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Abstract. The significant increase in data volume in recent years has prompted the adoption of knowledge graphs as valuable data
structures for integrating diverse data and metadata. However, this surge in data availability has brought to light challenges related
to standardization, interoperability, and data quality. Knowledge graph creation faces complexities from large data volumes, data
heterogeneity, and high duplicate rates. This work addresses these challenges and proposes data management techniques to scale
up the creation of knowledge graphs specified using the RDF Mapping Language (RML). These techniques are integrated into
SDM-RDFizer, transforming it into a two-fold solution designed to address the complexities of generating knowledge graphs.
Firstly, we introduce a reordering approach for RML triples maps, prioritizing the evaluation of the most selective maps first
to reduce memory usage. Secondly, we employ an RDF compression strategy, along with optimized data structures and novel
operators, to prevent the generation of duplicate RDF triples and optimize the execution of RML operators. We assess the
performance of SDM-RDFizer through established benchmarks. The evaluation showcases the effectiveness of SDM-RDFizer
compared to state-of-the-art RML engines, emphasizing the benefits of our techniques. Furthermore, the paper presents real-
world projects where SDM-RDFizer has been utilized, providing insights into the advantages of declaratively defining knowledge
graphs and efficiently executing these specifications using this engine.
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1. Introduction

Advancements in data collection devices and methods, such as sensors, wearables, and genomic tests, have re-
sulted in the generation of vast amounts of heterogeneous data, including omics and patient health data. This data is
available across various organizations and companies, such as hospitals, universities, and pharmaceuticals. However,
the presence of data silos often hampers the combination, analysis, and reuse of this valuable data, which prevents
the discovery of insights essential for decision-making. To address this challenge, knowledge graphs (KGs) have
gained significant traction in both industrial and academic sectors [32]. KGs provide a unified representation of
heterogeneous data, enabling the convergence of data and their meaning. KGs can be defined as data integration
systems consisting of a unified schema, data sources, and mapping rules that establish correspondences between
the data sources and the unified schema. These declarative definitions of KGs empower modularity and reusability
while also allowing users to trace the process of KG creation. Therefore, KGs serve as expressive data structures for
modeling integrated data and metadata, and their declarative specifications can be explored, validated, and traced,
thus, enhancing transparency and maintenance.

The Semantic Web community has played a relevant role in addressing the challenges associated with integrating
heterogeneous datasets into KGs. To tackle this complex task, the community has actively contributed with method-
ologies, formalisms, and engines aimed at facilitating the creation and maintenance of KGs [6,38,54]. Declarative
mapping languages, such as R2RML [21], RML [24], and SPARQL-Generate [40], have emerged as powerful tools
within this context. These languages allow knowledge engineers to define mapping rules or assertions [34,44] ca-
pable of generating KGs expressed in RDF2 through systematic evaluations. Mapping rules enable the seamless
definition of concepts within a unified schema, encompassing classes, properties, and attributes. This is achieved
by harnessing data from diverse sources presented in various formats, including tabular, CSV, JSON, or RDF. The
use of declarative mapping languages significantly enhances the flexibility and efficiency of the KG creation pro-
cess. By providing a standardized approach to mapping data to RDF, these languages empower organizations to
extract valuable insights from disparate sources, thereby driving informed decision-making. Furthermore, the Se-
mantic Web community has actively contributed to the development of various engines designed to execute mapping
rules [10,17,18,48].

Various RML engines are available such as Morph-KGC [3], RMLMapper,3 RocketRML [57], and SDM-RDFizer
v3.2 [33]. These engines have implemented techniques to execute RML mapping rules efficiently. However, given
the variety of parameters that can affect the performance of the KG creation process [15], existing engines may
not scale up to KG creation pipelines defined in terms of complex mapping rules or large data sources. Given the
amount of available data, new methods are demanded to scale up to complex scenarios where heterogeneous data
sources need to be integrated to provide the basis for knowledge analysis and decision-making.

In this paper, our primary research objective is to address the challenge of KG creation through declarative
specifications using RML. We present data management techniques implemented in the latest version of SDM-
RDFizer, denoted as SDM-RDFizer v4.5.6. These techniques play a pivotal role in satisfying the requirements
of data collection and processing within complex data integration systems. Specifically, they enable the efficient
scaling up of KG creation pipelines in real-world scenarios characterized by large and heterogeneous data sources.
The significance of these data management techniques is underscored by their effectiveness in handling complex KG
creation scenarios encountered in practical use cases. These scenarios are exemplified by the testbeds proposed in the
Knowledge Graph Construction Workshop 2023 Challenge at ESWC 2023 [63] and are characterized by parameters
reported by Chaves-Fraga et al. [15]. These complex use cases span different domains, such as biomedicine [2,52,
59] and energy [37], where the declarative definition of KGs facilitates the smooth integration of large amounts
of heterogeneous data, potentially duplicated across different data sources. As a result, SDM-RDFizer v4.5.6 is
empowered to scale up data collection, processing, and integration towards efficient KG creation.

This paper extends the work reported by Iglesias et al. [33]. Our new contributions are as follows:

– Data structures for RDF data compression and planning techniques for mapping rule execution.

2https://www.w3.org/RDF/
3https://github.com/RMLio/rmlmapper-java.

https://www.w3.org/RDF/
https://github.com/RMLio/rmlmapper-java
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– Physical operators that leverage these data structures to efficiently handle complex RML mappings, including
multiple joins and large data sources with high duplicate rates.

– A new version of the SDM-RDFizer tool (named SDM-RDFizer v4.5.6) which incorporates these data struc-
tures and physical operators, enabling the execution of complex KG creation pipelines.

– An empirical evaluation using two state-of-the-art benchmarks, GTFS-Madrid-Bench [16] and SDM-Genomic-
Datasets.4 Our evaluation encompasses 416 testbeds and compares our new version with Morph-KGC,
RMLMapper, RocketRML, and the previous version of SDM-RDFizer (v3.2). The results demonstrate the ad-
vantages of the data management techniques proposed in this paper and implemented in SDM-RDFizer v4.5.6.
Specifically, the evaluation highlights the significance of data structures and physical operators in executing
complex configurations like those found in the SDM-Genomic-Datasets benchmark.

The rest of the paper is structured as follows: Section 2 defines and illustrates a KG creation pipeline and the
requirements to be satisfied for an RML engine. Section 3 summarizes previous approaches. Section 4 defines the
data management methods implemented in SDM-RDFizer v4.5.6. Section 5 reports the results of our experimental
studies. Section 6 describes the main characteristics of our tool and, finally, our conclusions and future work are
outlined in Section 7.

2. Declarative specifications of pipelines for knowledge graph creation

This section provides the basis for understanding the problem of KG creation. First, we define some basic concepts
related to KGs, data integration systems, KG creation pipelines, and RML (RDF Mapping Language). Next, we
present the steps involved in declaratively specifying a KG using RML. To ensure the effectiveness of RML engines,
we will elucidate the requirements that they need to satisfy, based on existing evaluation studies reported in the
literature [15,34,39]. Finally, we will illustrate the problem of KG creation in a use case derived from the data
integration challenges in the biomedical area. This example illustrates data integration issues reported by Chandak
et al. [12] and observed in the data management tasks of the EU H2020 funded projects iASiS5 and CLARIFY.6

2.1. Preliminaries

Data can be siloed and scattered across various data sources. As the volume of available data continues to expand,
the prevalence of these data silos is expected to increase, consequently hindering interoperability. Data integration
aims to gather information from heterogeneous sources and provide a unified view from which relationships and
patterns hidden in isolated sources can be uncovered [11,28]. To illustrate, consider data related to genes collected
from tissues from tumors and stored in three data sources. A relational database maintains gene-related information
(e.g., created from Genecards7). Further, the results of tumor tissue analysis are maintained in a tabular format (e.g.,
CSV), and an XML file stores information about the tumors from which the tissues were sampled. When analyzing
genes (e.g., BRCA1) related to tissues sampled from specific tumors (e.g., breast tumors), integrating these data
sources becomes essential to establish the connections existing between these entities. However, each data source
follows a different format and schema, creating interoperability conflicts. Data integration has the objective of
providing data management methods to create these holistic views (e.g., integrated views of genes, tissues, and
tumors). While these interoperability issues are readily apparent in the biomedical field [39], similar issues persist
across industrial and scientific domains where data is autonomously generated. The challenge is to provide data
management mechanisms that enable seamless data integration while also ensuring scalability and maintainability
to guarantee long-term usability and value of the integrated data.

A data integration process can be specified as a data integration system DISG = 〈O, S,M〉 [42]. Here, O

represents a unified schema consisting of classes and properties, S denotes a set of data sources, and M corresponds

4https://figshare.com/articles/dataset/SDM-Genomic-Datasets/14838342
5https://cordis.europa.eu/project/id/727658.
6https://www.clarify2020.eu/.
7https://www.genecards.org/

https://figshare.com/articles/dataset/SDM-Genomic-Datasets/14838342
https://cordis.europa.eu/project/id/727658
https://www.clarify2020.eu/
https://www.genecards.org/


CORRECTED  P
ROOF

4 E. Iglesias et al. / Empowering the SDM-RDFizer tool for scaling up to complex KG creation pipelines

Fig. 1. Example. Main concepts of the RDF mapping language (RML). Triples maps <TriplesMap1>, <TriplesMap2>, <TriplesMap3> corre-
spond to RML mapping rules that define entities in the classes ex:Gene, ex:Sample, and ex:Tumor, respectively.

to mapping rules establishing the correspondences between concepts in O and the attributes of the sources in S.
Traditionally, the design of a data integration system is built over certain assumptions [28]: i) The unified schema
models all concepts (i.e., classes, attributes, and relationships) of the entities present in the data sources. ii) Data
sources are well-defined in terms of their signatures or schemas. iii) Interoperability issues arising from different
representations of the same real-world entities have been previously addressed using entity alignment methods. iv)
Collected data is assumed to be mostly correct and consistent. In case of inaccuracies, data curation methods are
applied during a pre-processing stage.

KGs are directed edge-labeled graphs that represent statements as entities and their relationships as labeled edges
(Gutierrez et al. [29]). Given a KG G, the KG creation process can be defined as a data integration system DISG =
〈O, S,M〉, such as the execution of mapping rules in M over the data sources in S generates nodes and labeled edges
in G. These rules can be represented as Horn clauses (Namici et al. [44]), such as body(X) : −head(Y ), following
the Global As View (GAV) approach [42], i.e., body corresponds to the conjunction of data source predicates in
S, and the head is a predicate in O which corresponds to a class, attribute, or property. W3C-standard mapping
languages like R2RML8 and its extension, the RDF Mapping Language-RML [25,36], can be utilized to specify the
mapping rules in M for KGs expressed using the Resource Description Framework (RDF).

R2RML mappings define how tables, columns, and rows in a relational database are declaratively translated into
RDF triples. RML is a mapping language that represents mapping rules in RDF; it offers the features of R2RML by
allowing the specification of mapping rules over heterogeneous data sources, e.g., JSON, CSV, and XML. RML pro-
vides a well-established and standardized approach to mapping heterogeneous data to RDF. The W3C Community
Group on Knowledge Graph Construction has proposed the RML ontology [36] as a common agreement on how the
mapping rules must be defined. This standardization ensures consistency and compatibility with other RDF-related
tools and technologies. Moreover, RML mappings can be reused for different data sources, reducing redundancy
in mapping definitions. This reusability streamlines the creation and maintenance of RDF KGs for various applica-
tions. Declarative RML mappings are represented in RDF, serving as metadata that can be queried to facilitate the
maintainability and reusability of DISs. Consequently, these declarative specifications of KGs as RML DISs pro-
mote modularity, supporting maintenance, testing, debugging, and enabling collaborative definition and reusability.
RML is currently being used by several companies and public organizations [19,20,50,60] to create their KGs, also
including the Google Enterprise Knowledge Graph.9

Fig. 1 depicts RML mapping rules (a.k.a. triples maps). Triples map represents mapping rules where the re-
sources (rr:subjectMap) of an RDF class and their properties (rr:predicateObjectMap) are assigned

8https://www.w3.org/TR/r2rml/
9https://cloud.google.com/enterprise-knowledge-graph/docs/entity-reconciliation-console

https://www.w3.org/TR/r2rml/
https://cloud.google.com/enterprise-knowledge-graph/docs/entity-reconciliation-console
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to values (rr:objectMap) based on a logical data source (rml:logicalSource). A rr:objectMap can
be also defined as a reference or a join with the rr:subjectMap in another triples map called rml:parent-
TriplesMap; if the two triples maps are defined over different logical sources the term rr:joinCondition
specifies the attributes in the logical sources whose values need to match. A triples map defines a group of map-
ping rules that specifies RDF triples with the same subject. For example, the triples map tagged <TriplesMap1>
(lines 1 to 12) defines resources in the class ex:Gene and the RDF triples for these resources with the predicates,
ex:geneLabel and ex:gene_isRelatedTo_sample. The data to populate the RDF triples are collected
from the data sources defined with the term rml:logicalSource element (lines 2, 14, and 25).

2.2. Knowledge graph creation pipelines

The declarative definition of a KG G as a data integration system DISG = 〈O, S,M〉 where mapping rules are
specified in RML, requires the following steps [23]:

1. Description of the schema of the data sources Si in S and the location source. If Si is a relational database, Si

can be defined as a SQL query or a table. On the other hand, if Si is a semi-structured source (e.g., in XML or
JSON), Si is defined as an iterator representing the iteration pattern to be followed to extract the data from Si .
In XML, the iteration is defined using XPath, while JSONPath is utilized for JSON.

2. Selection of the set C of classes from O whose entities are defined in terms of sources in S and whose
properties are specified according to the attributes of these sources.

3. For each class Cj in C and source Sk in S, such as Sk defines the entities in Cj , create a triples map tj,k with
logical source Sk and rr:subjectMap with the function rr:template over the attributes Ak,1,. . . ,Ak,p

from Sk that compose the Internationalized Resource Identifier (IRI) of the entities of Cj . Fig. 1 illustrates
three triples maps defining the classes ex:Gene, ex:Sample, and ex:Tumor.

4. Data type properties dta of Cj defined as attribute Dk,1 in Sk , tj,k include a rr:predicateObjectMap,
whose rr:predicate is dta, and rr:objectMap is Dk,1. Lines 6–8 in Fig. 1 show the term rr:pred-
icateObjectMap specifying the terms rr:predicateObjectMap, rr:predicate, and rr:ob-
jectMap defining the instances of the RDF triples whose subject is defined by the rr:subjectMap in
lines 3 and 5, the predicate is ex:geneLabel and the object value corresponds to the attribute “Gene
name” from “dataSource1”; the term rr:reference indicates that the value is a literal.

5. If op is an object property of Cj defined with the attributes Bk,1,. . . ,Bk,q in Sk , a rr:predicateOb-
jectMap will be part of tj,k with rr:predicate is op, and rr:objectMap is the function rr:tem-
plate over Bk,1,. . . ,Bk,q from Sk that compose the Internationalized Resource Identifier (IRI) of the object
values of op. Lines 29–31 in Fig. 1 illustrate the specification of ex:tumorTerm whose values are IRIs.

6. The object values of an object property op can be defined as the subject on a triples map defined over the
same logical source. In this case, the term rr:parentTriplesMap is utilized to reference the triples
map. In Fig. 1, the values of the predicate ex:gene_isRelatedTo_sample correspond to the resources
of the class ex:Sample specified by TriplesMap2. Contrary, if both triples maps are defined over two
different logical sources, the term rr:joinCondition specifies the attributes to be joined in the data
sources of the triples maps to be merged. The term rr:predicateObjectMap in lines 18 and 23 defines
the predicate ex:sample_isTakenFrom_tumor as the subject of TriplesMap3 whose values for the
attributes named “ID_sample” in “dataSource1” and “dataSource2” have the same values.

2.3. Requirements of a knowledge graph creation pipeline

Requirements for RML engines are defined based on: parameters analyzed by Chaves-Fraga et al. [15]; testbeds
assessed by the KGCW 2023 Challenge [63]; and data integration requirements presented by Kinast et al. [39].

Chaves-Fraga et al. [15] have established that various parameters influence the efficiency of declaratively spec-
ified KG creation as a DIS. These parameters are grouped into five dimensions: mapping, data, platform, source,
and output. The data dimension considers the characteristics of the data stored in a data source; it includes size,
frequency distribution, data partitioning, and format. The impact of the hardware resources is represented in the
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hardware dimension, while the source dimension includes parameters such as data source transfer time and data
initial delays. Finally, the output dimension groups parameters related to how the RDF triples are generated. They
include duplicate removal, RDF triple generation at once, or in a streaming manner. Thus, these parameters encom-
pass the complexity of the mapping rules (e.g., mapping shape, number of joins, and join selectivity).

The Extended Semantic Web Conference (ESWC) 2023 hosted a Knowledge Graph Creation Workshop
(KGCW), which introduced a challenge dataset [63] aimed at evaluating the performance of existing KG creation
RML engines. This dataset was designed to assess memory usage and execution time, considering various param-
eters that influence the KG creation process, as established by Chaves-Fraga et al. [15]. The aim was to create
multiple test cases by generating RML triples maps covering a wide range of scenarios. They include: a) size of
the data sources based on number of rows and columns; b) number of RML triples maps and their properties; c)
complexity of joins among RML triples maps; and d) data diversity (e.g., duplicate rate and empty values). These
scenarios each have unique effects on the KG creation process. Data source size and the complexity of joins pri-
marily impact memory usage. Meanwhile, the number of properties, triples maps, and data diversity can influence
execution time. How KG creation engines handle these variables determines the specific impact on execution time
or memory usage due to data diversity. In summary, this challenge dataset offers a comprehensive examination of
KG creation scenarios, making clear the requirements that need to be satisfied to enhance the performance of RML
engines.

Kinast et al. [39] present the outcomes of a systematic literature analysis, showing the functional requirements for
integrating medical data. These functional requirements include several categories, encompassing data acquisition,
processing, analysis, metadata management, traceability, lineage, and security. While some requirements are specific
to the medical domain, the following are domain-agnostic: i) the capability to collect data in various formats; ii) the
use of standardized ontologies, vocabularies, rules, and processes; iii) the possibility of representing integrated data
through multidimensional models (e.g., RDF KGs); and iv) the capacity of managing large volumes of data.

We have elucidated the following requirements; they are divided into two categories: data collection and process-
ing.

Data collection: This category encompasses requirements for accessing data from various data sources:

– RE1-Heterogeneous data: Collect data from diverse sources in various formats (e.g., CSV, JSON, or relational
databases) [15,39,63].

– RE2-Large data: An engine should be able to handle data of different sizes [15,39,63].
– RE3-Fragmented data: Gather all attributes of entities within a class [15,63].

Data processing: This category outlines requirements for the processes involved in integrating the collected data:

– RE4-Duplicated data: Efficiently process and integrate duplicated data [15,63].
– RE5-Data diversity: Ensure that variations in data frequency distributions across multiple sources do not

impede the efficiency of data integration and processing [15,63].
– RE6-Semi-structured data: Enable the engine to convert semi-structured data (e.g., XML or JSON) into a

standardized format (e.g., RDF) [39].
– RE7-Standardized data integration: Enable the engine to process data from diverse sources with correspon-

dences expressed using standard mapping languages (e.g., R2RML or RML) [39].
– RE8-Mapping complexity: Ensure the engine can process any level of complexity, ranging from the number

of properties and mappings to the diversity of joins between mappings [15,63].

2.4. A use case for knowledge graph creation

This section illustrates the problem of defining a KG using a declarative approach where mapping rules are spec-
ified in RML. In this example, we focus on a portion of a DIS that defines a biomedical KG [2,52,64,65], e.g.,
the one created in the context of the EU H2020 projects iASiS5 and CLARIFY6. The data sources, referred to
as SDM-Genomic-Datasets [33] vary in size, with 100k, 1M, and 5M rows, and each dataset has a different per-
centage of data duplicate rate (25% or 75%). The unified ontology10 consists of classes like iasis:Mutation,

10https://github.com/SDM-TIB/iASiSOntology

https://github.com/SDM-TIB/iASiSOntology
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iasis:Gene, iasis:Sample, iasis:GenomePosition, iasis:Tumor, and iasis:SomanticSta-
tus; they are used to provide a harmonized definition of the concepts scattered across the collected data sources.
The ontology and its properties are defined in six RML triples maps, as presented in Fig. 2a. This pipeline con-
sists of one parent triples map (TriplesMap1) and five child triples maps (TriplesMap2, TriplesMap3,
TriplesMap4, TriplesMap5, and TriplesMap6) that refer to the same triples map. Due to the shape of the
triples maps, data source sizes, and percentage of duplicates, this use case is considered complex and challenging to
execute.

Three state-of-the-art RML engines, i.e., RMLMapper v6.0,11 Morph-KGC v2.1.1,12 and SDM-RDFizer v3.228,
are utilized to create this portion of the KG; following configurations reported in the literature [13,17,34,35], the
engines timed out in five hours. The results of executing these engines in six testbeds are shown in Fig. 2. The exe-
cution time was significantly impacted by factors such as the size of the data sources, the percentage of duplicates,
and the number and type of joins among triples maps. In fact, two out of the three engines timed out when process-
ing a data source with 5M records. Although SDM-RDFizer exhibited relatively better execution time compared to
RMLMapper and Morph-KGC, it still required considerable time to create the KG. In this paper, we present a new
version of SDM-RDFizer (v4.5.613) that incorporates data management techniques for planning the execution of
triples maps and efficiently compressing intermediate results. These improvements have enabled SDM-RDFizer to
scale up to complex scenarios, as reported in Section 5.

3. Related work

This section summarizes the key contributions from the existing literature regarding creating RDF KGs. First, an
overview of the data models, formats, and frameworks to transform Web data is presented. Then, existing technolo-
gies for KG creation are described, while the following two sections present the main approaches for performing
the KG integration process in a virtual or materialized manner [6].

3.1. Representing data on the web and transforming web data into RDF

The adoption of the Web as a framework for publishing electronic data [1] has driven the development of semi-
structured data models, formats, and languages aimed at facilitating their curation, retrieval, and version control [1].
In this context, XML emerged as a standard proposed by the World Wide Web Consortium (W3C) for representing
semi-structured data from diverse sources. XML employs a tag-based syntax that is easily readable by both humans
and machines. Additionally, RDF graphs can be represented using XML syntax, with tools like XSPARQL [9]
and Gloze [8] supporting the transformation between XML and RDF specifications. CSV, an abbreviation for
“Comma Separated Value,” is another commonly used format for representing and exchanging data on the Web.
The CSV2RDF14 framework offers standardized procedures for converting CSV data into RDF, while Tarql15 relies
on wrappers for CSV data sources. These wrappers enable the execution of CONSTRUCT SPARQL 1.1 queries, fa-
cilitating the creation of RDF graphs from CSV data. Relational or tabular data also serve as a prevalent data model
for presenting information on the Web. Tools developed by Polfliet and Ryutaro [47], Sequeda and Miranker [56],
as well as Auer et al. [7], exemplify solutions for transforming relational data into RDF format. In a broader context,
Thakker [61] offers a comprehensive analysis of various data transformation techniques applied to data represented
in different models (such as relational or semi-structured databases) and formats (e.g., XML16 or JSON17). These

11https://github.com/RMLio/rmlmapper-java/releases/tag/v6.0.0
12https://doi.org/10.5281/zenodo.6524684
13https://doi.org/10.5281/zenodo.7027549
14https://www.w3.org/TR/csv2rdf/
15https://ld4pe.dublincore.org/learning_resource/tarql-sparql-for-tables/
16https://www.w3.org/TR/xml/
17https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf

https://github.com/RMLio/rmlmapper-java/releases/tag/v6.0.0
https://doi.org/10.5281/zenodo.6524684
https://doi.org/10.5281/zenodo.7027549
https://www.w3.org/TR/csv2rdf/
https://ld4pe.dublincore.org/learning_resource/tarql-sparql-for-tables/
https://www.w3.org/TR/xml/
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
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Fig. 2. Motivating example. A star triples map and its impact on the performance of a KG creation pipeline.

transformations are executed using query languages like SPARQL18 or Gremlin.19 This analysis emphasizes the
significance of this topic within both the database and semantic web communities. SDM-RDFizer also facilitates
the transformation of data from diverse sources represented in various formats, including JSON, XML, CSV, or
relational databases. However, SDM-RDFizer relies on declarative definitions using R2RML or RML to establish
correspondences between data sources and RDF. Since different factors can influence the execution of these declar-
ative mapping rules [15], SDM-RDFizer employs various data structures and physical operators to mitigate the
impact of data size, mapping rule complexity, and duplicate records.

18https://www.w3.org/TR/sparql11-query/
19https://tinkerpop.apache.org/gremlin.html

https://www.w3.org/TR/sparql11-query/
https://tinkerpop.apache.org/gremlin.html
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3.2. Knowledge graph creation and existing technologies

The creation of a KG G can be defined as a data integration system [42], represented as DISG = 〈O, S,M〉. In
this system, O denotes a unified ontology consisting of classes and properties, S represents a set of data sources,
and M corresponds to mapping rules or assertions that align with the concepts defined in O, expressed as conjunc-
tive queries over the sources in S. By executing M over the data sources in S, the instances in G are generated.
The input data sources are typically represented in a global view, commonly established as an ontology [46]. The
connection between these input sources and the ontology is often established through mapping rules, such as the
W3C recommendation R2RML [21] for relational databases or its main extension for heterogeneous data formats
(e.g., CSV, XML, and JSON) called RML [24,36]. However, there are other solutions that adapt different languages
(e.g., SPARQL) for integration purposes, such as SPARQL-Anything [5] and SPARQL-Generate [40]. The works by
Hofer et al. [31] and Van Assche et al. [6] contribute to the understanding of the most suitable mapping languages,
ontologies, data sources, and KG creation engines based on specific use cases. Hofer et al. report a comprehensive
study to determine the state-of-the-art in KG construction, defining the requirements for popular KGs like DBpe-
dia and WorldKG, evaluating existing tools and strategies, and identifying areas that require further attention. On
the other hand, Van Assche et al. [6] survey mapping languages and engines to determine their appropriateness in
different user situations. These works play a vital role in informing the community about the existing approaches,
enabling researchers to identify areas that need further exploration and improve upon state-of-the-art.

3.3. Virtual data integration in knowledge graphs

The creation of a virtual KG involves generating it dynamically based on a request expressed as a query over a
target ontology, with mapping rules used to transform the input query into an equivalent query for the source(s) in
S [67]. Virtual KG creation approaches offer the advantage of integrating frequently updated data, such as streaming
or evolving data. However, they face challenges in query writing, optimization, and execution to ensure the relia-
bility and completeness of KG creation pipelines [68,69]. Several solutions have been proposed, with a focus on
translating SPARQL queries into SQL queries. These solutions include Ontop [10], Ultrawrap [55], Morph [48],
Squerall [43], Ontario [27], and Morph-CSV [17]. Ontop, Ultrawrap, and Morph create virtual RDF KGs while
evaluating SPARQL queries against relational databases. Optimization techniques are employed to speed up query
execution while maintaining the completeness of query answers. However, these approaches are limited to data
sources accessible via relational databases. Morph-CSV follows a similar approach and introduces query rewrit-
ing techniques to efficiently apply domain-specific constraints on raw tabular data, such as CSV files, to enhance
SPARQL2SQL engines. Ontario and Squerall tackle the problem of virtual KG creation by treating it as query exe-
cution over a federation of heterogeneous data sources, including JSON, CSV, XML, RDF, and relational databases.
Although SDM-RDFizer is not specifically designed for generating virtual KGs, recent work by Rohde et al. [49]
demonstrates that it can be easily extended to efficiently create a KG by rewriting an input query based on RML
triples maps.

3.4. Materialized knowledge graph creation

A KG is constructed by integrating various sources in S using mapping rules defined in M . The community has
actively contributed to data management techniques and ETL tools that facilitate the integration of large and di-
verse data sources into KGs through declarative mapping rules. One such tool is RMLMapper3, it is an in-memory
RML compliant engine designed to address source heterogeneity during KG creation. RMLMapper is capable of
executing RML mapping rules (a.k.a. triples maps) defined over logical sources in different formats (e.g., CSV,
JSON, XML, Excel files, LibreOffice) accessible through remote access (e.g., SPARQL endpoints or Web APIs) or
management systems (e.g., Oracle, MySQL, PostgreSQL, or SQLServer). However, RMLMapper may not scale up
in complex scenarios [4]. Morph-KGC [3] is a tool that processes R2RML, RML, and RML-star [22] and improves
the scalability of KG creation by introducing the concept of mapping-partitions. This technique addresses several
parameters that affect KG construction, such as duplicate elimination and parallel execution. However, it primarily
focuses on mapping planning, and the authors acknowledge the need for new techniques or data structures to handle
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complex [R2]RML operators, including join conditions. The initial version of SDM-RDFizer [33] also emphasizes
scalability and relies on a set of physical data structures and corresponding operators for efficient duplicate removal
and join condition processing. While this speeds up KG creation, these data structures may impact scalability in
terms of memory consumption. Stadler et al. [58] present data management methods that resort to the translation of
RML triples maps into SPARQL queries over the Apache Spark Big Data framework to scale up the process of KG
creation. RMLStreamer [45] also prioritizes scalability, and efficiently generates RDF triples continuously while
eliminating duplicates at the end. Other RML-compliant engines, such as RocketRML [57], focus on heterogeneity
rather than scalability. Meanwhile, tools like Chimera [53] and CARML20 implement data management techniques
for handling large JSON and XML files, reducing memory consumption, and incrementally generating KGs. De-
spite significant efforts in developing these solutions, there is still room for research and the implementation of
more scalable approaches that ensure their adoption in industry and academia. In the Knowledge Graph Construc-
tion Workshop 2023 Challenge at ESWC 2023 [63], participants such as CARML, SANSA (Stadler et al. [58]),
RMLStreamer, and SDM-RDFizer showcased their capabilities. The results demonstrated that no single engine can
outperform others in all aspects. CARML showed better results in terms of memory usage, while SDM-RDFizer
efficiently handled task-oriented test cases involving join execution, duplicate removal, and empty values. As ex-
pected, SANSA exhibited the lowest execution time, while RMLStreamer scaled well with larger data sources. The
version of SDM-RDFizer presented in this paper aims to address these issues by empowering data management
methods and structures, not only speeding up KG creation and reducing memory consumption but also enabling
efficient execution of complex use cases involving duplicate removal, empty values, and expensive joins.

4. SDM-RDFizer: A tool for the materialized creation of knowledge graphs

This section presents the SDM-RDFizer tool, focusing on its architecture and data management techniques that
enable the engine to meet the requirements outlined in Section 2.3. The development of SDM-RDFizer follows the
Agile software development methodology, which ensures a flexible and iterative approach guided by the require-
ments for scaling up KG creation. These requirements are gathered from various sources, including the community
(e.g., the KGC Challenge at ESWC 2023), ongoing projects, and fundamental findings from the data management
field. By embracing the Agile methodology, the development team can effectively adapt to evolving needs and
prioritize scalability. The iterative nature of Agile allows for continuous improvement and integration of valuable
feedback throughout the development process. Moreover, by actively involving stakeholders and considering their
input, SDM-RDFizer aims to address the specific challenges faced by users in KG creation. Through the Agile ap-
proach, SDM-RDFizer strives to deliver a more responsive, collaborative, and efficient tool that effectively tackles
the demands of scaling up KG creation.

4.1. The SDM-RDFizer architecture

SDM-RDFizer implements multiple data structures that optimize different aspects of the KG creation process
such as duplicate removal, join execution, and data compression, and operators that execute various types of triples
maps efficiently. Additionally, SDM-RDFizer is able to plan the execution of the RML triples maps to reduce
execution time and secondary memory consumption.

Fig. 3 depicts the SDM-RDFizer architecture in terms of its components. The SDM-RDFizer comprises two
main modules: Triples Map Planning (TMP) and Triples Map Execution (TME). TMP determines the order of
evaluation of the triples maps so that the amount of memory used is kept at a minimum. Next, TME evaluates the
triples maps in the generated order. Each triples map is defined in terms of a physical RML operator (Simple Object
Map (SOM), Object Reference Map (ORM), and Object Join Map (OJM)) so that RDF triples can be generated
as the execution of these operators. Each generated triple is compared to the corresponding Predicate Tuple Table
(PTT) to determine if the triple is a duplicate. If the triple is a duplicate, it is discarded. If the triple is not a duplicate,
it is added to the corresponding PTT and the KG. The generated RDF resources and literal are represented in the

20https://github.com/carml/carml

https://github.com/carml/carml
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Fig. 3. The SDM-RDFizer architecture. SDM-RDFizer receives as an input RML triples maps with its corresponding data sources. The triples
map planning component plans and orders the execution of the triples maps. The triples map execution component resorts to physical operators,
data structures, and compression techniques to efficiently execute the triples maps in the order stated during planning.

Dictionary Table (DT). In case there is a join condition, the Predicate Join Tuple Table (PJTT) is used to store
the results of the join condition.

4.2. The SDM-RDFizer planning phase

The Triples Map Planning (TMP) module reorders RML triples maps so that the most selective ones are evaluated
first, while non-selective rules are executed at the end. TMP organizes the triples maps and data sources so that the
number of RDF triples kept in the main memory is reduced. As a result, the KG creation process consumes the
minimum amount of memory and execution time. TMP defines two data structures, the Organized Triples Maps
List (OTML) and the Predicate List (PL); they encapsulate the order in which the triples maps should be executed.
OTML groups the triples maps by data source, while PL groups the triples maps by predicate and orders them.
Triples maps are sorted to determine which of them define the same predicates.

Organized Triples Maps List (OTML) groups triples maps by their data source; see Fig. 4a. OTML is only used
with triples maps with file data sources (e.g., CSV, JSON, and XML), i.e., it is not utilized for relational databases.
This is because, when processing relational databases, the RML engine should collect the data indicated in the
triples map using SQL queries.

During the TMP phase, triples maps are classified based on the logical data source format (i.e., CSV, JSON, and
XML). Afterward, they are grouped by their data source; thus, a data source is opened once to execute all the triples
maps. Implementing this data structure into the SDM-RDFizer causes the processor to adopt a hybrid approach. A
data-driven approach is used for triples maps with file data sources, while a mapping-driven approach is used for
triples maps with relational databases. Figure 4a depicts the OTML for the triples maps in Fig. 1. Since all these
triples maps are over CSV files, only one group is created.

Predicate List (PL) groups triples maps by their predicates by creating a list of triples maps associated with
a particular predicate; see Fig. 4b. PL has two purposes, the first is to determine when a PTT associated with a
certain predicate is ready to be flushed from main memory, and the second is to organize OTML. Each time a triples
map is processed, it is removed from the list of the corresponding predicates. If the list becomes empty, no triples
maps require the corresponding predicate and the associated PTT is safe to be flushed. For a generic predicate, e.g.,
rdf:type, we add its range alongside the predicate to its entry in PL. In Fig. 4b (line 20), there is the predicate
rdf:type, and its range is ex:Sample. The corresponding entry in the PL is rdf:type_Sample. PL also
organizes OTML by determining which triples maps have overlapping predicates. By default, the execution order
considers the triples maps with the least overlap first and the one with the most overlap last. Following each triples
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Fig. 4. The data structures for the planning phase. The organized triples map list groups triples maps (TMs) first by data source and then by
data source format, thus reducing the need to open any particular data source more than once. Predicate list groups the TMs by predicate. Each
time a TM is finished processing, it is removed from the predicate list, and if a predicate becomes empty, the corresponding PTT is flushed. PL
also defines the order of execution of the organized triples map list by determining which TMs have overlapping predicates.

map is the triples map that overlaps with it so that when a triples map is finished executing, the most memory is
released, and if any PTT remains, they will be flushed when the following triples map culminates.

4.3. The SDM-RDFizer triples map execution phase

This section explains the main data management methods implemented in SDM-RDFizer. The Triples Map Ex-
ecution (TME) module generates the KG; it follows the order established by the TMP module when executing the
RML triples maps. TME introduces multiple data structures, Predicate Tuple Table (PTT), Predicate Join Tuple
Table (PJTT), and Dictionary Table (DT) that optimize different aspects of the KG creation process, like duplicate
removal, join execution, and data compression respectively. TME resorts to three novel operators, Simple Object
Map (SOM), Object Reference Map (ORM), and Object Join Map (OJM). Each operator covers a different type
of triples map. The SOM operator executes a simple projection of the data to generate triples. ORM executes a
parent reference between two triples maps with the same data source, and OJM is similar to ORM. Still, there must
be a join condition, and the triples maps do not require the same data source. The following sub-sections define in
more detail these operators and data structures.

4.3.1. The SDM-RDFizer data structures
SDM-RDFizer implements three data structures to efficiently manage and store the intermediate RDF triples

generated during the execution of RML triples maps. These data structures avoid the generation of duplicated
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Fig. 5. Dictionary table and predicate triple table. Each generated RDF resource or literal is encoded in terms of an identification number in
base 36. The dictionary table stores this encoding. RDF triples generated for a predicate, e.g., ex:geneLabel, are stored into its corresponding
predicate tuple table using the identification number of each RDF resource and literal.

triples. Intermediate results are stored in these data structures independently of the format of the data sources. Thus,
SDM-RDFizer exhibits a performance agnostic of the format of the data sources.

Dictionary Table (DT) encodes each RDF resource generated during the execution of a KG creation pipeline with
an identification number. It is implemented as a hash table where the key is the IRI or Literal that represents the RDF
resource, and the value is the identification number in base 36. An encoding function, encode(.), is implemented to
transform each RDF resource into its corresponding identification number. Fig. 5 illustrates an example of the DT
that includes five entries with the identification numbers 1–5.

Predicate Tuple Table (PTT) is a table that stores all the RDF triples generated so far for a given predicate p.
Fig. 5 presents a PTT for the predicate ex:geneLabel. PTTs correspond to hash tables where the hash key of an
entry corresponds to the encoding of the subject and object of a generated RDF triple, and the value of the entry is
the encoding of the RDF triple. As shown in Fig. 5, the identification number stored in DT for the corresponding
RDF resources and literals, are used to encode the entries of a PTT. A PTT avoids the duplicate generation of an
RDF triple, i.e., whenever an RDF triple is part of a PTT, this triple has been previously created, and the new triple
should not be considered and added to the KG. However, when an RDF triple is not within PTT, then it is unique
and must be added to PTT and the RDF KG. Whenever an RDF triple is generated during the execution of a triples
map, the corresponding PTT is checked. PTTs bring significant savings not only in sources with high-duplicated
rates but also when data sources create RDF triples of p also overlap.

Predicate Join Tuple Table (PJTT) is a table that stores the subjects of the triples generated by a join. It is
implemented as an index hash table to the data source of the parent triples map in a join condition. A PJTT key
corresponds to the encoding of each value(s) of the attributes in the join condition. The value of a key in a PJTT
corresponds to the encoding of the subject values in the data source of the parent triples maps, which are associ-
ated with encoding the values of the attributes in the hash key. DT is used to retrieve the encodings of the RDF
resources or literals. Thus, a PJTT minimizes the space to store intermediate results. Fig. 6 illustrates the PJTT for
the join condition between triples maps TriplesMap2 and TriplesMap3 in Fig. 1 (lines 21–23). This PJTT
corresponds to an index hash from the encoding values of the attribute ID_sample to the values of the attribute
ID_tumor in dataSource2. The set of encoded values enables to directly access all the values of ID_tumor
that join with a value of ID_sample. Thus, a PJTT enables direct access to the subjects associated with a join
condition, and implements an index join corresponding to the most efficient implementation of a join [41].

4.3.2. The SDM-RDFizer physical operators
SDM-RDFizer resorts to three physical operators to efficiently execute triples maps in a KG creation pipeline.
Simple Object Map (SOM) generates an RDF triple by performing a simple predicate object map statement;

Algorithm 1 sketches the SOM implementation. Given a triples map and its respective data source, SOM generates
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Fig. 6. Predicate join triple table. The PJTT for the join between triples maps TriplesMap2 and TriplesMap3 in Fig. 1 (lines 21–23).
The encoding stored in the dictionary table is used to minimize the space to store intermediate results.

the RDF triples. The encoding of each generated RDF triple is checked against the corresponding PTT. If the RDF
triple already exists in PTT, it is discarded. If not, it is added both to PTT and the KG.

Algorithm 1 Simple object map (SOM)

Input: Triples Map tm1 defines predicate p on logi-
cal source S and tm1 subjectMap is f 1(att1)

and tm1 objectMap for p is f 2(att2)

Output: RDF Triples for p generated from tm1
for each: row ∈ S

1: Create RDF triple t = (f 1(row.att1), p, f 2(row.att1))

2: Add f 1(row.att1) and f 2(row.att1)) to the Dic-
tionary Table

3: if encode(f 1(row.att1), f 2(row.att1)) does not

belong to the PTT for p then
4: Add encode(f 1(row.att1), f 2(row.att1)) to

PTT for p

5: Add (f 1(row.att1), p, f 2(row.att1)) to the KG

6: end if
7: return KG

Object Reference Map (ORM) implements the object reference between two triples maps defined over the same
data source. It extends SOM by using the subject of the parent triples map as the object of another triple map. Thus,
the same process as in SOM is applied to the generated RDF triples, i.e., the encoding of the triples is checked
against PTT to determine if they will be added to the KG. Algorithm 2 illustrates the ORM implementation.

Algorithm 2 Object reference map (ORM)

Input: Triples Map tm1 refers to Triples Map tm2
to define predicate p on logical source S and
tm1 subjectMap is f 1(att1) and tm2 sub-

jectMap is f 2(att2)

Output: RDF Triples for p generated from tm1
for each: row ∈ S

1: Create RDF triple t = (f 1(row.att1), p, f 2(row.att1))

2: Add f 1(row.att1) and f 2(row.att1)) to the Dic-

tionary Table
3: if encode(f 1(row.att1), f 2(row.att1)) does not

belong to the PTT for p then
4: Add encode(f 1(row.att1), f 2(row.att1)) to

PTT for p

5: Add (f 1(row.att1), p, f 2(row.att1)) to the KG
6: end if
7: return KG
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Object Join Map (OJM) implements an index join in executing a join condition between two triples maps
defined over two different data sources. OJM resorts to the corresponding PJTT to access the encoded values in
the child map associated with the encoded values of the data source of the parent triples map. Thus, if the encoded
value encode(e) of a value in the data source of the child triples map exists in PJTT, then the set of values for
encode(e) is used to generate the resulting RDF triples. Finally, similar to the last two operations, the generated
RDF triples are checked against the corresponding PTT to avoid duplicate generation. Algorithm 3 sketches the
OJM implementation for a join between triples maps tm1 and tm2.

Algorithm 3 Object join map (OJM)

Input: Triples Map tm1 refers to Triples Map tm2
to define predicate p on logical sources S1 and
S2 and join condition B on attributes S1Att and
S2Att, respectively, and tm1 subjectMap is
f 1(att1) and tm2 subjectMap is f 2(att2)

Output: RDF Triples for p generated from tm1
1: for row1 ∈ S1 do
2: if encode(row1.S1Att) belongs to the PJTT for

tm2 then
3: for v ∈ valueSet(encode(row1.S1Att)) in

PJTT for tm2 do
4: Create t = (f 1(row1.att1), p, f 2(decode(v)))

5: Add f 1(row1.att1) and f 2(decode(v)) to the
Dictionary Table

6: if encode(f 1(row1.att1), f 2(decode(v)))

does not belong to the PTT for p then
7: Add encode(f 1(row1.att1), f 2(decode(v))

to PTT for p

8: Add (f 1(row1.att1), p, f 2(decode(v))) to
the KG

9: end if
10: end for
11: end if
12: end for
13: return KG

4.4. Requirements for data integration and SDM-RDFizer

RML allows for the definition of mapping rules over structured data (e.g., CSV and relational databases) and
semi-structured data (e.g., XML and JSON). SDM-RDFizer is an RML-compliant engine that can process all data
source formats that RML covers, fulfilling RE1-Heterogeneous data and RE6-Semi-structured data. Additionally,
by being able to process RML mapping and their corresponding data sources, RE7-Standardized data integration
has also been covered. SDM-RDFizer is developed on Python, and given the nature of the programming language,
there is no hard cap on how much memory a process can consume (only being limited by the environment in which
the engine is executed), which allows data sources of all sizes to be processed, thus fulfilling RE2-Large data. The
engine can also upload all the corresponding attributes of the data sources, hence covering RE3-Fragmented data.
SDM-RDFizer implements multiple data structures that optimize different aspects of the KG creation process, like
duplicate removal and join execution. In the case of duplicate removal, the engine presents PTT, a hash table that
stores all the triples generated by that point in time, and all new triples are compared to the corresponding PTT to
determine if it is a duplicate. The triple is discarded if it is a duplicate, thus fulfilling RE4-Duplicated data. Finally,
the engine introduces three operators (SOM, ORM, and OJM), each transforming a different type of mapping rule,
therefore proving RE8-Mapping complexity. Furthermore, the OJM uses a data structure called PJTT; it stores the
result of executing a join between two triples maps, so executing the same join multiple times is unnecessary, thus
proving RE5-Data diversity.

5. Empirical evaluation

This section presents the main results of the experimental evaluation conducted on SDM-RDFizer, aiming to
address the following research questions: RQ1) What is the impact of the data duplicate rates in the execution time
of a knowledge graph creation approach? RQ2) What is the impact of the input data size in the execution time of a
knowledge graph creation approach? RQ3) How the types of a triples maps affect the existing engines?
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To provide a comprehensive overview of the empirical assessment and the observed results, this section includes
the definition of the experimental configuration. This configuration encompasses the selection of benchmarks, met-
rics, engines, and the description of the experimental environment used to evaluate state-of-the-art RML engines.
Each experimental configuration is repeated five times, and the average execution time is reported as the outcome.
The obtained results are carefully analyzed to identify the strengths and weaknesses of SDM-RDFizer in comparison
to other engines.

5.1. Experimental settings

Benchmarks: Experiments are performed over datasets from GTFS-Madrid-Bench and SDM-Genomic-
Datasets. Therefore, our experiments cover a large range of parameters that affect the KG creation task, i.e., dataset
size, triples map type and complexity, selectivity of the results, and types of join between the triples maps. In total,
we consider three different mapping types: Simple Object Map (SOM), Object Reference Map (ORM), and Object
Join Map (OJM). All resources and experimental settings used in this evaluation are publicly available21 and Table 1
summarizes the used configurations.

GTFS-Madrid-Bench [16]: This benchmark enables the generation of different configurations that affect the
characteristics of creating a KG. We generate four logical sources with the scaling factor 1-csv, 5-csv, 10-csv, and
50-csv. The scale value influences the size of the resulting KG. For example, the KG generated from 5-csv is five
times bigger than the KG generated from 1-csv. We consider 13 triples maps with 73 SOMs, and 12 OJMs involving
ten data sources.

SDM-Genomic-Datasets [33]: This benchmark is created by randomly sampling data records from somatic
mutation data collected in COSMIC.22 SDM-Genomic-Datasets include eight different logical sources of various
sizes, including 10k, 100k, 1M, and 5M rows. For every pair of sources of the same size, they differ in the percentage
of the data duplicate rate, which can be either 25% or 75%, where each duplicate value is repeated 20 times. For
example, a 10k logical source with 75% data duplicate rate has 25% duplicate-free records (i.e., 2500 rows) and
the rest of the 75% records (i.e., 7500 rows) correspond to 375 different records which are duplicated 20 times;
in total there are 2,875 unique values. The SDM-Genomic-Datasets offers ten different configurations. Conf1: A
triples map containing one SOM. Conf2: A triples map containing four SOMs. Conf3: Set of two triples maps with
one ORM. Conf4: Set of five triples maps with four ORMs. Conf5: Set of two triples maps with one OJM. Conf6:
Set of five triples maps with four OJMs. We group the aforementioned triples map configuration into a set named
AllTogether. Furthermore, the benchmark includes three additional configurations to evaluate the impact of two
other influential parameters on the performance of KG creation frameworks.23 Conf7 aims at evaluating the impact
of defining the same predicates using different triples maps. It has a set of four triples maps with two OJMs. For
each pair of triples maps, there is an OJM. The data sources of one pair of the triples maps are a subset of the other
pair. Both pairs of triples maps share the same predicate. Conf8 provides a triples map that is connected to five other
triples maps with different logical sources through join, i.e., this triples map is connected via a five-star join with
the other triples maps. It comprises a set of six triples maps with five OJMs; five child triples maps refer to the same
parent triples map. Conf9 combines the first two configurations in one testbed; it is composed of a set of ten triples
maps with seven OJMs.

State-of-the-art RML Engines and Metrics.The following RML tools are included in the empirical study.
RMLMapper v6.0,24 RocketRML v1.11.3 [57],25 Morph-KGC v2.1.1 [3],26 and SDM-RDFizer v4.5.6;27 it imple-
ments all the techniques described in this paper, i.e., planning techniques, physical operators, and data compression

21https://github.com/SDM-TIB/SDM-RDFizer-Experiments/tree/master/swj2022
22https://cancer.sanger.ac.uk/cosmic GRCh37, version90, released August 2019.
23https://doi.org/10.6084/m9.figshare.17142371
24https://github.com/RMLio/rmlmapper-java
25https://github.com/semantifyit/RocketRML/
26https://github.com/oeg-upm/Morph-KGC
27https://github.com/SDM-TIB/SDM-RDFizer.

https://github.com/SDM-TIB/SDM-RDFizer-Experiments/tree/master/swj2022
https://cancer.sanger.ac.uk/cosmic
https://doi.org/10.6084/m9.figshare.17142371
https://github.com/RMLio/rmlmapper-java
https://github.com/semantifyit/RocketRML/
https://github.com/oeg-upm/Morph-KGC
https://github.com/SDM-TIB/SDM-RDFizer
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Table 1

Datasets and configurations of triples maps. The table describes each data source and configuration of TMs used in the experiments and
their corresponding benchmarks. Configuration of TMs in bold are considered complex cases. They include several types of TMs of various
complexity and complex joins (e.g., five-start joins)

Parameter: Dataset Size

Benchmark Size Description

GTFS-Madrid-Bench 1-CSV Ten different data sources are 4.8 Mb in total.

5-CSV Ten different data sources are 10 Mb in total. The generated
KG is five times bigger than the KG generated from 1-CSV.

10-CSV Ten different data sources are 21 Mb in total. The generated
KG is ten times bigger than the KG generated from 1-CSV.

50-CSV Ten different data sources are 102 Mb in total. The generated
KG is fifty times bigger than the KG generated from 1-CSV.

SDM-Genomic-Datasets 10k Each data source has 10,000 rows.

100k Each data source has 100,000 rows.

1M Each data source has 1,000,000 rows.

5M Each data source has 5,000,000 rows.

Parameters: Mapping Assertion (MA) Type and Complexity, Selectivity of the Results, and Type of Joins

Benchmark Mapping Configuration Description

GTFS-Madrid-Bench Standard Config 13 TMs with 73 SOMs, and 12 OJMs.

SDM-Genomic-Datasets Conf1 A TM containing one SOM.

Conf2 A TM containing four SOMs.

Conf3 Set of two TMs, with one ORM.

Conf4 Set of five TMs with four ORMs.

Conf5 Set of two TMs, with one OJM.

Conf6 Set of five TMs, with four OJMs.

AllTogether Combines Conf1- Conf6.

Conf7 Set of four TMs with two OJMs. Evaluates the impact of
defining the same predicates using different TMs.

Conf8 Set of six TMs with five OJMs. Recreates a five-star join
where five TMs refer to the same parent TM.

Conf9 Set of ten TMs with seven OJMs. Combines Conf7+Conf8

techniques to reduce the size of the main memory structures required to store intermediate results that were gener-
ated. The SDM-RDFizer v3.228 is also used to determine if there is an increase in performance between the older
and newer version.

The other state-of-the-art engines were chosen because they excel in handling one of the requirements men-
tioned above. Morph-KGC [3] was chosen because it presented an extensive study that compares the execution
time of Morph-KGC against several RML/R2RML engines in GTFS-Madrid-Bench and SDM-Genomic Datasets,
outperforming all of them in most cases. Morph-KGC divides the triples maps into smaller triples maps and exe-
cutes them in parallel (requirements RE3-Fragmented data and RE8-Mapping complexity). RMLMapper handles
heterogeneous data well (requirements RE1-Heterogeneous data and RE6-Semi-structured data), and in the study
conducted in Arenas-Guerrero et al. [4], it presents the best level of conformance with respect to test cases defined
by RML [30]. Finally, RocketRML was chosen because it has multiple specialized implementations focused on
improving join execution between mappings [57] (requirement RE8-Mapping complexity).

The performance of the RML engines is evaluated in terms of the following metrics. Execution time: Elapsed time
spent to create a KG. The execution time is measured using the Python library time. The experiments are executed
five times, and the average is reported. The timeout is five hours. Maximum memory usage: The most memory
used to generate a KG. The memory usage is measured using the Python library malloc. The malloc library
measures the memory usage in Kilobytes; we convert the result into Megabytes. The experiments are executed in

28https://doi.org/10.5281/zenodo.3872104.

https://doi.org/10.5281/zenodo.3872104
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Fig. 7. Results of the execution of the GTFS-Madrid-bench benchmark. Execution time and memory consumption of various version of the
SDM-RDFizer when transforming the GTFS-Madrid-bench benchmark.

an Intel(R) Xeon(R) equipped with a CPU E5-2603 v3 @ 1.60 GHz 20 cores, 64 GB memory and with the O.S.
Ubuntu 16.04LTS with a disk speed of 222.14 MB/sec.

5.2. Performance of the RML engines in the GTFS-Madrid-bench

This experiment aims to illustrate the performance increase regarding execution time and memory consump-
tion the proposed data structures and operators will bring when implementing them into a KG creation engine.
We evaluate the performance of different versions of the SDM-RDFizer. The previous version of SDM-RDFizer
(i.e., SDM-RDFizer v3.2) only contains the operators for triples map transformation and the data structures for
duplicate removal and join execution. In contrast, the much more complete version of the SDM-RDFizer (i.e.,
SDM-RDFizer v4.5.6, a.k.a. SDM-RDFizer+HDT+Flush+Order) contains all the proposed data structures and op-
erators. We also include other combination of the proposed techniques: one only applies data compression (i.e.,
SDM-RDFizer+HDT), and the other has data compression and main memory flushing but no ordering (i.e., SDM-
RDFizer+HDT+Flush).

It can be seen in Fig. 7b that SDM-RDFizer v3.2 and SDM-RDFizer+HDT do not have much difference in execu-
tion time; this is because compressing data requires time to be executed; thus, any savings that result from this step
can only be appreciated in terms of memory consumption (Fig. 7a). On the other hand, SDM-RDFizer+HDT+Flush
and SDM-RDFizer+HDT+Flush+Order reduce execution time compared to the two previous versions of the SDM-
RDFizer. This reduction in execution time can be attributed to flushing unneeded data from main memory, thus
making the duplicate removal process faster. Unfortunately, there are few savings between these last two configura-
tions of the SDM-RDFizer. This testbed contains 13 triples maps, thus making the organization process take longer
and negatively impacting the execution time.

Figure 7a illustrates the maximum memory consumption of the different versions of SDM-RDFizer used. It can
be seen in Fig. 7a that the SDM-RDFizer v3.2 is the one that consumes the most memory. By applying data compres-
sion, there is a significant reduction in memory consumption caused by the data stored in PTT for duplicate removal,
which is much smaller than the data stored in the SDM-RDFizer v3.2. Flushing unneeded data reduces the max-
imum memory used even further, but not as much as with data compression. Finally, SDM-RDFizer+HDT+Flush
and SDM-RDFizer+HDT+Flush+Order have the same maximum memory consumption since the only difference
between them is the order in which the triples maps are executed. The benefit of executing the triples maps in a
predetermined order is that the maximum amount of data is flushed after finishing the execution of a triples map,
thus minimizing the amount of memory being used.
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5.3. Performance of the RML engines in the SDM-genomic-datasets

This experiment seeks to prove the impact of using real-world data for KG creation. Even though the triples
maps defined for SDM-Genomic-Datasets are simpler than those defined for GTFS-Madrid-Bench, they cover all
the triples map types defined in Fig. 1. We evaluate the performance of each engine, i.e., SDM-RDFizer v3.2 and
v4.5.6 (i.e., SDM-RDFizer+HDT+Flush+Order), Morph-KGC, RMLMapper, and RocketRML, by measuring the
overall execution time it took the engine to complete the KG creation process. As it can be seen in Fig. 8, in case
of having ORMs (i.e., Conf3, Conf4, and AllTogether), the engines RMLMapper and RocketRML are not capable
of completing these configurations before timing out (i.e., five hours). In addition, RocketRML is not capable of
executing N-M joins, thus the corresponding test cases were not executed (i.e., Conf5, Conf6, AllTogether, Conf7,
Conf8, and Conf9). Regarding the simpler cases (i.e., Conf1 and Conf2), Morph-KGC presents the lowest execution
time since they partition each data source into chunks and then apply the triples map to multiple rows simultaneously.
In the cases with ORMs (i.e., Conf3, Conf4, and AllTogether), Morph-KGC also presents the lowest execution
times; this is because they apply a transformation that turns all ORMs into equivalent SOMs. For all the engines,
there is a reduction in execution time when transforming cases with high duplicate rates compared to the execution
time of cases with lower duplicate rates. Mapping configurations transformed with larger data sources have longer
execution times regardless of the engine. We compared the performance of the SDM-RDFizer v3.2 and SDM-
RDFizer v4.5.6, and Fig. 8 illustrates that SDM-RDFizer v4.5.6 has a reduction in execution time, especially in the
configurations with OJMs. We can attribute this reduction in execution time to the new data structures (i.e., DT,
OTML, and PL) introduced in this work, which help to reduce memory consumption and, by extension, execution
time. Additionally, Fig. 8 shows that SDM-RDFizer v4.5.6 is the only engine capable of executing all the test
cases. For most of the cases containing OJMs except the cases with data sources with 10k rows (i.e., Fig. 8a and
Fig. 8b), the SDM-RDFizer v4.5.6 presents the lowest execution time among the tested engines. Note that SDM-
RDFizer v3.2 can also execute all the triples maps; however, SDM-RDFizer v4.5.6 is more efficient. The PJTT data
structure allowed the triples maps to be executed as efficiently as possible. PJTT performs the join between the
parent and child data source and stores the results in main memory, thus avoiding uploading the parent data source
multiple times. The SDM-RDFizer v3.2 is also capable of executing these triples maps without timing out but in a
much less efficient manner; the reason for this is that the amount of memory consumed is much greater because it
lacks techniques that the newer version has. In the case of Morph-KGC, this engine depends on the Python library
Pandas for the execution of joins, which has a decent execution time for small data sources (i.e., Fig. 8a, Fig. 8b,
Fig. 8c, and Fig. 8d). Still, when dealing with larger data sources (i.e., Fig. 8e, Fig. 8f, Fig. 8g, and Fig. 8h), there is
an increase in the execution time. Finally, RMLMapper lacks operators capable of executing OJMs efficiently; thus,
it executes a Cartesian product between the two data sources.

5.4. Discussion

After observing the performance of SDM-RDFizer during the experimental study and considering the established
research questions, the following conclusions have been reached. SDM-RDFizer presented a lower execution time
when transforming cases with high duplicate rates, as seen in Fig. 8b, Fig. 8d, Fig. 8f, and Fig. 8h. Therefore, the
data duplicate rate is inversely proportional to the execution time. These figures illustrate that SDM-RDFizer has
the lowest execution time in complex cases (Conf5, Conf6, AllTogether, Conf7, Conf8, and Conf9) with a high
duplicate rate, therefore proving that the duplicate rate of the data impacts the performance of KG creation engines
and answering RQ1. These results also demonstrate that SDM-RDFizer can handle data with high duplicates, thus
fulfilling RE4-Duplicated data. The execution time of the proposed solution increases as the size of the data
sources, as can be observed in Fig. 7 and Fig. 8. Thus, the size of the data source is directly proportional to the
execution time. Figure 8e, Fig. 8f, Fig. 8g, and Fig. 8h illustrate that SDM-RDFizer has lower execution than the
other RML engines when performing complex cases with large data sources, hence proving that the size of the input
data influences the performance of KG creation engines and answering RQ2. Furthermore, these results confirm
that SDM-RDFizer can transform large data sources, thus, fulfilling RE2-Large data and RE3-Fragmented data.
Finally, SDM-RDFizer presented higher execution time when transforming complex cases than simple cases (Conf1,
Conf2, Conf3, and Conf4), as seen in Fig. 8. Therefore, the complexity of the mapping rules is directly proportional
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Fig. 8. Results of the execution of the SDM-genomic-datasets benchmark. Execution time of Conf1, Conf2, Conf3, Conf4, Conf5, Conf6,
AllTogether, Conf7, Conf8, and Conf9 for SDM-RDFizer, morph-KGC, RMLMapper, and RocketRML.
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to the execution time. In the Fig. 8 , SDM-RDFizer has a lower execution time than the other state-of-the-art engines,
especially in complex cases with high duplicate rates and large data sources, then, proving that the complexity of
the mapping rules impacts the performance of KG creation engines and answering RQ3. These results prove that
the proposed approach can transform complex mapping rules, fulfilling RE5-Data diversity and RE8-Mapping
complexity.

6. The SDM-RDFizer characteristics and applications

This section provides an overview of the key features of SDM-RDFizer and outlines its involvement in various
projects, highlighting the role it has played.

6.1. Main characteristics of SDM-RDFizer

The SDM-RDFizer engine presents a distinctive set of characteristics that make it a valuable contribution for
users and practitioners who create KGs for their projects and use cases.

Novelty: SDM-RDFizer is an RML engine that implements a hybrid approach to ensure high performance and
scalability in complex data integration scenarios. On the one hand, the heuristic-based mapping planning based
on the input sources and the list of predicates ensures efficient use of the main memory (requirements RE1-
Heterogeneous data, RE2-Large data, RE3-Fragmented data, and RE6-Semi-structured data). On the other
hand, the encoding approach and the physical data structures with their corresponding operators guarantee the fulfill-
ment of the requirements RE4-Duplicated data, RE5-Data diversity, RE7-Standardized data integration, and
RE8-Mapping complexity. To our knowledge, this is the first KG creation engine based on RML that implements
mapping planning and physical data structures, demonstrating its efficiency over several testbeds on well-known
benchmarks.

Availability: SDM-RDFizer is available for (re)use in multiple ways. The source code is accessible through the
GitHub repository27 under an Apache 2.0 license so that any developer can extend and modify it. The GitHub
repository is also linked to the Zenodo platform, which provides a Digital Object Identifier (DOI) for the general
repository29 and also a DOI for each specific software release.30 The engine is also available on the Python Package
Index (PyPI), so it can be easily installed and integrated in other developments.31 Finally, we also provide a docker
image that deploys the SDM-RDFizer as a web service.

Utility: As demonstrated in our experimental evaluation, SDM-RDFizer is an efficient RML engine in terms of
performance and scalability. The implementation of heuristic-based planning and physical data structures permitted
SDM-RDFizer to scale up the construction of KGs, overcoming other state-of-the-art solutions. With the different
configurations and optimizations implemented in our engine, it can be applied to different use cases, efficiently
handling the parameters that affect the creation of KGs and satisfying data integration requirements. In addition,
SDM-RDFizer passed all proposed RML test-cases [30],32 which means that our engine is fully compliant with the
RML specification. Lastly, SDM-RDFizer v4.5.6 was awarded with the Task-specific prize at the Knowledge Graph
Construction Workshop 2023 Challenge at ESWC 2023 [63].

Impact: The number of commits in the GitHub repository27 and the number of releases reflect the continuous
improvements and support we give to our tool. At the time of writing, 25 users have forked the source code to
reuse or extend it with additional features, and the repository has 98 stars. With the implementation of the novel
techniques presented in this paper, we expect that SDM-RDFizer will become a reference implementation for RML
and also convince industry partners to adopt declarative data integration solutions that ensure the maintenance of
their KG creation pipelines. The new developments have provided the basis to scale up to real-world settings where
large and heterogeneous data sources must be integrated. These use cases have demanded the fulfillment of specific
requirements, and SDM-RDFizer has effectively contributed:

29The DOI for the SDM-RDFizer repository is: https://doi.org/10.5281/zenodo.3872103.
30For example, the DOI for the v4.5.6 used in the experiments of this paper is: https://doi.org/10.5281/zenodo.7027549.
31https://pypi.org/project/rdfizer/.
32https://rml.io/implementation-report

https://doi.org/10.5281/zenodo.3872103
https://doi.org/10.5281/zenodo.7027549
https://pypi.org/project/rdfizer/
https://rml.io/implementation-report
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– Scalability of large energy-related data: In the context of the PLATOON project45, data integration poses chal-
lenges related to interoperability and the need for a unified view of data and metadata. To address this, SDM-
RDFizer was integrated into a pipeline to develop a semantic connector for creating a KG focused on electricity
balance and predictive maintenance [37]. The KG created using SDM-RDFizer consists of 80,762,377 entities
and 220,204,301 RDF triples. The European Commission has recognized this connector as a Key Innovation
Tool, highlighting its significance in integrating renewable energy sources (RES) data.33

– Efficient execution to complex KG pipelines: In the domain of lung cancer research, diverse data sources need
to be integrated to facilitate the discovery of patterns relevant to therapy effectiveness, long-term toxicities,
and disease progression. SDM-RDFizer has been incorporated into a knowledge-driven framework to over-
come challenges related to interoperability and data quality in lung cancer data. This framework provides a
foundation for addressing clinical research questions in lung cancer (Fotis et al. [2] and Torrente et al. [62]).

6.2. Applications of SDM-RDFizer

The SDM-RDFizer has been utilized in various industrial and research projects to create KGs from heterogeneous
data sources. The following list highlights a selection of these projects.

– iASiS,34 EU H2020 funded project to exploit patient data insights towards precision medicine. SDM-RDFizer
played a pivotal role in the iASiS project, facilitating the creation of ten versions of the iASiS KG within a
span of three years. These KGs, encompassing more than 1.2 billion RDF triples, seamlessly integrate data from
over 40 heterogeneous sources using 1,300 RML triples maps [64]. The data sources includes clinical records
and genomic data from UK Biobank35 for dementia patients, as well as data from lung cancer patients at the
Hospital Puerta del Hierro in Madrid.36 Additionally, the iASiS KGs incorporate structured representations
of scientific publications from PubMed,37 drug-drug interactions from DrugBank,38 drug side effects from
SIDER,39 and UMLS.40 The integration of these heterogeneous and large datasets underscores the role of
SDM-RDFizer in achieving the data management objectives in the iASiS project and specifically fulfilling
the requirements RE2-Large data, RE3-Fragmented data, RE5-Data diversity, RE7-Standardized data
integration, and RE8-Mapping complexity.

– Lung Cancer Pilot of BigMedilytics,41 where the KG is defined in terms of 800 RML triples maps from
around 25 data sources; it comprises 149,484,936 RDF triples. SDM-RDFizer allowed for the integration of
structured clinical records of 1,200 lung cancer patients from Hospital Puerta del Hierro in Madrid and the
clinical services visited by these patients, with data about the interactions between the drugs that compose their
oncological therapies and their treatments for the comorbidities they may suffer. The use of RML was crucial
for defining and maintaining the correspondences among the unified schema and 88 different data sources;
SDM-RDFizer enabled the evaluation of these mappings to create nine versions of the KG of the lung cancer
pilot of BigMedilytics. Similarly in iASiS, the requirements RE2-Large data, RE3-Fragmented data, RE5-
Data diversity, RE7-Standardized data integration, and RE8-Mapping complexity were satisfied.

– In CLARIFY,42 nine versions of the project KG were created; they integrate data from lung and breast cancer
patients collected in various formats (e.g., CSV and relational databases) with structured representations of
publications from PubMed, drug-drug interactions collected from DrugBank, side effects from SIDER, and

33A dedicated Knowledge Graph for integration of RES data sources https://innovation-radar.ec.europa.eu/innovation/43139.
34http://project-iasis.eu/
35https://www.ukbiobank.ac.uk/
36https://www.comunidad.madrid/hospital/puertadehierro/
37https://pubmed.ncbi.nlm.nih.gov/
38https://go.drugbank.com/
39http://sideeffects.embl.de/
40https://www.nlm.nih.gov/research/umls/index.html
41https://www.bigmedilytics.eu/
42https://www.clarify2020.eu

https://innovation-radar.ec.europa.eu/innovation/43139
http://project-iasis.eu/
https://www.ukbiobank.ac.uk/
https://www.comunidad.madrid/hospital/puertadehierro/
https://pubmed.ncbi.nlm.nih.gov/
https://go.drugbank.com/
http://sideeffects.embl.de/
https://www.nlm.nih.gov/research/umls/index.html
https://www.bigmedilytics.eu/
https://www.clarify2020.eu
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medical terms from UMLS. The KG definition comprises 1,749 RML triples maps establishing the correspon-
dences with 258 different logical sources. The CLARIFY KG comprises 78M RDF triples and 16M RDF
resources. In addition to the requirements satisfied in iASiS and BigMedilytics, here SDM-RDFizer allowed
for meeting the requirements of RE1-Heterogeneous data.

– P4-LUCAT43 has 676 RML triples maps that define the P4-LUCAT KG in terms of a unified schema of 318
attributes and 177 classes; it comprises 178M of RDF triples. Data is collected from various sources in different
formats, such as CSV and relational databases. As a result, SDM-RDFizer enabled the fulfillment of all the
requirements outlined in Section 2.3.

– The ImProVIT KG44 integrates immune system data into a unified schema consisting of 102 classes, 88 predi-
cates, and 175 attributes. SDM-RDFizer was employed to construct the project KG, generating 6,005,844 RDF
triples and 220,414 entities through the evaluation of 577 triples maps. Additionally, for various studies [26],
SDM-RDFizer executed multiple versions of these triples maps, resulting in over 40 versions of the ImProVIT
KG. The requirements RE2-Large data, RE3-Fragmented data, RE5-Data diversity, RE7-Standardized
data integration, and RE8-Mapping complexity were satisfied.

– The PLATOON project45 is dedicated to creating the KG for a pilot [37] defined in terms of 2,093 RML triples
maps. These mappings define 158 classes and 107 predicates of SEDMOON, the Semantic Data Models of En-
ergy.46 Data were collected from a relational database comprising 600 GB of energy-related observational data
collected over six years. The resulting KG comprises 220M RDF triples and 80 million RDF resources. SDM-
RDFizer played a crucial role in meeting the requirements of RE3-Fragmented data, RE5-Data diversity,
RE7-Standardized data integration, and RE8-Mapping complexity. However, given the substantial volume
of the data sources, the data management techniques implemented in SDM-RDFizer v4.5.6 were pivotal in
fulfilling requirement RE2-Large data.

– The Knowledge4COVID-19 KG [52] comprises 80M RDF triples integrating COVID-19 scientific publications
and COVID-19 related concepts (e.g., drugs, drug-drug interactions, and molecular dysfunctions). It is defined
in terms of 57 RML triples maps. All the data was collected from tabular CSV files; SDM-RDFizer allowed for
the satisfaction of RE2-Large data, RE3-Fragmented data, RE5-Data diversity, RE7-Standardized data
integration, and RE8-Mapping complexity [52].

– H2020 – SPRINT47 studies performance and scalability of different semantic architecture for the Interoper-
ability Framework on Transport across Europe. The SDM-RDFizer was used to evaluate the impact of different
parameters on the transport domain during the creation of KGs to identify bottlenecks and allow optimizations.
Additionally, under this project, the GTFS-Madrid-Bench [16] was also defined, where the SDM-RDFizer was
used to materialize the KG used for comparing the performance between native triplestores and virtual KG
creation engines.

– EIT-SNAP48 innovation project on the application of semantic technologies for transport national access
points, and SDM-RDFizer allowed the integration of transportation data in Spain. In this specific project,
the SDM-RDFizer was integrated in a sustainable workflow to construct KGs based on the Transmodel ontol-
ogy [51] in a systematic manner [14].

– Open Cities49 is a Spanish national project on creating common and shared vocabularies for Spanish cities;
SDM-RDFizer executes the RML mapping rule for integrating geographical data for Spanish cities, hence
ensuring the interoperability between open data in Spain throughout the created KGs.

– Virtual Platform for the H2020 European Joint Programme on Rare Disease,50 and SDM-RDFizer merges data
collected from the consortium partners, thus, satisfying the requirements in Section 2.3.

43https://p4-lucat.eu/
44https://www.tib.eu/en/research-development/project-overview/project-summary/improvit
45 https://platoon-project.eu/.
46https://github.com/PLATOONProject/SEDMOON/tree/main
47http://sprint-transport.eu/
48https://www.snap-project.eu/
49https://ciudades-abiertas.es/
50https://www.ejprarediseases.org
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– CoyPU51 is a German-funded project where SDM-RDFizer generates KGs for various events collected from
economic value networks in the industrial environment and social context. Specifically, SDM-RDFizer is uti-
lized to create a federation of KGs that integrates data from World Bank, Wikidata, DBpedia, and the CoyPU
KG.52 The World Bank dataset comprises 21 topics, ranging from Agriculture and Rural Development to Trade.
Each topic has three CSV files associated with it. The CSV files contain annual statistics per country from 1960
to 2022. In total, 63 CSV files are transformed, and a KG comprised of 111 Million RDF triples is generated.
RE2-Large data, RE3-Fragmented data, RE5-Data diversity, RE7-Standardized data integration, and
RE8-Mapping complexity were satisfied during the generation of this KG.

7. Conclusions and future work

This paper introduces novel data management techniques that leverage innovative data structures and physical op-
erators for the efficient execution of RML triples maps. These techniques have been implemented in SDM-RDFizer
v4.5.6, and their effectiveness has been empirically evaluated through 416 testbeds encompassing state-of-the-art
RML engines and benchmarks. The results highlight the significant computational power of well-designed data
structures and algorithm operators, particularly in complex scenarios involving star joins across multiple triples
maps. We anticipate that the reported findings and the availability of the new version of SDM-RDFizer will inspire
the community to adopt declarative approaches in defining KG creation pipelines using RML and to explore data
management techniques that can further enhance the performance of their engines. For future work, we aim to de-
velop a flushing policy for the Predicate Join Tuple Table (PJTT) to reduce memory consumption by eliminating
values of redundant joins. Additionally, we pursue optimizing the Simple Object Map (SOM) and Object Reference
Map (ORM) operators to enhance their respective transformation capabilities. Furthermore, we plan to devise ef-
ficient data management techniques to empower SDM-RDFizer for executing RML-Star mapping rules; an initial
version of this implementation is already available on GitHub53 and extending the current data structures and phys-
ical operators is part of our future tasks. We aim to enable the evaluation of observational data, such as sensor data,
within the SDM-RDFizer framework. Lastly, we plan to develop parallel operators to empower SDM-RDFizer with
fine-grained parallelization – as proposed by Wang et al. [66] – and speed up the process of KG creation, specifically
when data sources presented as relational databases are integrated. Extensive empirical assessments with different
parallel approaches are also part of our future agenda.
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