
multiple are found, a separator can be used to distinguish such conflicting values, which can be understood
as a composite key to uniquely identify statements [7] based on the qualifier values only. Therefore, the non-
uniqueness of all separators’ combinations should be tested to flag a violation.
Usage examples: as an illustrating example we have already discussed the separator qualifier’s use in single-
value (Q19474404) constraint, such as the instantiation on the property capital (P36) from Fig. 9: here, multiple
values are allowed as long as they have different combinations of the start time (P580) and end time (P582)
qualifiers.16 Other constraint types using this qualifier similarly include the single-best value (Q52060874)
constraint, as well as the distinct-values (Q21502410) constraint; as a side note, the latter resembles the con-
straint reading of an inverse-functional property in OWL, i.e., a value unique for this property over all Wikidata
entities.

– class (P2308) and relation (P2309): Relation and Class qualifiers are used together in subject type
(Q21503250) and value-type (Q21510865) constraints. Here, P2309 represents the expected relationship be-
tween the subject (for subject type) or object (for object type) to the set of items described by Class (P2308).
The possible values for P2309 are:17 instance of (Q21503252), subclass of (Q21514624), and instance or
subclass of (Q30208840).
Usage example: For instance, property date of birth (P569) has a subject type (Q21503250) constraint, defining
that the subjects of this property should be an instance of (Relation) human (Q5), fictional character (Q95074),
or other “classes” of living beings. Here, according to the description of the subject type property constraint,18

the “instance of (Q21503252)” relation should be interpreted as either being a direct instance of (P31) or
subclass (P279) of an instance of. The interested reader will note the resemblance to (the constraint reading
of) an rdfs:domain statement, whereas the value-type constraint is (analogously) resembling RDFS’ rdfs:range
statements; we will get back to that later.

– Range checking qualifiers: minimum value (P2313), maximum value (P2312), minimum date (P2310), and
maximum date (P2311): these all describe ranges of values or dates and are used within two constraint types,
namely range (Q21510860) and difference-within-range (Q21510854) constraints, which restrict either the
value of P , or the difference to the values of another property P ′, denoted by the above mentioned P2306
qualifier.
Usage examples: As an example, the property atomic number (P1086), representing the number of protons in
an atom’s nucleus, has a range constraint limiting the values between 0 and 155 using the P2313 and P2312
qualifiers. Likewise, a difference-within-range constraint can be found on property P = P570 (date of death)

16We note that the actual definition of the single-value constraint on P36 on Wikidata lists even more separator properties.
17I.e., note that P2309 is itself restricted by a one-of constraint, which restricts values of a property to single values of an enumeration.
18https://www.wikidata.org/wiki/Help:Property_constraints_portal/Subject_class

https://www.wikidata.org/wiki/Help:Property_constraints_portal/Subject_class

16 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

to be within −1 and 150 years19 after the above-mentioned (date of birth) property P ′ = P569, referred to with
the P2306 qualifier.

– property scope (P5314): defines the “scope” where the constraint should be checked. Such scopes are exclu-
sively used in the property scope constraint (Q53869507) type and can be identified according to the namespace
used by a property in a triple, distinguishing three cases:

∗ Case 1: “as main values”, i.e. using the namespaces for claims (p:, and for truthy statements (wdt:)
∗ Case 2: “as qualifiers”, i.e. using the pq: namespace
∗ Case 3: “as reference” (i.e., only in reference statements about claims, identifiable via the pr: namespace

Usage example: the property reference URL (P854) – which we saw used in Fig. 4 – uses a property scope
constraint, scoping this predicate to be always be used as reference, i.e., exclusively with the pr: prefix.

2.3.2. Constraint exception qualifiers
– exception to the constraint (P2303): this qualifier is used to mark a set of Wikidata entities as an exception to

the constraint, i.e., that should not be tested for violation, despite using predicate P .
Usage Example: cf. Fig. 9 above; In principle this qualifier is applicable to all constraint types, i.e., all con-
straints could list such exceptions, as we can see in Table 2 (last column) though, not all qualifiers have excep-
tions (i.e., we did not find usage of this qualifier in all constraint types).

– reason for deprecated rank (P2241): typically in combination with a wikibase:DeprecatedRank on the P2302-
linked constraint-definition-statement,20 this qualifier used to express, that a constraint is deprecated and indi-
cates the particular deprecation reason. Possible reasons include obsolete (Q107356532) and constraint pro-
vides suggestions for manual input (Q99460987). Similar to P2303 for noting exceptions, this qualifier is – in
principle – applicable to any constraints, and we indeed see it used in Table 2 with many constraint types.
Usage Examples: Previously, entities having place of birth (P19) should also have sex or gender, but currently,
this restriction is deprecated, with reason Q99460987 (“constraint provides suggestions for manual input”):
constraints of this nature should not be checked or enforced, since the constraint should be rather interpreted
as a suggestion than enforcing/restricting certain values.

2.3.3. Descriptive constraint qualifiers
– group by (P2304): a qualifier used to group violations in specific groups of Wikidata’s reports.

Usage Example: for instance, for the property population (P1082) a group by qualifier specifies that viola-
tions for the allowed qualifier (Q21510851) constraints should be grouped by country (P17), as visible in in
Wikidata’s database reports.21

– constraint status (P2316): represent the severity degree of a constraint as mandatory (Q21502408), suggested
(Q62026391), or normal (no declared constraint status).22

Usage Example: For example, the subject type constraint on property academic degree (P512) states that it is
mandatory, that all the subjects be an instance of human, fictional character, or person. On the contrary, the
above-mentioned subject type constraint on date of birth (P569), does not have an explicit status (and therefore
should be considered a “normal” constraint).

– constraint clarification (P6607) and syntax clarification (P2916): both represent text descriptions for con-
straints. Constraint Clarification was originally created to describe the purpose of the constraint for a property.
We note that, while we see it used in the context of most constraint types (cf. Table 2) – at the time of writing –

19year (Q577) is again a type of quantityUnit in Wikidata, similar to the “centimetre” unit mentioned in Fig. 4. While we do not detail unit
conversion with SHACL and SPARQL, or likewise, interval duration computation between dates in the present work, we refer to preliminary
work under submission for the Wikidata 2023 workshop [60] that points in this direction, proposing a resp. query rewriting approach.

20Just like any other “regular” claims about Items, constraint-definition-statements about Properties also have a wikibase:rank; notably, at the
time of writing, we found 5 constraint definitions using qualifier P2241, while actually having a non-deprecated rank, cf. https://w.wiki/7MW9.

21https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/P1082
22Notable, at the time of writing, there were 17 property constraint definitions with a different status, cf. https://w.wiki/7KfY, and indeed the

allowed statuses are not restricted by a constraint themselves.

https://w.wiki/7MW9
https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/P1082
https://w.wiki/7KfY

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 17

only 865 out of 72,339 constraint definitions in total actually had such a clarification.23 It is also used to de-
scribe suggested repairs in textual form. Syntax Clarification provides a textual description of the regex syntax
of a value and is to be used in combination with the above-mentioned format as a regular expression (P1793)
qualifier as documentation.
Usage Examples: For instance, a none-of constraint (Q52558054) for country of citizenship (P27) lists several
“Pokemón regions”, such as Kanto (Q1657833), that should not be used, where the additional P6607 clarifies
that “It’s not always clear in Pokémon canon if regions are part of a larger country or are countries in and of
themselves.”

– replacement property (P6824) and replacement value (P9729): Both these qualifiers represent suggestions
to fix inconsistencies, rather than to test/verify them; while replacement property suggests the replacement of
constrained property P by another property, replacement value recommends using a specific value (a Wikidata
concept or literal) instead of the current one.
Usage Example: for instance, the property country (P17) uses a conflicts-with constraint, in combination with
item of property constraint (P2306) qualifiers listing values

∗ musical group (Q215380)
∗ musical ensemble (Q2088357)
∗ musical duo (Q9212979)
∗ musical trio (Q281643)

stating that entities that are instances of these values24 should not use country, but – using the the mentioned
replacement property (P6824) qualifier – rather the property country of origin (P495).25

2.4. Additional challenges in understanding and verifying the semantics of constraints

The above summary of the used qualifier properties to parameterize constraints should have illustrated that the
semantics of Wikidata’s vocabulary used to describe constraints are not always uniquely determined: indeed, the
interpretation of constraint qualifiers depends on (i) in which context (ii) in which particular combination with other
qualifiers, they are used (iii) in particular constraint types.

Before we continue in Section 3 with more details on how these qualifier properties are interpretable as param-
eters in SHACL-Core shapes for verifying different constraint types, let us discuss some additional challenges that
potentially complicate these formalizations, and motivate our idea to design bespoke translations per constraint type.

The above description of Wikidata property constraints modeling in RDF defines how constraints are represented
but not how they should be checked. To understand how to check constraints, a description property (schema:de-
scription) is provided along with the described at URL (P973) property, indicating a link to a page that describes
the constraint. The vast majority of Wikidata constraint types (more precisely, 28 out of 32) have such a “Help”-
page .26 As these pages contain descriptions in natural language, they are often subject to ambiguity and different
interpretations. Indeed, one of the main challenges when formalizing constraint types was the understanding of the
semantics behind the constraint.

It is important to note here that the Wikidata community has defined all existing property constraint types in a
manner where these types and their modeling have grown organically. In our formalizations of such constraints,
we tried to stay as close as possible to the – partially heterogeneous – interpretations derivable from the natural
language descriptions of constraint types. We could find and document several cases of textual ambiguity, leaving
room for different interpretations and as a result, for different implementations of the respective constraint checks.
We illustrate some of these issues.

23https://w.wiki/7Kgs
24i.e., additionally using qualifier property (P2305) restricting P ′ to instance of (P31).
25 Interestingly, other sub-types of musical ensembles, such as string quartet (Q207338) are not explicitly listed in this conflicts-with con-

straint.
26The description page of our running example item-requires-statement is available at https://www.wikidata.org/wiki/Help:Property_

constraints_portal/Item.

https://w.wiki/7Kgs
https://www.wikidata.org/wiki/Help:Property_constraints_portal/Item
https://www.wikidata.org/wiki/Help:Property_constraints_portal/Item

18 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

2.4.1. (Non-)consideration of subclasses and subproperties
Let us first note that in Wikidata constraint type descriptions, it is rarely explicitly/uniformly specified whether

subclass of (P279) relationships should be interpreted transitively, or whether instance of (P31) relationships should
also affect instances of (transitive) subclasses.

Indeed, some of these constraints resemble known RDFS axioms: for instance, the subject type constraint
(Q21503250) is logically equivalent to the constraint reading of an rdfs:domain statement, which intuitively
poses restrictions on the entities allowed in the domain of the property P . Analogously, the value-type constraint
(Q21510865) resembles rdfs:range.

For instance in our formalizations of the subject type constraint (Q21503250), and likewise the analogous value-
type constraint, we took a choice interpreting the relationship (pq:2309) instance of (Q21503252) as a property path
wdt:P31/wdt:P279*, i.e., including transitive “subclass of”-reasoning. Note this is similar to the RDFS encoding by
query rewriting in [11]. This particular interpretation was driven by the following natural language description on a
separate Help-page for Q21503250:27

“Subclass relations according to subclass of (P279) are taken into account: if a constraint demands that an
item should be an instance of building (Q41176), it is not a violation if the item is an instance of skyscraper
(Q11303), because there is a subclass of (P279) path from skyscraper (Q11303) to building (Q41176). (If an
indirect relation should not be permitted, item-requires-statement constraint (Q21503247) can be used.)”

The interested reader might have noted the last sentence in parentheses, which indirectly informed our respective
interpretation of IRS constraints (Q21503247). Here we did not consider subclasses of instances, in case an IRS
constraint via qualifier (P2306) requiring the subject to be an instance of (P31) a particular value (via qualifier
P2305). Interestingly, at the time of writing, more than 1000 IRS constraints refer to property P31 (via the P2306
qualifier) and a specific class:28 whether each of the authors of these IRS constraints was aware of the implicit
choice to only consider direct instances here, and no instances of subclasses, remains unclear to us.

This potential issue is, by the way, not restricted to IRS constraints, cf. Footnote 25 on p. 17, which illustrates a
similar questionable example for the potential non-consideration of subclass-inferencing in the context of a conflicts-
with constraint.

Along these lines, similar issues of interpretation may arise, in the context of (sub-)properties (P). Recall the al-
lowed qualifiers constraint (Q21510851) states that when using a particular property, only a limited set of properties
can be used as qualifiers through the reification mechanism: for instance, the capital (P36) property has an allowed
qualifiers constraint permitting start time (pq:580) and end time (pq:582) qualifiers.

Yet, the claim that Stralsund (Q4065) was the capital of Swedish Pomerania (Q682318) until 1815 is considered
a violation of this constraint since the temporal range end (P524) qualifier is used to mark the end of the period.
The Wikidata UI reports a violation, although P524 is a subproperty of P582, i.e.,

(wd:P524, wdt:P1647, wd:P582)

We consequently do not consider (transitive) subproperty relationships in our formalization, in line with the observed
behavior within Wikidata: indeed, although subproperty of (P1647) is semantically similar to subclass of (P279)
when it comes to the hierarchy of properties, the page that describes the allowed qualifiers constraint29 does not
mention the use of the subproperty hierarchy.

2.4.2. Interpreting separators
The description page for single-value constraint states:30

“specifies that a property generally only has a single value. [. . .] A qualifier can be defined as a separator
(P4155). This allows for multiple values when using such qualifiers. [. . .] If specified, multiple statements with

27https://www.wikidata.org/wiki/Help:Property_constraints_portal/Subject_class
28https://w.wiki/7Gd4
29https://www.wikidata.org/wiki/Help:Property_constraints_portal/Qualifiers
30https://www.wikidata.org/wiki/Help:Property_constraints_portal/Single_value

https://www.wikidata.org/wiki/Help:Property_constraints_portal/Subject_class
https://w.wiki/7Gd4
https://www.wikidata.org/wiki/Help:Property_constraints_portal/Qualifiers
https://www.wikidata.org/wiki/Help:Property_constraints_portal/Single_value

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 19

the same value do not constitute a violation of this constraint as long as they have different qualifiers for the
properties specified here.”

We emphasize that this leaves room for interpretation. I.e., possible interpretations include:

I1 Values to be considered different if they use different values for all (common) qualifier properties.
I2 Values to be considered different if they use different values for some (common) qualifier.

indeed, the latter interpretation (I2) is the correct one as we found out mostly experimentally, checking respective
(non-)violations on specific Wikidata items.

2.4.3. Handling exceptions, deprecated, or suggested constraints
It is arguable whether we should consider exceptions – marked as Exception to the constraint (P2303) – in

our formalisation: while exceptions are indeed not marked as violations in the UI, we cannot for sure determine
whether they are counted in the Wikidata Database Reports: the reports only contain aggregated counts of constraint
violations, but not all single violations are linked from the database reports pages. We will therefore discuss handling
of exceptions as an optional “feature” in our formalization.

Deprecated Constraints are, interestingly, still being tested and reported by Wikidata’s Database Reports; like-
wise, no distinction is made on the constraint status – denoted by constraint status (P2303) – in the reports; our
formalization therefore will consider violations independent of their status. As an interesting side note, we refer
to the fact that there are various constraint definitions that report a reason for deprecated rank (P2241) while the
constraint definitions themselves have a non-deprecated rank.20 We consequently decided not to treat deprecated
constraints, nor constraints with a non-normal status in any special way in our formalisation.

2.4.4. Differences in Wikidata RDF serialization
Another remarkable finding arose for us when taking a closer look at allowed entity types (Q52004125) con-

straints; as per its description, this type of constraint limits the subject of a respective property to certain listed entity
types, such as:

– Wikibase Item (wikibase:Item / wd:Q29934200);
– Wikibase property (wikibase:Property / wd:Q29934218);
– Wikibase MediaInfo (wikibase:MediaInfo / wd:Q59712033);
– Lexeme (ontolex:LexicalEntry / wd:Q51885771);
– Sense (wikibase:Sense / ontolex:LexicalSense / wd:Q54285715);
– Form (wikibase:Form / ontolex:Form / wd:Q54285143); or also
– Wikidata Item (wd:Q16222597).

Notably, though, these types can only be partially checked, depending on the RDF serialisation, for various
reasons:

– incoherent serialisation with respect to different entity types;
– differences between RDF serialisations on the SPARQL endpoint vs. RDF dumps;
– checks requiring unintuitive workarounds

Incoherent serialisation with respect to different entity types : neither the entity types that are part of the Wikibase
base ontology (wikibase:-prefixed nor the wd:-prefixed types) appear consistently in neither Wikidata’s RDF
export nor on the Wikidata endpoint. For instance, while, on the one hand, the query

SELECT * { ?s a wikibase:Property }

returns over 10000 results (apparently covering all properties), on the other hand, the query

SELECT * { ?s a wikibase:Item }

returns 0 results on the Wikidata SPARQL endpoint.

20 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

Differences between RDF serialisations: In addition, interestingly, there are apparently even differences in Wiki-
data’s RDF serialization via RDF dumps (cf. Footnote 12) vs. the RDF triples served on the public SPARQL end-
point. For instance, as manually verified, Wikidata’s RDF latest N-Triples RDF dump did not contain any triples
using the ontolex: prefix, whereas on the SPARQL endpoint, apparently respective triples are present.31

Checks requiring unintuitive workarounds The documentation of Wikdata’s query service32 suggests some al-
ternative workarounds to match certain Wikibase entity types, arguing that the respective direct triples have been
omitted for performance reasons: for example, to filter for wikibase:Senses in the Wikidata query service, it is
necessary to use ontolex:LexicalSense instead. As mentioned above, this workaround does not function on
the RDF dumps, where ontolex:LexicalSense is also omitted. As a second example of such a workaround,
the documentation suggests to “use wikibase:sitelinks [] instead of a wikibase:Item” in order to
filter for items on the SPARQL query service, since “only items have a number of sitelinks”.

Indeed, these subtleties and incoherence within Wikidata’s RDF serialization(s) make it hard to define generic
parameters to test allowed entity types constraints automatically, forcing case-by-case implementations (either in
terms of SHACL shapes or in a SPARQL query), depending on whether working on the SPARQL endpoint or on
Wikidata’s RDF dump.

In the context of this paper, we have designed both our SHACL-Core formalization (cf. Fig. 12 below) of allowed
entity types (a)s well as the respective SPARQL query (cf. the query referenced in first line of Table 2) to conform
with the data available in the Wikidata query service, implementing all documented workarounds.

In summary, all of these examples and issues should motivate the following disclaimer: the SHACL-Core shapes
and SPARQL queries proposed in this paper were created from the available descriptions and aim to reduce the
margin of interpretation in dealing with Wikidata constraints while keeping as close as possible to the documented
interpretations. As such, all our SHACL and SPARQL formalizations discussed in the following Sections 3 and 4
(and linked from Table 2) reflect our best-effort interpretations of the respective natural language definitions. Yet,
the goal and scope of our work is to contribute to these interpretations in an unambiguous, declarative manner.

3. Expressing Wikidata constraints with SHACL

In this section, we will present Wikidata property constraint types in terms of SHACL shapes, i.e., deploying the
official W3C standarised language to express constraints on RDF graphs.

To this end, we will first provide some necessary background on RDF and SHACL, introducing some notions
that will be useful in the rest of the section (Section 3.1), whereafter we will dive into details of formalization and
expressibility of particular Wikidata property constraint types (Section 3.2), again mostly driven by examples; for a
full list of SHACL formalizations per constraint type, we refer to Table 2.

3.1. SHACL validation

The SHACL standard specifies constraints through so-called shapes, which are to be validated against an RDF
graph. SHACL shapes themselves are represented as RDF Graphs, and may contain a wide variety of constraint
components that allow the construction of possibly complex expressions to be checked over the input data. As usual
in the majority of the SHACL works, in this paper, we focus on the core constraint components of SHACL and
refer to it as SHACL-Core; an extension to this core language that allows the addition of full SPARQL queries for
constraint checking will be introduced later, in Section 3.4.

A shapes graph contains shapes paired with targets specifying the focus nodes in the RDF graph that should be
checked for validation. In a nutshell, an RDF data graph validates a shapes graph if these targets conform with the
constraints specified in the corresponding shape. We illustrate these notions with a first example of a shapes graph
implementing an item-requires-statement constraint type.

31For instance, the SPARQL endpoint returned over 13M instances of ontolex:Form at the time of writing, cf. https://w.wiki/8hku.
32https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format#WDQS_data_differences

https://w.wiki/8hku
https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format#WDQS_data_differences

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 21

Fig. 10. SHACL shape item-requires-statement constraint for the (a) FIFA player ID (wdt:P1469) and (b) a variant with exceptions.

Example 9. The shapes graph in Fig. 10a describes the shape :P1469_ItemRequiresStatementShape, which defines
its targets as nodes in the subject of the wdt:P1469 property (line 3), that is, nodes that have a wdt:P1469-outgoing
edge. Intuitively, a data graph validates this shapes graph if each target node has at least one wdt:P106-edge to one
of the nodes (constants) listed in sh:in (lines 7 and 8).

Consider the RDF graph represented by Fig. 8b:33 this data graph clearly validates the shapes graph. Intuitively,
Lionel Messi (i.e., wdt:Q615) is the only target node and it has an occupation-edge to wd:Q937857 (association
football player), which is indeed included in the list provided in the constraint.

This is not the case for the RDF graph in Fig. 8c, since Thiago Neves has only one occupation-edge to a node
that is not listed in the constraint. However, this second data graph validates the shapes graph shown in Fig. 10b:
toughly speaking, this variant of the original shape relaxes the constraint with an additional sh:or component stating
an exception for the target node Thiago Neves (wd:Q370014).

Overall, the shapes introduced in Example 9 define exactly the intended semantics of the item-requires-statement
constraint represented in Fig. 8a, where we already give a hint, that even optional exception handling can be easily
expressed in SHACL-Core.

The SHACL specification allows for shapes to refer to other shapes which may result even in cyclic references
and recursive constraints. In this context, we note that the official specification only provides semantics for non-
recursive constraints, therefore, in line with our goal, to create shapes with standard validators, we may consider it
as a requirement to avoid such recursive shapes. Indeed, the shapes that we obtain in this paper are all non-recursive;
the fact that current Wikidata property constraints apply locally (per Subject Item) and do not transitively or even
recursively depend on the fulfillment of other constraints, plays in our favor: as our example shows, we can express
an item-requires-statement, and as we will show most other constraint types, in single shapes.

The constructs defining a shapes graph can syntactically be viewed as concepts in expressive Description Log-
ics [9], a well-known family of decidable fragments of first-order logic. That is, the shape components can be
viewed as logical constructs, such as existential and universal quantifications, qualified number restrictions, con-
stants, or regular path expressions. For instance, the shapes graph in Fig. 10a can be expressed as the tuple con-
taining the target t = ∃wdt : P1469.� and DL concept: ϕ = ∃wdt : P106.({wd : Q937857} ∨ {wd : Q18515558} ∨
{wd : Q21057452} ∨ {wd : Q628099}) defining the shape P1469_ItemRequiresStatementShape. The validation test
can intuitively be viewed as the concept inclusion t 	 ϕ evaluated over the input data graph, that is checking
whether the nodes obtained from the evaluation of the target expression t over the data graph are included in the
evaluation of the shape expression ϕ over the data graph. For details on a formal logic-based representation of the
syntax and semantics of SHACL-Core, we refer to [21]. The complete list of all SHACL constraint components

33Note that the nodes and edges are labeled with both names and their (namespace-abbreviated) URIs, but we assume the corresponding RDF
graph is implicitly clear to the reader.

22 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

and their semantics can be found in the W3C SHACL specification.34 We will present and introduce further these
components in Section 3.2 as needed.

3.2. Mapping Wikidata constraints to SHACL-Core

Let us proceed to describe more systematically now, how Wikidata property constraints can be translated to
SHACL-Core shapes.

The targets of property constraints in Wikidata are always the subjects of the resp. constrained property P , i.e.,
we can use uniformly use SHACL-Core’s sh:targetSubjectsOf construct, to define target nodes across all
our formalizations of various constraint types.

Constraint types requiring the existence of a specific statement, such as our running example’s item-requires-
statement constraint (and, likewise required qualifier constraints, one-of constraints. . .), are naturally captured by
SHACL-Core constraint components. Roughly speaking, these types of constraints can be represented by choos-
ing a target node, verifying the existence of an sh:path, and, possibly, verifying the existence of a value using
sh:minCount 1 or a qualified minimum count sh:qualifiedMinCount 1, as shown above.

On the contrary, constraints forbidding certain statements, such as conflicts-with, or likewise property scope
constraints can modeled analogously with a combination of sh:path and sh:maxCount 0. As an example let
us illustrate a simple conflicts-with (Q21502838) constraint for the property family name (P734); according to the
constraint property, it should not be used together with the property P1560 (given name version for another gender),
as expressible concisely in the following SHACL shape:

Further building upon and extending the discussion of Example 9, we discuss and illustrate translations to SHACL
guided by the constraint qualifier properties to parameterize them in the following, where we go through the con-
straint qualifiers in the same order as in Section 2.3.

– item-of-property-constraint (P2305) and property (P2305): We note that Example 9 clarifies that it is possible
to encode allowed values in SHACL, something that was considered uncertain in [55]: indeed, amongst the
qualifier parameters in constraints, discussed in all values of the item-of-property-constraint (P2305) qualifier,
can be turned into an sh:in expression (lines 7–8 in Fig. 10a); the respective property (P2306) qualifier
is captured by an sh:path, where the respective path existence requirement for P ′ = implied by the IRS
constraint can be implemented by means of the sh:qualifiedMinCount 1 restriction on this path (lines
5 and 10 in Fig. 10a). Obviously, arbitrary instantiations of IRS constraints can be turned into SHACL-Core
shapes analogously, by collecting the resp. P2305 and P2306 qualifiers as parameters.
As noted in Section 2.3.1, the P2306 qualifier may also in the context of other constraint types, refer to
more generic paths P ′, likewise expressible through sh:path which indeed can represent arbitrary regu-
lar paths, for instance, the following shape for representing the afore-mentioned allowed units constraint on
height (P2048), illustrates this in line 5:

34https://www.w3.org/TR/shacl/#core-components

https://www.w3.org/TR/shacl/#core-components

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 23

where the listed allowed units in line 6 denote milimtre (Q174789), centimetre (Q174728), metre (Q11573),
etc.

– format as a regular expression (P1793)): in SHACL, this qualifier can be expressed through the sh:pattern,
illustrated for the afore-mentioned Spotify user ID (P11625) property as follows:

– language (P424)): the following example shape illustrates how this qualifier can be expressed through the
sh:languageIn construct in SHACL, for the afore-mentioned Libary of Congress authority (P244) property
as follows:

– separator (P4155): To the best of our knowledge, there is no direct equivalent SHACL-Core component to
model composite keys, i.e., we cannot directly express respective constraint types such as single-value con-
straints, in case they use the separators; while a simplified version of a SHACL-Core shape to express a single-
value constraint without separators is illustrated in Fig. 13a below, let us defer the discussion about expressing
separators to later for now.

– class (P2308) and relation (P2309): in general, the SHACL component sh:class can be used to check the
type of an item, also including hierarchical inference to check instances of subclasses. Yet, the subclasses
mechanism is based on rdfs:subClassOf and rdf:type and requires an adaptation to work with WD’s wdt:P279
and wdt:P31: instead, in our formalization we use a sh:path together with sh:hasValue or sh:in for
instance to encode subject type constraints (where, if you recall, we need to check the path wdt:P31/wdt:P279*
for testing with an instanceOf relation), as illustrated by the following example:

– Range checking qualifiers: in SHACL range restrictions are representable with the sh:minExclusive and
sh:maxExclusive construct for open intervals, and sh:minInclusive and sh:maxInclusive for
closed intervals; we illustrate the use of these in a shape to validate a range constraint on the afore-mentioned
atomic number (P1086) property:

24 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

– property Scope (P5314): When creating a corresponding SHACL Shape for a constraint using this qualifier, we
exploit the finite number of used namespaces in the Wikidata RDF dump, and explicitly disallow the respective
non-allowed prefix(es) with separate shapes, with SHACL-Core’s sh:maxCount construct set to 0; different
disallowed uses are conjoined by sh:and. For instance, the following shape implements the property scope
constraint on reference URL (P854), disallowing its use both in the wdt: and pq: variant, respectively:

This concludes the discussion of the treatment of core constraint qualifiers (Section 2.3.1) in our translation:
essentially, we have created templates for each constraint type using SHACL-Core expressible constraint qualifiers.
I.e., these templates can be instantiated with the respective qualifiers used as parameters in an automated fashion.
Before we present a prototype implementing this automatic translation in the next subsection (Section 3.3), let us
also briefly elaborate on the treatment of constraint exception qualifiers (Section 2.3.2) and descriptive qualifiers
(Section 2.3.3), which, as we will see, also partially can be cast into respective SHACL-Core constructs.

– exception to the constraint (P2303): we note that Shenoy et al. [55] argue that it is unclear if SHACL can
encode exceptions in property constraints, yet single exceptions to constraints turn out to be easily expressible
in SHACL-Core: based on our running IRS example (Example 9), and its initial SHACL-Core formalization
depicted in Fig. 10a, let us suppose that Thiago Neves (Q370014) is the single exception to the constraint; as
we already discussed a simple combination of the sh:or and sh:in constructs can emulate such exception,
validating the respective excepted target nodes, illustrated in Fig. 10b (lines 4+5). Again, this template “recipe”
is applicable to any constraints that list explicit exceptions.

– reason for deprecated rank (P2241) and wikibase:DeprecatedRank: Despite SHACL’s boolean component
sh:deactivated would allow disabling a shape, we note that it is not possible to represent specific deprecation
reasons with this SHACL property. While similar to the descriptive qualifiers below, we could leverage addi-
tional SHACL-Core constructs such as sh:description or likewise rdfs:seeAlso, we do not treat this
qualifier explicitly in our current translations.

– group By (P2304): Despite SHACL-Core has a component sh:group to indicate that a shape belongs to a
group of related property shapes, this construct does not serve to split violations found by the same shape into
different groups based on a specific property; as such, we deem the P2304 by qualifier, which anyway does
not carry semantic meaning in terms of verifying violations, not directly representable in SHACL and do not
consider it explicitly in our translation either.

– constraint status (P2316): the most similar SHACL construct that can be used to express status in the spirit of
P2316 is sh:severity which allows one of the three possible severity degrees: sh:Info, sh:Warning, or sh:Viola-
tion; we could, for instance mark “mandatory” constraints as sh:Violation as follows.

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 25

Yet, along the lines of our discussion in Section 2.4.3 above, where we remarked that Wikidata does not seem
to make an explicit distinction between constraint statuses in its Database Reports, we also do not consider the
constraint status (P2316) in our translation.

– syntax clarification (P2916) and constraint clarification (P6607): Although these qualifiers do not have any
formal meaning, we can use the SHACL component sh:description to provide descriptions of the respective
property in a given context, in natural language. We illustrate this with the following example:

– replacement property (P6824) and replacement value (P9729): SHACL components are designed to capture
inconsistencies but not to directly provide “hints” to fix them, i.e., this kind of information present in Wikidata
property constraints can not be represented with SHACL explicitly; however, we note at this point that this
qualifier information could inform choosing/computing specific repairs (as, for instance, recently discussed
in [4,5]).

In summary, by “templating” the respective qualifier parameter translations from Wikidata’s constraint repre-
sentation to SHACL shapes based on the illustrating above examples, we can cover most constraint types, and –
additionally carry over also some useful descriptive information to dedicated SHACL-Core constructs, that are not
strictly needed for validation as such, but can be used by validators to generate explaining output.

A prototype, reading constraint definitions in Wikidata’s representation and accordingly creating their shapes rep-
resentation on-the-fly is presented in Section 3.3 below. Table 2 presents the entire set of analyzed constraint types,
their Wikidata IDs, as well as a column to state whether it was possible to map the constraint type to SHACL (and
SPARQL, respectively, see Section 4). The particular SHACL encodings, created by using the above-introduced
“mappings” between Wikidata qualifiers and SHACL-Core components, can be found in an online GitHub reposi-
tory accompanying our paper.35

3.3. Tool to automatically convert Wikidata constraints to SHACL

In order to demonstrate the feasibility of an automated translation, we developed wd2shacl, a demo tool to au-
tomatically convert constraints from the Wikidata model to the corresponding SHACL shape (for those that could
be represented). This allows for the creation of a large, real-world SHACL benchmark from Wikidata, thus also
addressing the scarcity of respective benchmarks for SHACL-Core currently available. Wd2shacl allows testing
Wikidata property constraints with SHACL validators and generates verifiable shapes for any Wikidata property,
extracting its associated constraints.

In a nutshell, we first generalized the example SHACL shapes (such as the one in Fig. 10a to become templates
for specific constraint types, e.g. by replacing the specific qualifier values assigned to a single property, illustrated
by the following “template abstraction” for IRS constraints:

35https://github.com/nicolasferranti/wikidata-constraints-formalization

https://github.com/nicolasferranti/wikidata-constraints-formalization

26 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

Fig. 11. Wikidata to SHACL architecture. Dashed lines represent abstract classes.

Our wd2shacl tool then populates these templates according to the actual qualifier values instantiated for a specific
property P . The architecture of wd2shacl is shown in Fig. 11. As input, we provide the P = PID of the desired
property. The controller (WdToShaclController) uses a data extractor to collect all constraint types from the property,
as well as the respective qualifiers describing them. The data extractor (wikidataDataExtractor) directly queries the
respective qualifier statements from a Wikibase instance via SPARQL, where our current implementation directly
uses Wikidata’s endpoint (WikidataOnlineEndpointExtractor). Alternative inherited extractor classes can be created
to consume data from an RDF dump in a predefined format if necessary (e.g. to query from HDT archived versions of
Wikidata36), or from another endpoint, for instance, to query alternative Wikibase instances. Indeed, other Wikibase
instances, such as the EU Knowledge Graph37 re-use the Wikidata property constraint mechanism and could be
likewise checked using the tool via such alternative extractors.

After collecting constraint types and qualifiers for the input property P , the controller instantiates the template
to create respective SHACL constraints for the extracted applicable constraint types. A specific class (a concrete
subclass of ConstraintType) is implemented for each SHACL-expressible constraint type to create the SHACL
shape by combining the template with the given qualifiers. The controller returns the populated SHACL templates
as SHACL Turtle files, containing the required prefixes and a list of SHACL shapes, written using SHACL-Core
language, for all the translatable constraint types associated with the input PID. The tool is freely available online
within our GitHub repository.38

3.4. Limitations of SHACL-Core for checking Wikidata constraints

As shown in Table 2 the vast majority of Wikidata constraint types can be rewritten into SHACL-Core Shapes
(26 out of 32); yet, three could only be partially translated, one cannot be expressed in a reasonable way, while for
further two we did not find any way to express them in SHACL-Core at all. Let us discuss these, and the involved
challenges in more detail:

– difference-within-range (Q21510854): not expressible
– allowed qualifiers (Q21510851): not reasonably expressible
– allowed entity type (Q52004125): only partially verifiable
– single-value (Q19474404): only partially expressible
– distinct-values (Q21502410): only partially expressible
– single-best-value (Q52060874): not expressible

36Available at https://www.rdfhdt.org/datasets/.
37https://linkedopendata.eu/wiki/The_EU_Knowledge_Graph
38https://github.com/nicolasferranti/wikidata-constraints-formalization/tree/main/shacl-generator

https://www.rdfhdt.org/datasets/
https://linkedopendata.eu/wiki/The_EU_Knowledge_Graph
https://github.com/nicolasferranti/wikidata-constraints-formalization/tree/main/shacl-generator

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 27

Firstly, the difference-within-range (Q21510854) constraint requires the difference between two values to be
calculated and compared to a predefined range. Despite SHACL-Core having components to check for equalities
(sh:equals) and inequalities (sh:disjoint, and sh:lessThan), arithmetic operations for computing dif-
ferences are not included, which yields SHACL-Core unusable for expressing this constraint.

Next, the allowed qualifiers (Q21510851) constraint is also not directly/reasonably expressible in SHACL-Core.
This constraint type specifies that only the listed qualifiers should be used when a certain statement is made, meaning
that the use of all other qualifiers is disallowed. The problem here lies in the fact that SHACL-Core does not have
direct means to query non-allowed paths (e.g. by referring to a path/property via a specific type).39 We present an
admittedly “clumsy” workaround, i.e., listing all non-allowed qualifiers explicitly in our GitHub repository.40 Apart
from the ridiculous length of the resulting shape description, this approach seems impractical as it does not depend
on the data graph and parameters describing the constraint itself, but on a complete list of qualifiers in Wikidata
(reduced by those provided as parameters).

The allowed entity type (Q52004125) originally seemed easily expressible in SHACL-Core to us. However, as
mentioned in Section 2.4.4, it needs a number of workarounds to be executable on Wikdata’s query service (and
might not generalise to other Wikidata RDF serialisations). Figure 12 shows a respective translation of an allowed
entity type constraint on the property object has role (P3831), restricting its subjects to the following entity types:

– Wikibase item
– Wikibase MediaInfo
– Wikibase lexeme
– Wikibase form
– Wikibase sense
– Wikibase property

Fig. 12. SHACL-Core shape for verifying an allowed entity type (Q52004125) constraint on property object has role (P3831) , incl. workarounds
defined in Wikidata’s query service documentation to check entity types missing in the RDF serialization (cf. Section 2.4.4).

39We leave it as an open question at this point whether there exists a more concise formulation in terms of more complex, possibly nested
SHACL Shapes.

40Don’t try this at home! https://github.com/nicolasferranti/wikidata-constraints-formalization/blob/main/constraints-formalization/
allowed%20qualifiers/shacl_shape_P6.ttl.

https://github.com/nicolasferranti/wikidata-constraints-formalization/blob/main/constraints-formalization/allowed%20qualifiers/shacl_shape_P6.ttl
https://github.com/nicolasferranti/wikidata-constraints-formalization/blob/main/constraints-formalization/allowed%20qualifiers/shacl_shape_P6.ttl

28 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

The last three constraint types in our problematic list (single-value (Q19474404)) distinct-values (Q21502410),
and single-best-value (Q52060874)) are those using the separator (P4155) qualifier. We recall from Section 2.4.2
this qualifier is difficult to express in itself.

On the contrary, it is straightforward to verify the uniqueness or difference of a property value with respect
to the claimed subject in the absence of separators: as such, both (single-value (Q19474404)) and distinct-values
(Q21502410) constraints are easily expressible in SHACL-Core, as long as they do not specify separators. We
illustrate this with a simple single-value “shape” in Fig. 13a.

The scenario changes though when a separator qualifier property is introduced. According to both possible inter-
pretations I1 and I2 it is necessary to compare the values obtained through (shared) separators to assess uniqueness.
However, it is not possible to compare the values of different paths that correspond to unique combinations of
separators in SHACL-Core, i.e., it is not possible to distinguish different nodes matching the same regular path
expression.

To illustrate this, consider again the instantiation of the separator qualifier for the single-value (Q19474404)
constraint on the property capital (P36) from Fig. 9. In order to not have to distinguish between I1 and I2, it is
sufficient to discuss the case with at most one separator here (i.e., a simplification of the actual constraint which
(possibly) also involves other separator qualifiers). Intuitively speaking, a data graph validates this constraint if, for
each node a of the graph, the following conditions hold: (i) node a has at most one capital-outgoing edge to a node
that does not have separators defined, and (ii) if node a has capital-outgoing edges to two distinct nodes, then they
must have start time edges and they must not have the same filler node for the start time edges. . . Clearly, (i) is easily
representable in SHACL-Core by a combination of sh:maxCount 1 and negation sh:not:. E.g., in abstract syntax, the
shape expression could be represented by the DL concept: �1 capital.(¬∃start time). However, to express condition
(ii), we need mechanisms for identifying nodes along a path and for asserting identity properties on them, which are
not supported in standard DLs. There has been significant research to extend DLs with identification constraints [17]
or some sophisticated forms of path-based identification constraints [16]; the latter allows to consider complex paths
with possibly inverse and non-functional properties, such as those in the Wikidata constraints. However, to the best
of our knowledge, these DL extensions are not covered in SHACL-Core.

Therefore, the variants of all three, single-value (Q19474404)) distinct-values (Q21502410), and single-best-
value (Q52060874) constraints which include separators cannot be represented in SHACL-Core. We additionally
mention that, for analogous reasons, the single-best-value (Q52060874) constraint, used to specify that the property
P shall only have a single value claim marked with wikibase:BestRank as wikibase:rank, is not expressible in
SHACL-Core either, even without separators, due to a similar dependence on the rank.

We show in the next section how these remaining constraint types can be expressed with formalisms beyond
SHACL-Core.

3.5. Beyond SHACL-Core: SHACL-SPARQL

Beyond its core language, SHACL provides a mechanism to refine constraints in terms of full SPARQL queries
through a SPARQL-based constraint component (sh:sparql). In order to illustrate this feature, we refer to Figs 13a
and 13b: both these SHACL shapes have the same semantics, while the shape in Fig. 13a uses only SHACL-Core
language components, the one in Fig. 13b uses the sh:sparql extension to state that only one value is expected by
means of a SPARQL query (starting at line 6): here, the reserved variable ?this refers to the target node, whereas
the variables ?path and ?value denote the path and value pointing to a violation. We further demonstrate the
versatility of this extension by gradually refining the query of Fig. 13b.

Figure 13c extends the SHACL-SPARQL shape the existence and – in case – equality of the start time (P580)
qualifier, thereby implementing an extension towards handling a single separator.

However, as there may be several qualifiers, this shape is not sufficient. Figure 13d generalizes the SHACL shape
to consider as violations entities that have qualifiers any with equal values, as such implementing interpretation
I1 from Section 2.4.2. However, as we discussed there, this is again not the semantics used by Wikidata: finally,
Fig. 13e implements the constraint according to interpretation I2 from Section 2.4.2. While we do not go into details
to explain the relatively complex SPARQL query in the sh:sparql at this point (hang on until Section 4.2), we

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 29

Fig. 13. SHACL shapes encoding: from simple SHACL-Core shapes to the SPARQL formalization.

30 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

may ask the question first, whether SHACL with its limitations is at all the most adequate formalism for the kind of
constraint checking we are looking for.

3.6. Towards SPARQL

In summary, we note the following limitations for the implementation of Wikidata property constraints via
SHACL.

In summary, we observe that not all Wikidata constraints were possible to directly map as shapes in SHACL-Core.

– Firstly, we can cover only a subset of SHACL-expressible Wikidata property constraints in SHACL-Core;
– Secondly, our approach introduced so far instantiates separate SHACL shapes for each property constraint

definition, even if we used SHACL-SPARQL;
– Thirdly, the capacity of checking these constraints (there were over 72K constraint definitions in total at the

time of writing) against the whole Wikidata graph – to the best of our knowledge – goes beyond the scalability
(and feature coverage) of existing SHACL validators.

As for the first item, clearly, the above-mentioned issues regarding the expressivity of Wikidata property con-
straints within SHACL-Core limit its applicability. Moreover, non-core features are unfortunately not mandatorily
(and thus rarely) implemented by SHACL validators so far.

As for the second and third items, we argue that due to the limitations associated with the expressibility of the
SHACL constraints and the lack of tools capable of efficiently validating large graphs, a direct SPARQL transla-
tion potentially presents itself as a more generic, flexible, and operationalizable approach for validating Wikidata
Property constraints.

Let us demonstrate this idea with a straightforward SPARQL translation of a simple conflicts-with (Q21502838)
constraint for the property family name (P734), which, according to the constraint property (P2306) qualifier should
not be used together with the property given name version for another gender (P1560), as expressible relatively
concisely in the following SHACL shape:

An even more direct and crisp, and also executable formulation of this constraint can be easily constructed by the
following SPARQL query:

In fact, we claim that violations of this particular constraint type, i.e. the conflicts-with constraint, could be
checked more generally on all properties in one go, with a single SPARQL query:41

41https://w.wiki/6LU5

https://w.wiki/6LU5

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 31

Indeed, this single query checks all violations of the conflicts-with constraint type and returns all violations
of conflicts-with constraints at once. Intuitively, lines 2–3 lookup properties ?wdtprop and the corresponding
entity ?wdprop (cf. the illustration in Fig. 7) having a conflict-with constraint (line 3) and retrieving the re-
spective conflicting property ?conflicting_wdtprop (line 4). Finally, lines 5–6 check the existence of a
statement using both conflicting properties for the target ?T. The query is executable directly on the Wikidata
SPARQL endpoint, cf. Footnote 41, with the slight limitation that we need to LIMIT the results retrieved, as over-
all too many such violations exist to be retrieved via the UI at once; more details on that will be provided in our
experiments section (Section 5). We stress that SHACL is not amenable to this approach: as a declarative con-
straint language, it does not have the querying capability to extract all constrained properties and their violations at
once.

Overall, we hope the illustrative examples in this section have sufficiently motivated that a direct translation of
property constraints to SPARQL has advantages over SHACL for various reasons. That is, while in this section
we in principle have made a case for using (a subset of) Wikidata’s property constraints as a “playground” to
automatically generate a large testbed for SHACL(-Core) validators (and have also sketched how to extend this
approach to SHACL-SPARQL), we also hope to have convinced the reader that this approach is not (yet) practically
feasible, and in the end have made a case for direct generalizing our approach to fully operationalize Wikidata
constraint validation via SPARQL.

4. Operationalizing Wikidata constraints with SPARQL

As opposed to the prototypical nature of the previous section, here we aim at a fully operationalizable formal-
ization. We propose SPARQL as a constraint representation formalism that fulfills both the requirements to be (i)
operationalizable – in the sense of being able to compute and report inconsistencies, in a similar fashion as the
existing Wikidata database reports – as well as (ii) declarative – in the sense of an unambiguous, exchangeable
formalization, capable of understanding the meaning of constraints.

The availability of Wikidata’s database reports web page,42 which presents statistics about the number of vio-
lations of a set of properties for all property constraints types, demonstrates that it is indeed in the interest of the
Wikidata community that inconsistencies are identified and resolved. It also indicates that indeed there is an oper-
ationalized workflow to check these constraints already. The current reports provide access to a separate page for
each property listed where one can take a detailed look at the inconsistent claims per violated property.43 Unfortu-
nately, though, the result of the operationalization shown on Wikidata’s database reports pages are only available
in HTML format, and moreover, the code behind is not publicly available. That is, the current operationalization is
neither declarative nor is the code openly available.

As a summary of these database reports, Fig. 14 shows the development of property constraints over time for
the 10 most violated constraints: according to the Wikidata database reports web page, we observed that since the
introduction of Wikidata property constraints in 2015, the total number of constraints has grown from 19 in 2015
to 32 in 2023; new constraints were created, evolved, or ceased to exist. Data in Fig. 14 point to an increase in the
number of violations for the one-of (Q21510859) constraint type. Required qualifier (Q21510856) constraints were
introduced and began to be analyzed in 2019 only and are already emerging among the main causes of violations.
The modeling of constraints is constantly evolving, for instance, used for values only (Q21528958), used as refer-
ence (Q21528959), and used as qualifier (Q21510863) constraints no longer exist and were migrated to a single
constraint type: property scope (Q53869507). As such, we emphasize that our endeavor to model and formalize
constraint types as SPARQL queries should not be viewed as a once-off exercise.

Rather we aim at proposing to rethink the process of developing such constraints themselves in terms of such
SPARQL queries to be included as an (i) operationalizable and (ii) declarative means for their definitions:

42https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/Summary
43 For instance, our example item-requires statement constraint on FIFA player ID is reported at https://www.wikidata.org/wiki/Wikidata:

Database_reports/Constraint_violations/P1469, reporting 192 violations, retrieved 13 Jan 2023.

https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/Summary
https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/P1469
https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/P1469

32 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

Fig. 14. #violations for top 10 most violated constraint types (logarithmic scale).

Fig. 15. SPARQL queries general template with exemplification.

– as for (i), Wikidata as an RDF graph can be queried through a SPARQL query service – by expressing constraint
violations per constraint type as SPARQL queries, we can benefit from the query language’s operationalizable
nature, and various existing SPARQL implementations, that scale to billions of triples.

– as for (ii), SPARQL itself is a declarative language, with well understood theoretical properties and mappable
to other locigal languages, such as Datalog [8,49,51]

4.1. Expressing and validating Wikidata constraints in SPARQL

In this section, we describe the overall structure of our Wikidata constraint validation approach using SPARQL
queries. We again illustrate it via our running example from Fig. 8.

Figure 15a presents a generic structure followed by each SPARQL query proposed in this paper. We generalize
queries into different “blocks”, such that each block can contain multiple triple patterns as exemplified in Fig. 15b,
which fulfill different functions. Figure 15b represents the concrete query for the item-requires-statement constraint:

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 33

for this constraint type a required property and its required value(s) need to be checked. Each block of the query
structure of Fig. 15b is detailed as follows.

Block #1, i.e., the SELECT clause, represents the information to be returned by the query describing the violation;
usually it is composed of the claim containing the property that is violating the constraint (Fig. 15b line 2), plus
extra information about the triple or about the constraint – in our case, the property missing for the subject – (line
3), and finally, we also return the constraint status or reason for deprecation (line 4), if given.

Block #2 i.e., the beginning of WHERE clause, matches the properties (and associated statements) that use the
particular constraint type (lines 6 and 7) – in our case for the item-requires-statement (Q21503247). To retrieve
properties using another specific property constraint type, one obviously only needs to adapt the constraint id in line
7.

Block #3: statements from Block #2 are then used to retrieve the required constraint qualifiers for the specific
constraint type (lines 9 and 10), i.e., in our case the required property (line 9) and value (line 10), as explained
in Section 3 above, plus optional qualifiers such as the constraint status or information about constraint depreca-
tion (lines 12 and 13). We note that these additional OPTIONAL parts may affect query performance, and could
be potentially left out, but we suggest retrieving them if present for additional detailed information about actual
violations.

Block #4 matches the actual statements that must be checked for constraint verification (line 15). As we can see
in this example, we need to navigate between the different property namespaces described in Fig. 7 above before
matching the subject and object (line 16).

Block #5 combines the statement qualifiers values from Block #3 and the triples from Block #4 to check the actual
violation. For the item-requires-statement constraint, the goal is to check the non-existence of the required property
along with the required value (lines 19 and 20) while removing the explicit exceptions (P2303) to the constraint
(line 22).

Block #6 is optional with the intention to parameterize the query. The FILTER restricts the query to retrieve
violations for one specific property, in our case, “FIFA player ID” (line 24). Although our queries are designed to
retrieve violations for all properties of a single constraint type, we recommend execution for a specific property at a
time due to Wikidata’s size and the limitation of resources available on the online endpoint.

We have encoded all 32 constraint types (some of which are in separate queries for different variations) in
SPARQL queries, following similar patterns corresponding to Block#1–Block#6 in our example. These queries
are designed to retrieve information about any violations (somewhat orthogonal to the SHACL encodings that
model conformance instead). The full list of these SPARQL queries can be found in Table 2 – as shortcut links
to our GitHub repository (cf. Footnote 35), and executable on Wikidata’s query service. The list contains ex-
amples for checking particular properties per constraint type. For instance, our query https://short.wu.ac.at/72ng
implementing the FIFA Player ID’s item-requires-statement constraint returned 190 violations, as opposed to the
192 on Wikidata’s database report page (cf. Footnote 43) at the time of writing. In our formalization, we divide
the item-requires statement constraint checking into two queries, one including required properties and another
including required properties and values. The second query https://short.wu.ac.at/rmba retrieves the remaining 2
violations. Although both checks could be combined in one UNION query, we prefer this design with multiple
queries in case of different possible constraint variations, cf. the respective lines of Table 2 pointing to multiple
queries.

Again, we note that apart from Wikidata itself, there are an increasing number of other Wikibase instances listed in
the Wikibase Registry44 that partially re-use Wikidata’s property constraints. Obviously, for Wikibase instances that
declare constraints using the Wikidata property constraints model, it should likewise be possible to check constraint
violations on Wikibase instances using our SPARQL templates. For instance, The EU Knowledge Graph45 is a
Wikibase knowledge graph containing information about institutions of the European Union, countries, projects
financed by the EU and their beneficiaries [23], which imports Wikidata’s property constraints. As an example, we
used our SPARQL template to search for format constraint violations on this KG, with our query https://short.wu.
ac.at/xmsm returning 472 violations at the time of writing.

44https://wikibase-registry.wmflabs.org/wiki/Main_Page
45https://linkedopendata.eu/wiki/The_EU_Knowledge_Graph

https://short.wu.ac.at/72ng
https://short.wu.ac.at/rmba
https://short.wu.ac.at/xmsm
https://short.wu.ac.at/xmsm
https://wikibase-registry.wmflabs.org/wiki/Main_Page
https://linkedopendata.eu/wiki/The_EU_Knowledge_Graph

34 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

4.2. Formalizing constraint types not captured with SHACL-Core in SPARQL

We now show how to formally express the constraint types that could not be directly represented with SHACL-

Core in SPARQL.

Single-value Used to specify that one property generally contains a single value per concept, we already discussed

the partial representability within SHACL-Core, when there are no separators defined. The following SPARQL

query for the property capital (P36) shows how to capture violations in two scenarios: either there are multiple

different values with no separators or there are separators with equal values. Block 4 binds multiple statements

that are further tested in block 5. In block 5, it is tested if the values are different (line 14), if there are no sepa-

rators (lines 16–19), or if it does not exist a separator (line 23) where the separator values (lines 24 and 25) for

two different statements are different (line 26). Overall, this captures the intended semantics I2, described in Sec-

tion 2.4.2. The same principle also applies for distinct-values and single-best-value, the two other constraint types

that make use of separator qualifiers and can be expressed in SPARQL similarly, for details we refer to the links in

Table 2.

Allowed qualifiers This constraint type specifies that only the listed qualifiers should be used when a certain

statement is made, meaning that the use of all other qualifiers needs to be restricted. Since there is no way to

list non-allowed paths implicitly (e.g. by referring to a path/property via a specific type), this constraint could not

be expressed with SHACL-Core. However, when using SPARQL, it is possible to test all the predicates where

the statement node is a subject. The following query presents the SPARQL formalization for property party chief

representative (P210), where Block 4 binds all the statements about P210 (line 6) and their respective qualifiers

(lines 7 and 8). Next, Block 5 creates the violation pattern, where the statement of Block 4 is considered a violation

if at least one found qualifier is not part of the set of expected ones.

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 35

Difference-within-range The constraint requires the difference between two values to be calculated and compared
to a predefined range. SHACL-Core provides functionalities for checking equalities and inequalities, but it does not
encompass arithmetic operations as part of its components. Below we present a simplified version of the query to
check difference-within-range violations for date of burial or cremation (P4602). Block 3 binds all the necessary
qualifiers, such as the minimum and maximum value (lines 10 and 11) and the property necessary to create a valid
range (line 12), which in this case is date of death (P570). Block 4 binds the values for P4602 and P570. Finally, the
interval is compared with the expected period (block 5).

5. Experiments

We designed an experiment to evaluate the semantics of our SPARQL queries to verify our approach against the
Wikidata database reports. We compared the violations obtained by our queries with the violations published in the
Wikidata Database reports (cf. Footnote 5). Unlike DBpedia, where a version of the KG is pragmatically generated
and made available every three months,46 Wikidata’s dynamic approach causes the KG to be constantly updated
with new statements. This approach makes difficult the comparison between strategies to capture violations because
of the uncertainty of the KG’s state at the time violations are collected. Thus, checking and comparing all constraint
violations turns infeasible, since collecting them via the SPARQL endpoint takes too long to keep in sync, even
disregarding (unfortunately increasingly common) timeouts on the SPARQL query endpoint.

In order to still ensure comparability of results as far as possible, the conducted experiment was designed on a
sample of constraint violations collected according to the following steps:

46https://www.dbpedia.org/resources/snapshot-release/

https://www.dbpedia.org/resources/snapshot-release/

36 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

1. We identified the top-5 most violated constraint types from Wikidata’s violation statistics table on December
16, 2022: One-of (Q21510859), item-requires-statement (Q21503247), Single value constraints (Q19474404
and Q52060874), required qualifier (Q21510856), and value-requires-statement (Q21510864).

2. We ranked the associated properties in descending order of the number of violations for each of these constraint
types.

3. We executed our SPARQL queries to collect the violations of five different properties for the five constraint
types, totaling 25 violation sets available in our GitHub repository.47

4. The ad-hoc violation checking system used in Wikidata takes about a day to execute and publish results,
thus our queries were executed one day before the data was available. Consequently, we extract the set of
corresponding violations published by the Wikidata portal referring to the same properties on the next day. For
instance, the FIFA player ID (P1469) property-specific violations are made available in the Wikidata report
page.48

5. Finally, we structured and compared the violations reported by the Wikidata Database reports with the viola-
tions retrieved by the SPARQL queries on the Wikidata endpoint.

As the queries were executed on the SPARQL endpoint and our target was the properties with the highest numbers
of violations, we also had to consider timeout-related issues due to limitations of the Wikidata environment itself:
due to the high number of triples associated with some of the targeted properties, the limit of 60 seconds for a
query, established by Wikidata’s SPARQL endpoint is not enough to process the entire target set. Therefore, it
was necessary to discard the target properties that timed out and proceed with the subsequent one with the next
highest number of violations (in steps 2+3 above), to arrive at 5 properties for each of the 5 chosen constraint
types. Note that in order to have a reasonable basis for comparison, the SPARQL endpoint is the only option at
the moment, since the database reports are computed on this state of the KG. In future work, we intend to create a
benchmark to facilitate the testing of different approaches to collecting violations including testing of other engines
and environments; more on that in the related and future work sections below.

6. Results

In the next subsections, we provide a table for every constraint type containing the list of properties analyzed
(Property ID), the total number of violations the Wikidata database reports claimed to have found (# of violations),
the total number of violations made available by the database reports on the specific HTML pages for each property,
the number of violations available (VA), the number of violations found by our SPARQL queries (OV), as well as
the execution time for running the queries (Runtime), and the number of intersections VA ∩ OV. Unfortunately, the
Wikidata database reports portal provides a maximum of 5001 violations for each pair (Property, Constraint type).
Therefore the comparison of results was performed in terms of the partial results of the database reports and the full
results of the approach using SPARQL. For results that were found by the database report, but not in our approach,
i.e. for VA \ OV, we did a manual inspection of the deviations.

6.1. One-of constraint

The first results concern the One-of constraint, and they are available in Table 3. Three properties were skipped
for this constraint type due to timeout issues on the Wikidata SPARQL endpoint.

For genre (P136), 11 violations were not found by our approach because the SPARQL queries (cf. explanation
of Block#4 above) are checking constraints on the exported truthy statements in the Wikidata RDF dump,49 i.e.,
the non-deprecated statements in the wdt: namespace, which include the PreferredRank values (when there is one)
when there are multiple values and the NormalRank values when there is no PreferredRank. Due to this, 8 out of

47https://github.com/nicolasferranti/wikidata-constraints-formalization/tree/main/experiment_data
48https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/P1469
49https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format#Truthy_statements

https://github.com/nicolasferranti/wikidata-constraints-formalization/tree/main/experiment_data
https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/P1469
https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format#Truthy_statements

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 37

Table 3

One of constraint violations

Property ID Wikidata database reports Our SPARQL approach VA ∩ OV

of violations # of violations available (VA) # of violations (OV) Runtime (s)

P136 810411 5001 805854 19,07 4990

P518 516308 5001 194 0,31 147

P437 389460 5001 193865 4,35 4997

P641 336724 5001 328934 35,72 4997

P512 337460 5001 84522 3,60 4991

11 subjects were found by our approach but associated with different values. For instance, we found Baroque music
(Q8361) as the PreferredRank and a violation for the entity Johann Sebastian Bach (Q1339), while for the Wikidata
Reports western classical music (Q9730), a NormalRank object is a violation. In applies to part (P518), the 147
violations identified by both approaches contain the property P518 used as the main property (wdt: prefix), and
these violations are also highlighted by the Wikidata page of each entity in the UI,50 e.g. elder abuse (Q427883) has
three different values for P518; all of their violations to the constraint. Notably, the remaining reported violations
not identified by the SPARQL query are also not considered violations in the Wikidata pages in the UI, because the
property P518 is used as a qualifier in these cases. For instance, Catalan Countries (Q234963) has Italy (Q38) as
country (P17), but this applies to part (P518) Alghero (Q166282). Currently, this is not displayed as a violation by
the Wikidata pages, but the Database reports are testing the constraint also for qualifiers. In our case, it would be
necessary to adapt the triple pattern “?s wdt:P518?o” to alternatively also test the qualifier namespace (pq:) if
one wants to test the query also for qualifiers.

The four violations not captured by our approach for the property distribution format (P437) are due to the
same reason highlighted for P136. We identified these four subjects but since the property has multiple values and
there is one PreferredRank value, the SPARQL query computes the violation for the value in the PreferredRank.
For instance, The Simpsons (Q886) has video on demand (Q723685) and terrestrial television (Q175122) as dis-
tribution format (P437) but terrestrial television (Q175122) is marked as the PreferredRank. While the SPARQL
query captures a violation for terrestrial television (Q175122), Wikidata Reports captures a violation for video on
demand (Q723685). Again, for sport (P641), the four violations are regarding multiple values with different Ranks.
For instance, Tove Alexandersson (Q113200) has sport (P641) orienteering (Q29358), ski orienteering (Q428242),
skyrunning (Q3962667), and ski mountaineering (Q1075998). In addition, orienteering (Q29358) is the Preferre-
dRank. While the SPARQL query captures orienteering (Q29358) as the violation, the Wikidata reports capture the
other values. The analysis of the one-of constraint for the property P641 reveals that an improvement option would
be: instead of listing every possible sports type, the constraint could refer to a superclass of sports and include
hierarchical class inference when testing the constraint. Therefore, all the orienteering types would be under the
same subclass of sport and it would not be necessary to add a new type of sport to the constraint once this type is
connected to a superclass.

Lastly, in academic degree (P512), the 10 missing violations stem again from the lack of existence of the triple
pattern “?s wdt:P512?o” between the tested subject and object (checking only preferred or truthy statements,
as discussed above). A simple adaptation of the query to also check non-preferred statements could be achieved
by replacing “?s wdt:PID?o” with “?s p:PID/ps:PID?o”. This allows for consideration of all possible
statement nodes as demonstrated in query https://w.wiki/6HKA. This query shows that the proposed adaptation is
able to find all the four violating values described for Tove Alexandersson (Q113200) and sport (P641).

6.2. Item-requires-statement constraint

For Item requires statement constraints (IRS), which are very common, ten properties were skipped due to the
timeout in the Wikidata SPARQL endpoint. The values displayed in the VA column of Table 4 can exceed the value

50Note: it is necessary to be logged in in Wikidata to see violations in the UI).

https://w.wiki/6HKA

38 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

Table 4

Item requires statement constraint violations

Property ID Wikidata database reports Our SPARQL approach VA ∩ OV

of violations # of violations available (VA) # of violations (OV) Runtime (s)

P1559 492396 5001 497889 17,45 5001

P1976 215643 10004 215645 21,07 10004

P2539 197512 40066 197517 16,48 40066

P1053 197168 5265 200091 35,34 5260

P814 139178 19476 135647 12,35 19386

Table 5

Single value/best single value constraints violations

Property ID Wikidata database reports Our SPARQL approach VA ∩ OV

of violations # of violations available (VA) # of violations (OV) Runtime (s)

P881 55694 5001 55693 14,63 5000

P7015 53020 5001 53019 27,35 5000

P1540 44366 5342(5073 unique) 271(245 unique) 46,86 232

P1539 44190 5178(5076 unique) 284(258 unique) 44,76 244

P2227 39581 5001 39577 7,23 4999

5001 for this constraint type because the same property can have multiple IRS instances. Moreover, such instances
can request the existence of only one property or a pair 〈property, value〉. Therefore, the Wikidata database reports
present a list of violations for each instance of IRS, which we summed up in tables to report the respective VA
numbers.

In Table 4, note that for the top 3 properties (P1559, P1976, and P2539), our approach found all the available
violations and some extra violations that unfortunately cannot be compared because the results available in the
Wikidata database reports are incomplete. For ResearcherID (P1053), five statements were not captured by our
queries due to deprecated values, i.e., again, Wikidata does not match the pattern “?s wdt:P1053?o” when?o is dep-
recated (i.e., non-truthy). Further, on property P1053, Wikidata database reports point to four violations on the IRS
with the required property instance of (P31) and value human (Q5). Our approach identified these four violations
and two more not reported by the database reports: Milieu Intérieur Consortium (Q86498220) and Wolfgang Wagner
(Q73833983). The first one is an instance of project (Q170584), and the second one has conflation (Q14946528)
as the PreferredRank value. In this case, we can also notice a bad usage of the constraint, because the IRS con-
straint was used to restrict the type of the subject, simulating the behavior of what should actually be a subject type
constraint.

The 90 violations not found by our SPARQL query for IUCN protected areas category (P814) are because the
objects are empty values. Therefore, as the Wikidata RDF dump does not contain “?s wdt:P814 〈empty〉” for empty
objects we can not retrieve them. For instance, Sandgrube Seligenthal (Q2220711) has an empty value for IUCN
protected areas category (P814). We demonstrate, using query https://short.wu.ac.at/5be5, that again our approach
could be easily adapted to include empty objects by replacing the “?s wdt:PID []” pattern by “?s p:PID []”. Yet
again, whether empty values should be reported as violations here or not is in our opinion a matter of interpretation.

6.3. Single-value constraint

The statistic table of the Wikidata database reports points to Single-value constraint as the third most violated
constraint type. We notice that this statistic takes into account Single-value (Q19474404) and Single-Best-value
(Q52060874) constraints. Therefore, it was necessary to use the queries designed for these two types of constraints
to perform the experiment. Eleven properties were skipped for presenting timeout in the SPARQL endpoint for at
least one of the query types. The results are presented in Table 5, where, unlike the previous tables, we include in
columns VA and OV the total number of unique entities found, i.e., the total number without repeated entities.

https://short.wu.ac.at/5be5

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 39

In type of variable star (P881), V Sagittae (Q56303735) is pointed as a violation by the database reports but
not by the Wikidata entity page and not by our query. V Sagittae (Q56303735) has indeed two values for type of
variable star (P881): nova-like star (Q9283100) and eclipsing binary star (Q1457376). However, nova-like star
(Q9283100) is marked as the PreferredRank value, therefore we do not take this as a violation. According to the
definition of single-best-value, the property generally contains a single “best” value per item, though other values
may be included as long as the “best” value is marked with PreferredRank. For surface gravity (P7015), SDSS
J1539+0239 (Q4048714) is pointed as a violation by the database reports but, interestingly neither by the Wikidata
entity page UI nor by our query. SDSS J1539+0239 (Q4048714) has indeed two values for surface gravity (P7015):
“1,450 centimeter per square second” and “3±0.15”. However, “3±0.15” is marked as the PreferredRank value,
therefore we do not consider this a violation because it is in accordance with the definition.

The analysis of male population (P1540) reveals that there are 5073 unique entities reported by Wikidata database
reports as violations and not reported by our approach. 4841 of them have a PreferredRank defined, therefore we
do not consider them violations. The other 232 we captured with our query. The same is also the case for female
population (P1539), where 5076 unique entities were reported by the Wikidata database as violations and not
reported by our approach. 4832 of them have a PreferredRank and the other 244 we identified. Finally, for the
property metallicity (P2227), the two entities that database reports consider violations are HD 1461 (Q523743) and
SDSS J1539+0239 (Q4048714). Again, our approach does not consider them as violations because, although they
have multiple values, in both cases there is a value marked with PreferredRank. In fact, the respective pages in the
Wikidata UI also do not highlight violations for these statements.

The occurrence of properties from the astronomy domain, such as type of variable star (P881) and surface gravity
(P7015), was expected, since the astronomy community in Wikidata uses deprecation and different rankings to
represent historical data, as also observed in [55]. Therefore, it is common to find statements with multiple values,
where the higher-ranked ones represent more accurate or currently accepted data by the community.

6.4. Required qualifier constraint

The required qualifier constraint has the same principle described for IRS: the same property can have multiple
instances of the required qualifier constraint, each one of them requiring a different property to be used as a qualifier
for a given statement. For this constraint type, which again is very common, three properties were skipped due
to timeout on the Wikidata SPARQL endpoint, where the properties with the next highest violation rates were
selected. The results are available in Table 6, showing that the whole set of available violations (VA) was found by
our SPARQL approach (OV).

6.5. Value-requires-statement constraint

Finally, Value-requires statement constraints (VRS) are similar to IRS, but instead of requiring the existence of
a statement in the subject, these quite common constraints require a statement in the object. Ten overly common
properties were skipped due to timeouts in the SPARQL endpoint. Two different queries were used for each property,
one checking required properties and another checking pairs of required properties and values. The main results are
available in Table 7.

Table 6

Required qualifiers constraint violations

Property ID Wikidata database reports Our SPARQL approach VA ∩ OV

of violations # of violations available (VA) # of violations (OV) Runtime (s)

P996 496933 5001 496930 10,13 5001

P1539 106515 8769(2888 unique) 104632 27,33 2888

P1540 105294 7213(3189 unique) 105295 18,4 3189

P6 53884 5001 53895 3,07 5001

P1618 46548 10002(9944 unique) 46548 3,68 9944

40 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

Table 7

Value requires statement constraint violations

Property ID Wikidata database reports Our SPARQL approach VA ∩ OV

of violations # of violations available (VA) # of violations (OV) Runtime (s)

P1435 1828277 5001(4823 unique) 1815937 28,25 4810

P680 35141 5001(4958 unique) 41224 24,43 4958

P10254 49169 5018 49163 17,81 5018

P1598 29219 14792(13627 unique) 29469 49,69 13609

P747 13920 5001(4992 unique) 13952 3,61 4984

For molecular function (P680) and associated cadastral district (P10254), the intersection is equal to the number
of violations published by the Wikidata database reports. The eight statements not found for has edition or transla-
tion (P747) and the 18 for consecrator (P1598) are due to the existence of one PreferredRank value among multiple
values. Lastly, for the most violated property, heritage designation (P1435), the 13 statements claimed as violations
by database reports and not reported by our approach fall into the same category. There are multiple values and
one of them is marked as PreferredRank value, therefore the pattern “?s wdt:P1435?o” does not capture the
remaining values. For instance, Vatican City (Q237) has as heritage designation (P1435) the values UNESCO World
Heritage Site (Q9259) and Cultural property under special protection (Q26086651), however UNESCO World Her-
itage Site (Q9259) is marked as the PreferredRank. Our query can be easily adapted to focus on the statement nodes
instead of the direct value, as illustrated in query https://short.wu.ac.at/xasn. It is only necessary to replace “?s
wdt:P1435?o” by “?s p:P1435/ps:P1435?o”.

In summary, common reasons for mismatches include – as a matter of interpretation – whether only truthy state-
ments or also non-preferred and deprecated statements should be checked for constraint violations. Also, other
deviations could arguably be identified as a matter of interpretation. As we also discussed, our constraints could be
adapted to the respective different interpretations relatively easily with minor modifications of our query patterns.
Overall, while we only conducted these analyses on a sample, we argue that the experiment has confirmed our
opinion that a declarative and adaptable formulation of Wikidata property constraints in terms of SPARQL queries
is both feasible and could add to the clarification of the constraints’ actual semantics. The deviations between the
Wikidata UI pages and the Wikidata database reports confirm our opinion that such clarification is dearly needed.

Regarding the practical feasibility of the proposed approach, it is important to acknowledge the generic nature of
the SPARQL queries proposed in this study. The absence of hard-coded parameters ensures adaptability to diverse
constraint parameters, with queries exclusively relying on the Wikidata data model to match the triple patterns
that generate specific constraint violations. This flexibility enables the applicability of generic queries checking
violations across all properties instantiating a specific constraint type. On the downside, as we have discussed, such
generic queries potentially lead to scalability problems for current SPARQL engines. As a practical workaround,
constraints can also be checked by instantiating our generic queries per property, mitigating scalability challenges
to a certain extent: in the context of the Wikidata ecosystem, the envisaged solution is therefore promising for
deployment as a background process capable of processing batches of properties. By doing so, the system can
systematically uncover candidate inconsistencies, according to the available resources and relevance of properties.

7. Related work

Constraints play an important role in specifying rules for data, defining the requirements to prevent it from
becoming corrupt, and ensuring its integrity. There has been significant research on the development of constraint
representations and validation techniques specifically for knowledge graphs.

7.1. Constraint languages for graph data

RDF has long served as the W3C-recommended graph-based data model for presenting information in the Se-
mantic Web, whereas a standardized language to express and validate data graphs has only recently been introduced.

https://short.wu.ac.at/xasn

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 41

Ontology languages like RDFS, OWL, and its sublanguages, which have been standardized along with RDF, have
been widely used for modeling the data through axiomatic structures. For instance, DBpedia, like other open knowl-
edge graphs (e.g. YAGO, GeoNames), makes use of ontologies to model the data, which have been employed also
for detecting (some) inconsistencies (e.g., [11,48]). However, ontologies have been particularly criticized for their
limited use when checking the conformance of data graphs. Indeed, the primary utility of ontologies lies in facili-
tating deductive reasoning tasks, such as node classification or evaluating overall satisfiability, and not in describing
constraints on KGs. With the growing emphasis on data accuracy for graph-based applications, the absence of con-
straint languages similar to those found in relational [3] and semi-structured data [2] contexts became noticeable. To
address this gap, multiple strategies have emerged. Hogan [38] used rule-based fragments of OWL/RDFS for scal-
able inconsistency identification and repair suggestions. The idea to use scalable variants of bespoke Datalog-based
reasoning for constraint checking and verification originally imposed in Hogan’s thesis may be argued to be not
unlike our approach: SPARQL has been shown to be equally expressive as non-recursive Datalog with negation [8],
where features like property paths only mildly add harmless, linear recursion [51]. Another line of research regards
extending ontology languages to treat axioms as integrity constraints under the closed-world assumption [45,58].

In particular, to address the lack of dedicated constraint languages for graph data, novel schema formalisms for
RDF graph validation like the Shape Expressions language (ShEx) [13,29,56,57] were proposed before SHACL
became a W3C recommendation. ShEx is a formal modeling and validation language for RDF data, which allows
for the declaration of expected properties, cardinalities, and the type and structure of their objects. ShEx is closely
related to SHACL, and in some cases, it is possible to translate SHACL shapes into ShEx shape expressions since
their expressiveness is similar for common cases [29]. For instance, the shapes graph presented in Fig. 10 can be
respectively represented in ShEx as follows:

Yet, we leave a full discussion about whether our approach, and therefore all existing constraint types transfer over to
ShEx as an open question to future work. Additionally, validation languages based on ShEx supporting the Wikibase
data model have been recently proposed in the literature [28], however, they still lack support for many Wikibase
constructs and there is no operational validator yet.

Furthermore, SPARQL-based approaches to validate knowledge graphs can also be found in the literature [42,59],
including the SPARQL Inferencing Notation (SPIN) 51 framework. SPARQL can also be used to validate numerical
and statistical computations [29]. While in [42] the authors use SPARQL queries to validate and compute index
data for linked data applications, in [59] SPARQL is used to specifically validate epidemiological data on Wikidata.
Corman et al. proposed in cf. [20,22] a SPARQL-based method for validating possibly recursive SHACL shapes by
translating them to SPARQL queries; non-recursive shapes are translated into single SPARQL queries. These queries
are then directly evaluated on a SPARQL endpoint. They present a prototype implementation of their approach,
called SHACL2SPARQL. Since in this work we translate the Wikidata constraints to SHACL shapes, a natural
approach would have been to employ SHACL2SPARQL to generate the corresponding SPARQL queries. However,
the primary focus of their algorithm is to handle fragments of recursive shapes, which makes validation significantly
more involved. As a result, for the – in principle simple – non-recursive shapes we obtain in the present work, which
however use a variety of SHACL-Core constructs not covered in SHACL2SPARQL, the prototype yields, in general,
infeasible translations. More specifically, their approach generates SPARQL queries reporting violations by NOT
EXISTS sub-queries expressing the conditions to be verified by the respective targets specified by the shapes graph.
The construction of these subqueries is modularly defined via the SHACL grammar. For instance, consider a simple

51https://spinrdf.org/

https://spinrdf.org/

42 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

conflicts-with (Q21502838) constraint on the property family name (P734). According to the constraint property,
it should not be used together with the property P1560 (given name version for another gender), as expressible
concisely in the following SHACL shape:

According to Corman et al.’s translation, sh:maxCount 0 is again translatable to a NOT EXISTS query, yielding
overall a query like the following with nested NOT EXISTS operators:

Unfortunately, this query currently times out on Wikidata’s SPARQL endpoint, mainly due to the nested nega-
tion yielding from a modular translation. The NOT EXISTS operator is particularly hard to evaluate for SPARQL
engines. Also note that our SPARQL formulation, to be executable at all, needs to “copy” the target definition
within the verification part (line 3), due to the broken recursive correlation semantics of the (NOT) EXISTS op-
erator in SPARQL, cf. [35,47]. A more direct and crisp, and also executable formulation of this query can be easily
constructed:

In addition, not all Wikidata constraints could be directly represented in SHACL-Core. We therefore had to devise
specific SPARQL queries for each of the 32 Wikidata constraint types to generate viable and functional solutions.

7.2. Constraints in Wikidata

Data restrictions within Wikidata are also discussed by the community and implemented through further projects
using other pre-established technologies. For instance, the Wikidata Schemas project52 relies on ShEx. As opposed
to property constraints, the Schemas Project is focused on defining entity (Wikidata concepts) restrictions. At the
time of writing, Wikidata has more than 200k classes53 and the Schemas project counts with 375 ShEx schemas.54

This is a ratio of approximately only 0.2% of all classes having a defined ShEx schema. On the other hand, 99% of
properties (1078855 out of 1081256) are restricted by at least one property constraint type. These numbers illustrate
that the impact of understanding the semantics of property constraints is – at the moment – more significant than
ShEx schemas. A separate analysis would be required for analyzing the Schemas project in more detail: taking,
for instance, the entity schema E1057 for the class human as an example, using ShEx as rather descriptive than
prescriptive constraint language [14], some properties are highlighted as “desired” properties only in the schema.
For instance, in the mentioned schema E10, the property mother (P25) is defined with a Kleene star

52https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas
53https://short.wu.ac.at/p2zn
54https://www.wikidata.org/wiki/Wikidata:Database_reports/EntitySchema_directory
55https://short.wu.ac.at/g2ya, last accessed 13 February 2023.
56https://www.wikidata.org/wiki/Wikidata:List_of_properties, last accessed 13 February 2023.
57https://www.wikidata.org/wiki/EntitySchema:E10

https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas
https://short.wu.ac.at/p2zn
https://www.wikidata.org/wiki/Wikidata:Database_reports/EntitySchema_directory
https://short.wu.ac.at/g2ya
https://www.wikidata.org/wiki/Wikidata:List_of_properties
https://www.wikidata.org/wiki/EntitySchema:E10

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 43

wdt:P25 @<human> *;

meaning that the absence of a “mother” does not lead to inconsistencies, which indicates that the objective of such
schema is rather to assist in the “design” of classes than constraint checking in the strict sense. Also, although there
are some ShEx to SHACL conversion tools,58 additional challenges related to recursion impose further limitations
on the process [29], as a lot of the theoretical work on SHACL either restricts or excludes recursive shapes (e.g. [20,
22]. The mentioned entity schema E10, for instance, restricts fathers, mothers, siblings, etc. also (recursively) to be
humans. The SHACL shapes we obtain from the translation of Wikidata constraints are all non-recursive and make
use of also SHACL-Core features that have not been yet universally implemented in validators.

Erxleben et al. [24] exploit properties describing taxonomic relations in Wikidata to extract an OWL ontology
from Wikidata. The authors also propose the extraction of schematic information from property constraints and
discuss their expressibility in terms of OWL axioms. However, whereas we focus herein concretely on covering
all property constraints as a means to find possible violations in the data, Erxleben and colleagues rather stress the
value of their corresponding OWL ontology as a (declarative) high-level description of the data, without claiming
complete coverage of all Wikidata property constraints.

Martin and Patel-Schneider [44] discuss the representation of Wikidata property constraints through multi-
attributed relational structures (MARS), as a logical framework for Wikidata. Constraints are represented in MARS
using extended multi-attributed predicate logic (eMAPL), providing a logical characterization for constraints. De-
spite covering 26 different constraint types, to the best of our knowledge, the authors have not performed experi-
ments to evaluate the accuracy of the proposed formalization, nor its efficiency, and do not discuss implementability.
In fact, the theoretical framework partially skips over the subtleties of checking certain constraints in practice. As
an example, the translation of allowed entity types constraints in the extended version of [44] assumes that entity
types in Wikidata can be checked via simple instance-of type checking. Our SPARQL query shows that this is
not the case in practice for all entity types as they are differently represented in the actual Wikidata RDF dump.59

Our work – focusing on the practical implementability of property constraints in SPARQL – complements such
theoretical approaches.

Abián et al. [1] propose a definition of contemporary constraint that was indeed later adopted by Wikidata property
constraints. Shenoy et al. [55] present a quality analysis of Wikidata focusing on correctness, checking for weak
statements under three main indicators: constraint violation, community agreement, and deprecation. The premise
is that a statement receives a low-quality score when it violates some constraint, highlighting the importance of
constraints for KG refinement. Boneva et al. [12] present a tool for designing/editing shape constraints in SHACL
and ShEx suggesting Wikidata as a potential use case, but – to the best of our knowledge – without exhaustively
covering or discussing the existing Wikidata property constraints.

Apart from works specifically on constraint for Wikidata, in [48] the authors systematically identify errors in
DBpedia, using the DOLCE ontology as background knowledge to find inconsistencies in the assertional axioms.
They feed target information extracted from DBpedia and linked to the DOLCE ontology into a reasoner checking
for inconsistencies. Before, Bischof et al. [11] already highlighted logical inconsistencies in DBpedia which can be
detected using OWL QL, rewritten to SPARQL 1.1 property paths – not unlike our general approach.

7.3. SHACL and SPARQL benchmarks

Despite the partially negative result that some of our SPARQL queries time out, and also – as we discussed
above – we did not find SHACL validators that would allow us to check our constraint violations at the scale of
Wikidata, we believe, besides our primary goal of clarifying Wikidata property constraint semantics, our results
should be considered as a real-world challenge benchmark for both SPARQL engines and SHACL validators.

As for SHACL, real-world performance benchmarks still seem to be rare. Schaffenrath et al. [53] have presented
a benchmark consisting of 58 SHACL shapes over a graph with 1M N-quads sample from a tourism knowledge
graph, evaluated with different graph databases, emphasizing that “larger data exceeded [. . .] available resources”.

58https://rdfshape.weso.es/shexConvert
59cf. https://short.wu.ac.at/pdhs.

https://rdfshape.weso.es/shexConvert
https://short.wu.ac.at/pdhs

44 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

The shapes we present are on the one hand targeting an (orders of magnitude) larger dataset, but on the other hand
can also be evaluated locally on a per entity level, thus providing a benchmark of quite different nature. Also, the
evolving nature of Wikidata makes a dynamic/evolving benchmark that can be evaluated/scaled along the natural
evolution and growth of Wikidata itself. Next, [27] presents a synthetic SHACL benchmark derived from the famous
LUBM ontology benchmark, while also emphasizing the current lack of real-world benchmarks for SHACL.

Closest but also orthogonal in focus to our own work is a recent paper by Rabbani et al. [52], which focuses on the
orthogonal problem of automatically extracting shapes (representable as SHACL) from large KGs such as Wikidata
in a data-driven manner, rather than on the formalization of community-driven constraints as we do.

Finally, apart from serving as a basis for novel benchmarks for SHACL, our SPARQL formalization particularly
extends, and in our opinion complements, the existing landscape of real-world SPARQL benchmarks. Indeed, the –
to the best of our knowledge – only benchmark for Wikidata, WDbench [6] covers a significantly different kind of
Wikidata queries than we do. WDbench is a benchmark extracted from Wikidata query logs, focusing on queries that
time out on the regular Wikidata query endpoint, but it is restricted to queries on truthy statements only, that is for
instance not covering queries on qualifiers. Our queries on the contrary, by definition all relate to querying qualifiers
and, as such they require the whole Wikidata graph and cannot be answered on the truthy statements alone. Yet,
similar to the WDbench queries, many of the queries we present, particularly on very common properties, suffer
from timeouts, as our experiments confirm. Thus, while the approach we present shows in principle feasible, it calls
for novel more scalable approaches to efficiently solve such SPARQL queries that currently time out. We hope, as
the queries we focus on typically only affect local contexts of entities and properties, they could hopefully be solved,
e.g., by clever modularisation and partitioning techniques.

8. Conclusions and future work

We have formalized all 32 different property constraint types of Wikidata using SPARQL and discussed ways to
encode them with W3C’s recommendation mechanism for formalizing constraints over RDF Knowledge Graphs,
SHACL. This study made it possible to clarify to which extent SHACL-Core can represent community-defined con-
straints of a widely used real-world KG. One of our results is a collection of practical SHACL-Core constraints that
can be used in a large and growing real-world dataset. Indeed the non-availability of practical SHACL performance
benchmarks has already been emphasized by [27], where we believe our work could be a significant step forward
towards leveraging Wikidata as a large benchmark dataset for SHACL validators. Other results include clarifications
of heretofore uncertain issues, such as the representability of permitted entities and exceptions in Wikidata property
constraints within SHACL [55]. We also could argue the non-expressibility of certain Wikidata constraints, due to
the impossibility of comparing values obtained through different paths matching the same regular path expression
within SHACL-Core.

As we could show, all these issues could be addressed when using SPARQL to formalize and validate constraints,
where all 32 constraints could in principle be formalized. In this context, as a partially negative result, one of the
main limitations of the work was the increasing performance limitations of Wikidata’s query endpoint, which calls
for more scalable query interfaces and bespoke evaluation mechanisms. On the positive side, these limitations give
rise to further research considering property constraint violation detection as a performance SPARQL benchmark
as such. As a first next step in this direction, we aim to compare our results from the Wikidata SPARQL endpoint
with a local installation, comparing different graph databases or lightweight query approaches such as HDT [25]
to support a queryable version of Wikidata constraints checks independent of the SPARQL endpoint, which, for
reasons of immediate comparison with the current Wikidata violation reports, was beyond our scope of the present
paper.

Wikidata property constraints are dynamically evolving and maintained by the community, as shown by new
constraint types such as Citation needed (Q54554025), a constraint type not even yet reported by Wikidata’s official
constraint reporting tool, cf. Footnote 42. We believe that our formalization and operationalization of property
constraints in a declarative way, using SPARQL, establish a mutual relationship with the Wikidata community.
Analyzing the formalization helps to enrich the way constraints are modeled and vice versa clarifies their semantic
interpretation, as opposed to the current, partially ambiguous natural language definitions, verifiable only through

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 45

the partially disclosed Wikidata database reports. We further hope that this article stimulates discussions in the
community to enrich the representation of constraints that still might have subjective interpretations.

In future work, we plan to use and build on the results of this paper to further systematically collect and analyze the
kinds of constraint violations in Wikidata and study their patterns as well as their evolution over time. Understanding
data that violates the constraints and its evolution is fundamental to identifying modeling or other systematic data
quality issues and proposing further refinements, but also repairs, especially in collaboratively and dynamically
created KGs such as Wikidata. Proposing refinements is a process that can be envisioned when taking into account
the repair information declaratively represented in and retrievable through operationalizable constraints.

We have established SPARQL, as a declarative and operationalizable means to implement Wikidata’s property
constraints and also briefly discussed its relationship to other potential formalisms, such as Datalog and Description
Logics. In order to further clarify the exact formal properties of Wikidata’s property constraints, further research
on a concise and bespoke formal language, e.g. in terms of extended DLs, which captures all and only the required
features, would be an interesting route for further work; attempts such as MARS [44] provide promising starting
points already in this direction.

Acknowledgements

The present paper is based on a preliminary workshop paper originally presented at the Wikidata workshop
2022 [26]; we thank the workshop organizers and participants for their feedback during the workshop. We thank
the reviewers, for their valuable comments which helped us to considerably improve the original submission of this
paper. This work is supported by funding in the European Commission’s Horizon 2020 Research Program under
Grant Agreement Number 957402 (TEAMING.AI) and Shqiponja Ahmetaj was supported by the Austrian Science
Fund (FWF) and netidee SCIENCE project T1349-N.

References

[1] D. Abián, J. Bernad and R.T. Lado, Using contemporary constraints to ensure data consistency, in: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC 2019, Limassol, Cyprus, April 8–12, 2019, C. Hung and G.A. Papadopoulos, eds, ACM, 2019,
pp. 2303–2310. doi:10.1145/3297280.3297509.

[2] S. Abiteboul, P. Buneman and D. Suciu, Data on the Web: From Relations to Semistructured Data and XML, Morgan Kaufmann, 1999.
ISBN 1-55860-622-X.

[3] S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases, Addison-Wesley, 1995, http://webdam.inria.fr/Alice/. ISBN 0-201-53771-0.
[4] S. Ahmetaj, R. David, M. Ortiz, A. Polleres, B. Shehu and M. Simkus, Reasoning about explanations for non-validation in SHACL, in:

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning, KR 2021, Online Event,
November 3–12, 2021, 2021, pp. 12–21. doi:10.24963/KR.2021/2.

[5] S. Ahmetaj, R. David, A. Polleres and M. Simkus, Repairing SHACL constraint violations using answer set programming, in: The Se-
mantic Web – ISWC 2022 – 21st International Semantic Web Conference, Virtual Event, October 23–27, 2022, U. Sattler, A. Hogan,
C.M. Keet, V. Presutti, J.P.A. Almeida, H. Takeda, P. Monnin, G. Pirrò and C. d’Amato, eds, Proceedings, Lecture Notes in Computer
Science, Vol. 13489, Springer, 2022, pp. 375–391. doi:10.1007/978-3-031-19433-7_22.

[6] R. Angles, C.B. Aranda, A. Hogan, C. Rojas and D. Vrgoč, WDBench: A Wikidata graph query benchmark, in: The Semantic Web – ISWC
2022, U. Sattler, A. Hogan, M. Keet, V. Presutti, J.P.A. Almeida, H. Takeda, P. Monnin, G. Pirrò and C. d’Amato, eds, Springer International
Publishing, 2022, pp. 714–731. ISBN 978-3-031-19433-7. doi:10.1007/978-3-031-19433-7_41.

[7] R. Angles, A. Bonifati, S. Dumbrava, G. Fletcher, K.W. Hare, J. Hidders, V.E. Lee, B. Li, L. Libkin, W. Martens, F. Murlak, J. Perryman,
O. Savkovic, M. Schmidt, J.F. Sequeda, S. Staworko and D. Tomaszuk, PG-keys: Keys for property graphs, in: SIGMOD’21: International
Conference on Management of Data, Virtual Event, China, June 20–25, 2021, ACM, 2021, pp. 2423–2436. doi:10.1145/3448016.3457561.

[8] R. Angles and C. Gutierrez, The expressive power of SPARQL, in: The Semantic Web – ISWC 2008, 7th International Semantic Web
Conference, ISWC 2008, Karlsruhe, Germany, October 26–30, 2008, A.P. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T.W. Finin
and K. Thirunarayan, eds, Proceedings, Lecture Notes in Computer Science, Vol. 5318, Springer, 2008, pp. 114–129. doi:10.1007/978-3-
540-88564-1_8.

[9] F. Baader, I. Horrocks, C. Lutz and U. Sattler, An Introduction to Description Logic, Cambridge University Press, 2017. ISBN 978-0-521-
69542-8.

[10] D. Beckett, T. Berners-Lee, E. Prud’hommeaux and G. Carothers, RDF 1.1 Turtle: Terse RDF Triple Language, 2014, available at: https://
www.w3.org/TR/turtle/.

https://doi.org/10.1145/3297280.3297509
http://webdam.inria.fr/Alice/
https://doi.org/10.24963/KR.2021/2
https://doi.org/10.1007/978-3-031-19433-7_22
https://doi.org/10.1007/978-3-031-19433-7_41
https://doi.org/10.1145/3448016.3457561
https://doi.org/10.1007/978-3-540-88564-1_8
https://doi.org/10.1007/978-3-540-88564-1_8
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/

46 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

[11] S. Bischof, M. Krötzsch, A. Polleres and S. Rudolph, Schema-agnostic query rewriting in SPARQL 1.1, in: The Semantic Web – ISWC
2014 – 13th International Semantic Web Conference, Riva del Garda, Italy, October 19–23, 2014, Proceedings, Part I, Lecture Notes in
Computer Science, Vol. 8796, Springer, 2014, pp. 584–600. doi:10.1007/978-3-319-11964-9_37.

[12] I. Boneva, J. Dusart, D. Fernández-Álvarez and J.E.L. Gayo, Shape designer for ShEx and SHACL constraints, in: Proceedings of the
ISWC 2019 Satellite Tracks (Posters & Demonstrations, Industry, and Outrageous Ideas) Co-Located with 18th International Semantic
Web Conference (ISWC 2019), Auckland, New Zealand, October 26–30, 2019, CEUR Workshop Proceedings, Vol. 2456, CEUR-WS.org,
2019, pp. 269–272, https://ceur-ws.org/Vol-2456/paper70.pdf.

[13] I. Boneva, J.E. Labra Gayo and E.G. Prud’hommeaux, Semantics and validation of shapes schemas for RDF, in: ISWC, Springer, 2017.
doi:10.1007/978-3-319-68288-4_7.

[14] A. Bonifati, P. Furniss, A. Green, R. Harmer, E. Oshurko and H. Voigt, Schema validation and evolution for graph databases, in: Conceptual
Modeling – 38th International Conference, ER 2019, Salvador, Brazil, November 4–7, 2019, A.H.F. Laender, B. Pernici, E. Lim and
J.P.M. de Oliveira, eds, Proceedings, Lecture Notes in Computer Science, Vol. 11788, Springer, 2019, pp. 448–456. doi:10.1007/978-3-
030-33223-5_37.

[15] D. Brickley and R.V. Guha, RDF Schema 1.1, 2014, http://www.w3.org/TR/rdf-schema/.
[16] D. Calvanese, G.D. Giacomo, D. Lembo, M. Lenzerini and R. Rosati, Path-based identification constraints in description logics, in: Prin-

ciples of Knowledge Representation and Reasoning: Proceedings of the Eleventh International Conference, KR 2008, Sydney, Australia,
September 16–19, 2008, G. Brewka and J. Lang, eds, AAAI Press, 2008, pp. 231–241, http://www.aaai.org/Library/KR/2008/kr08-023.
php.

[17] D. Calvanese, G.D. Giacomo and M. Lenzerini, Identification constraints and functional dependencies in description logics, in: Proceedings
of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4–10, 2001,
B. Nebel, ed., Morgan Kaufmann, 2001, pp. 155–160.

[18] J.J. Carroll, C. Bizer, P.J. Hayes and P. Stickler, Named graphs, Journal of Web Semantics 3(4) (2005), 247–267. doi:10.1016/J.WEBSEM.
2005.09.001.

[19] P. Cimiano, J.P. McCrae and P. Buitelaar, Lexicon Model for Ontologies: Community Report, 2016, available at: https://www.w3.org/2016/
05/ontolex/.

[20] J. Corman, F. Florenzano, J.L. Reutter and O. Savkovic, SHACL2SPARQL: Validating a SPARQL endpoint against recursive SHACL
constraints, in: Proceedings of the ISWC 2019 Satellite Tracks (Posters & Demonstrations, Industry, and Outrageous Ideas) Co-Located
with 18th International Semantic Web Conference (ISWC 2019), Auckland, New Zealand, October 26–30, 2019, M.C. Suárez-Figueroa,
G. Cheng, A.L. Gentile, C. Guéret, C.M. Keet and A. Bernstein, eds, CEUR Workshop Proceedings, Vol. 2456, CEUR-WS.org, 2019,
pp. 165–168, http://ceur-ws.org/Vol-2456/paper43.pdf.

[21] J. Corman, J.L. Reutter and O. Savkovic, Semantics and validation of recursive SHACL, in: The Semantic Web – ISWC 2018, D. Vrandecic,
K. Bontcheva, M.C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L. Kaffee and E. Simperl, eds, Lecture Notes in Computer Science,
Vol. 11136, Springer, 2018. doi:10.1007/978-3-030-00671-6_19.

[22] J. Corman, J.L. Reutter and O. Savkovic, Semantics and validation of recursive SHACL, in: The Semantic Web – ISWC 2018 – 17th
International Semantic Web Conference, Monterey, CA, USA, October 8–12, 2018, D. Vrandecic, K. Bontcheva, M.C. Suárez-Figueroa,
V. Presutti, I. Celino, M. Sabou, L. Kaffee and E. Simperl, eds, Proceedings, Part I, Lecture Notes in Computer Science, Vol. 11136,
Springer, 2018, pp. 318–336. doi:10.1007/978-3-030-00671-6_19.

[23] D. Diefenbach, M.D. Wilde and S. Alipio, Wikibase as an infrastructure for knowledge graphs: The EU knowledge graph, in: The Semantic
Web – ISWC 2021 – 20th International Semantic Web Conference, ISWC 2021, Virtual Event, October 24–28, 2021, A. Hotho, E. Blomqvist,
S. Dietze, A. Fokoue, Y. Ding, P.M. Barnaghi, A. Haller, M. Dragoni and H. Alani, eds, Proceedings, Lecture Notes in Computer Science,
Vol. 12922, Springer, 2021, pp. 631–647. doi:10.1007/978-3-030-88361-4_37.

[24] F. Erxleben, M. Günther, M. Krötzsch, J. Mendez and D. Vrandecic, Introducing Wikidata to the linked data web, in: The Semantic
Web – ISWC 2014 – 13th International Semantic Web Conference, Riva del Garda, Italy, October 19–23, 2014, P. Mika, T. Tudorache,
A. Bernstein, C. Welty, C.A. Knoblock, D. Vrandecic, P. Groth, N.F. Noy, K. Janowicz and C.A. Goble, eds, Proceedings, Part I, Lecture
Notes in Computer Science, Vol. 8796, Springer, 2014, pp. 50–65. doi:10.1007/978-3-319-11964-9_4.

[25] J.D. Fernández, M.A. Martınez-Prieto, C. Gutiérrez, A. Polleres and M. Arias, Binary RDF representation for publication and exchange
(HDT), Journal of Web Semantics 19(2) (2013). doi:10.1016/j.websem.2013.01.002.

[26] N. Ferranti, A. Polleres, J.F. de Souza and S. Ahmetaj, Formalizing property constraints in Wikidata, in: Proceedings of the 3rd Wikidata
Workshop 2022 Co-Located with the 21st International Semantic Web Conference (ISWC2022), Virtual Event, Hanghzou, China, October
2022, L. Kaffee, S. Razniewski, G. Amaral and K.S. Alghamdi, eds, CEUR Workshop Proceedings, Vol. 3262, CEUR-WS.org, 2022.

[27] M. Figuera, P.D. Rohde and M. Vidal, Trav-SHACL: Efficiently validating networks of SHACL constraints, in: WWW’21: The Web Con-
ference 2021, Virtual Event, Ljubljana, Slovenia, April 19–23, 2021, J. Leskovec, M. Grobelnik, M. Najork, J. Tang and L. Zia, eds, ACM
/ IW3C2, 2021, pp. 3337–3348. doi:10.1145/3442381.3449877.

[28] J.E.L. Gayo, WShEx: A language to describe and validate Wikibase entities, in: Proceedings of the 3rd Wikidata Workshop 2022 Co-
Located with the 21st International Semantic Web Conference (ISWC2022), Virtual Event, Hanghzou, China, October 2022, L. Kaffee,
S. Razniewski, G. Amaral and K.S. Alghamdi, eds, CEUR Workshop Proceedings, Vol. 3262, CEUR-WS.org, 2022, https://ceur-ws.org/
Vol-3262/paper3.pdf.

[29] J.E.L. Gayo, E. Prud’hommeaux, I. Boneva and D. Kontokostas, Validating RDF Data, Synthesis Lectures on the Semantic Web: Theory
and Technology, Morgan & Claypool Publishers, 2017. ISBN 978-3-031-79477-3. doi:10.2200/S00786ED1V01Y201707WBE016.

[30] C. Gutierrez, C. Hurtado and A. Vaisman, Temporal RDF, in: The Semantic Web: Research and Applications, A. Gómez-Pérez and J. Eu-
zenat, eds, Springer, Berlin Heidelberg, 2005, pp. 93–107. ISBN 978-3-540-31547-6. doi:10.1007/11431053_7.

https://doi.org/10.1007/978-3-319-11964-9_37
https://ceur-ws.org/Vol-2456/paper70.pdf
https://doi.org/10.1007/978-3-319-68288-4_7
https://doi.org/10.1007/978-3-030-33223-5_37
https://doi.org/10.1007/978-3-030-33223-5_37
http://www.w3.org/TR/rdf-schema/
http://www.aaai.org/Library/KR/2008/kr08-023.php
http://www.aaai.org/Library/KR/2008/kr08-023.php
https://doi.org/10.1016/J.WEBSEM.2005.09.001
https://doi.org/10.1016/J.WEBSEM.2005.09.001
https://www.w3.org/2016/05/ontolex/
https://www.w3.org/2016/05/ontolex/
http://ceur-ws.org/Vol-2456/paper43.pdf
https://doi.org/10.1007/978-3-030-00671-6_19
https://doi.org/10.1007/978-3-030-00671-6_19
https://doi.org/10.1007/978-3-030-88361-4_37
https://doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.1016/j.websem.2013.01.002
https://doi.org/10.1145/3442381.3449877
https://ceur-ws.org/Vol-3262/paper3.pdf
https://ceur-ws.org/Vol-3262/paper3.pdf
https://doi.org/10.2200/S00786ED1V01Y201707WBE016
https://doi.org/10.1007/11431053_7

N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL 47

[31] A. Haller, A. Polleres, D. Dobriy, N. Ferranti and S.J.R. Méndez, An analysis of links in Wikidata, in: The Semantic Web – 19th Inter-
national Conference, ESWC 2022, Hersonissos, Crete, Greece, May 29–June 2, 2022, P. Groth, M. Vidal, F.M. Suchanek, P.A. Szekely,
P. Kapanipathi, C. Pesquita, H. Skaf-Molli and M. Tamper, eds, Proceedings, Lecture Notes in Computer Science, Vol. 13261, Springer,
2022, pp. 21–38. doi:10.1007/978-3-031-06981-9_2.

[32] S. Harris and A. Seaborne, SPARQL 1.1 Query Language, 2013, available at: http://www.w3.org/TR/sparql11-query/.
[33] O. Hartig, Foundations of RDF� and SPARQL� (an alternative approach to statement-level metadata in RDF), in: Proceedings of the 11th

Alberto Mendelzon International Workshop on Foundations of Data Management and the Web, Montevideo, Uruguay, June 7–9, 2017,
J.L. Reutter and D. Srivastava, eds, CEUR Workshop Proceedings, Vol. 1912, CEUR-WS.org, 2017, https://ceur-ws.org/Vol-1912/paper12.
pdf.

[34] P.J. Hayes and P. Patel-Schneider, RDF 1.1 Semantics, 2014, https://www.w3.org/TR/rdf11-mt/.
[35] D. Hernández, C. Gutierrez and R. Angles, The Problem of Correlation and Substitution in SPARQL – Extended Version, Technical Report,

CoRR, 2018, arXiv:1801.04387.
[36] D. Hernández, A. Hogan and M. Krötzsch, Reifying RDF: What works well with Wikidata? in: Proceedings of the 11th International

Workshop on Scalable Semantic Web Knowledge Base Systems, CEUR Workshop Proceedings, Vol. 1457, CEUR-WS.org, 2015, pp. 32–47,
http://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf.

[37] P. Hitzler, M. Krötzsch, P.F.P.-S. Bijan Parsia and S. Rudolph, OWL 2 Web Ontology Language Primer, 2nd edn, 2012, http://www.w3.org/
TR/owl-primer/.

[38] A. Hogan, Reasoning Techniques for the Web of Data, Studies on the Semantic Web, Vol. 19, IOS Press, 2014. ISBN 978-1-61499-382-7.
doi:10.3233/978-1-61499-383-4-I.

[39] A. Hogan, M. Arenas, A. Mallea and A. Polleres, Everything you always wanted to know about blank nodes, Journal of Web Semantics
27–28 (2014), 42–69. doi:10.1016/J.WEBSEM.2014.06.004.

[40] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, S. Kirrane, J.E.L. Gayo, R. Navigli, S. Neumaier, A.N. Ngomo,
A. Polleres, S.M. Rashid, A. Rula, L. Schmelzeisen, J.F. Sequeda, S. Staab and A. Zimmermann, Knowledge Graphs, ACM Comput. Surv.
54(4) (2022), 71:1–71:37. doi:10.1145/3447772.

[41] H. Knublauch and D. Kontokostas, Shapes Constraint Language (SHACL), 2017, http://www.w3.org/TR/shacl/.
[42] J.E. Labra Gayo and J.M. Alvarez Rodríguez, Validating statistical index data represented in RDF using SPARQL queries, in: RDF Valida-

tion Workshop. Practical Assurances for Quality RDF Data, Cambridge, Ma, Boston, Citeseer, 2013.
[43] T. Lebo, S. Sahoo, D. McGuinness, K. Belhajjame, J. Cheney, D. Corsar, D. Garijo, S. Soiland-Reyes, S. Zednik and J. Zhao, PROV-O:

The PROV Ontology, 2013, available at: http://www.w3.org/TR/prov-o/.
[44] D.L. Martin and P.F. Patel-Schneider, Wikidata constraints on MARS, in: Proceedings of the 1st Wikidata Workshop (Wikidata 2020) Co-

Located with 19th International Semantic Web Conference(OPub 2020), Virtual Conference, November 2–6, 2000, L. Kaffee, O. Tifrea-
Marciuska, E. Simperl and D. Vrandecic, eds, CEUR Workshop Proceedings, Vol. 2773, CEUR-WS.org, 2020, https://ceur-ws.org/Vol-
2773/paper-12.pdf.

[45] B. Motik, I. Horrocks and U. Sattler, Bridging the gap between OWL and relational databases, in: Proceedings of WWW, ACM, 2007.
doi:10.1145/1242572.1242681.

[46] V. Nguyen, O. Bodenreider and A.P. Sheth, Don’t like RDF reification?: Making statements about statements using singleton property, in:
23rd International World Wide Web Conference, WWW’14, Seoul, Republic of Korea, April 7–11, 2014, ACM, 2014, pp. 759–770. doi:10.
1145/2566486.2567973.

[47] P.F. Patel-Schneider and D. Martin, EXISTStential aspects of SPARQL, in: Proceedings of the ISWC 2016 Posters & Demonstrations
Track Co-Located with 15th International Semantic Web Conference (ISWC 2016), Kobe, Japan, October 19, 2016, T. Kawamura and
H. Paulheim, eds, CEUR Workshop Proceedings, Vol. 1690, CEUR-WS.org, 2016, http://ceur-ws.org/Vol-1690/paper72.pdf.

[48] H. Paulheim and A. Gangemi, Serving DBpedia with DOLCE – more than just adding a cherry on top, in: The Semantic Web – ISWC
2015 – 14th International Semantic Web Conference, Bethlehem, PA, USA, October 11–15, 2015, M. Arenas, Ó. Corcho, E. Simperl,
M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan and S. Staab, eds, Proceedings, Part I, Lecture
Notes in Computer Science, Vol. 9366, Springer, 2015, pp. 180–196. doi:10.1007/978-3-319-25007-6_11.

[49] J. Pérez, M. Arenas and C. Gutierrez, Semantics and complexity of SPARQL, ACM Transactions on Database Systems 34(3) (2009). doi:10.
1145/1567274.1567278.

[50] A. Piscopo and E. Simperl, Who models the world?: Collaborative ontology creation and user roles in Wikidata, Proc. ACM Hum. Comput.
Interact. 2(CSCW) (2018), 141:1–141:18. doi:10.1145/3274410.

[51] A. Polleres and J. Wallner, On the relation between SPARQL1.1 and answer set programming, Journal of Applied Non-Classical Log-
ics (JANCL) 23(1–2) (2013), 159–212, Special issue on Equilibrium Logic and Answer Set Programming. doi:10.1080/11663081.2013.
798992.

[52] K. Rabbani, M. Lissandrini and K. Hose, Extraction of validating shapes from very large knowledge graphs, Proc. VLDB Endow. 16(5)
(2023), 1023–1032, https://www.vldb.org/pvldb/vol16/p1023-rabbani.pdf. doi:10.14778/3579075.3579078.

[53] R. Schaffenrath, D. Proksch, M. Kopp, I. Albasini, O. Panasiuk and A. Fensel, Benchmark for performance evaluation of SHACL imple-
mentations in graph databases, in: Rules and Reasoning, V. Gutiérrez-Basulto, T. Kliegr, A. Soylu, M. Giese and D. Roman, eds, Springer
International Publishing, Cham, 2020, pp. 82–96. ISBN 978-3-030-57977-7. doi:10.1007/978-3-030-57977-7_6.

[54] G. Schreiber and Y. Raimond, RDF 1.1 Primer, 2014, http://www.w3.org/TR/rdf11-primer/.
[55] K. Shenoy, F. Ilievski, D. Garijo, D. Schwabe and P.A. Szekely, A study of the quality of Wikidata, J. Web Semant. 72 (2022), 100679.

doi:10.1016/J.WEBSEM.2021.100679.

https://doi.org/10.1007/978-3-031-06981-9_2
http://www.w3.org/TR/sparql11-query/
https://ceur-ws.org/Vol-1912/paper12.pdf
https://ceur-ws.org/Vol-1912/paper12.pdf
https://www.w3.org/TR/rdf11-mt/
http://arxiv.org/abs/1801.04387
http://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf
http://www.w3.org/TR/owl-primer/
http://www.w3.org/TR/owl-primer/
https://doi.org/10.3233/978-1-61499-383-4-I
https://doi.org/10.1016/J.WEBSEM.2014.06.004
https://doi.org/10.1145/3447772
http://www.w3.org/TR/shacl/
http://www.w3.org/TR/prov-o/
https://ceur-ws.org/Vol-2773/paper-12.pdf
https://ceur-ws.org/Vol-2773/paper-12.pdf
https://doi.org/10.1145/1242572.1242681
https://doi.org/10.1145/2566486.2567973
https://doi.org/10.1145/2566486.2567973
http://ceur-ws.org/Vol-1690/paper72.pdf
https://doi.org/10.1007/978-3-319-25007-6_11
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/3274410
https://doi.org/10.1080/11663081.2013.798992
https://doi.org/10.1080/11663081.2013.798992
https://www.vldb.org/pvldb/vol16/p1023-rabbani.pdf
https://doi.org/10.14778/3579075.3579078
https://doi.org/10.1007/978-3-030-57977-7_6
http://www.w3.org/TR/rdf11-primer/
https://doi.org/10.1016/J.WEBSEM.2021.100679

48 N. Ferranti et al. / Formalizing and validating Wikidata’s property constraints using SHACL and SPARQL

[56] S. Staworko, I. Boneva, J.E.L. Gayo, S. Hym, E.G. Prud’hommeaux and H.R. Solbrig, Complexity and expressiveness of ShEx for RDF,
in: 18th International Conference on Database Theory, ICDT 2015, Brussels, Belgium, March 23–27, 2015, M. Arenas and M. Ugarte, eds,
LIPIcs, Vol. 31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015, pp. 195–211. doi:10.4230/LIPICS.ICDT.2015.195.

[57] S. Staworko, I. Boneva, J.E. Labra Gayo, S. Hym, E.G. Prud’hommeaux and H. Solbrig, Complexity and expressiveness of ShEx for RDF,
in: ICDT, LIPIcs. http://drops.dagstuhl.de/opus/volltexte/2015/4985. doi:10.4230/LIPIcs.ICDT.2015.195.

[58] J. Tao, E. Sirin, J. Bao and D.L. McGuinness, Integrity constraints in OWL, in: AAAI, 2010, http://www.aaai.org/ocs/index.php/AAAI/
AAAI10/paper/view/1931.

[59] H. Turki, D. Jemielniak, M.A.H. Taieb, J.E.L. Gayo, M.B. Aouicha, M. Banat, T. Shafee, E. Prud’hommeaux, T. Lubiana, D. Das and
D. Mietchen, Using logical constraints to validate statistical information about disease outbreaks in collaborative knowledge graphs: The
case of COVID-19 epidemiology in Wikidata, PeerJ Comput. Sci. 8 (2022), e1085. doi:10.7717/PEERJ-CS.1085.

[60] F. Vargas-Rojas, A. Polleres, L. Cabrera-Bosquet and D. Symeonidou, PhyQus: Automatic unit conversions for Wikidata physical quantities,
in: Proceedings of the Wikidata Workshop 2023 Co-Located with 22nd International Semantic Web Conference (ISWC 2023), Athens,
Greece, November 13, 2023, L. Kaffee, S. Razniewski, K. Alghamdi and H. Arnaout, eds, CEUR Workshop Proceedings, Vol. 3640,
CEUR-WS.org, 2023, https://ceur-ws.org/Vol-3640/paper9.pdf.

[61] A. Zimmermann, N. Lopes, A. Polleres and U. Straccia, A general framework for representing, reasoning and querying with annotated
Semantic Web data, J. Web Semant. 11 (2012), 72–95. doi:10.1016/J.WEBSEM.2011.08.006.

https://doi.org/10.4230/LIPICS.ICDT.2015.195
http://drops.dagstuhl.de/opus/volltexte/2015/4985
https://doi.org/10.4230/LIPIcs.ICDT.2015.195
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931
https://doi.org/10.7717/PEERJ-CS.1085
https://ceur-ws.org/Vol-3640/paper9.pdf
https://doi.org/10.1016/J.WEBSEM.2011.08.006

	Introduction
	Background
	Data modeling in Wikidata
	Property constraints modeling by example
	Constraint qualifiers
	Core constraint qualifiers
	Constraint exception qualifiers
	Descriptive constraint qualifiers

	Additional challenges in understanding and verifying the semantics of constraints
	(Non-)consideration of subclasses and subproperties
	Interpreting separators
	Handling exceptions, deprecated, or suggested constraints
	Differences in Wikidata RDF serialization

	Expressing Wikidata constraints with SHACL
	SHACL validation
	Mapping Wikidata constraints to SHACL-Core
	Tool to automatically convert Wikidata constraints to SHACL
	Limitations of SHACL-Core for checking Wikidata constraints
	Beyond SHACL-Core: SHACL-SPARQL
	Towards SPARQL

	Operationalizing Wikidata constraints with SPARQL
	Expressing and validating Wikidata constraints in SPARQL
	Formalizing constraint types not captured with SHACL-Core in SPARQL

	Experiments
	Results
	One-of constraint
	Item-requires-statement constraint
	Single-value constraint
	Required qualifier constraint
	Value-requires-statement constraint

	Related work
	Constraint languages for graph data
	Constraints in Wikidata
	SHACL and SPARQL benchmarks

	Conclusions and future work
	Acknowledgements
	References

