
CORRECTED P
ROOF

Semantic Web -1 (2023) 1–27 1
DOI 10.3233/SW-233491
IOS Press

Wikidata subsetting: Approaches, tools, and
evaluation
Seyed Amir Hosseini Beghaeiraveri a,*,**, Jose Emilio Labra Gayo b,*, Andra Waagmeester c,*,
Ammar Ammar d, Carolina Gonzalez e, Denise Slenter d, Sabah Ul-Hasan e,f, Egon Willighagen d,
Fiona McNeill g and Alasdair J.G. Gray a

a School of Mathematical and Computer Science, Heriot-Watt University, Edinburgh, UK
E-mails: sh200@hw.ac.uk, A.J.G.Gray@hw.ac.uk
b University of Oviedo, Oviedo, Spain
E-mail: labra@uniovi.es
c Micelio, Belgium
E-mail: andra@micel.io
d Dept of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Netherlads
E-mails: a.ammar@maastrichtuniversity.nl, denise.slenter@maastrichtuniversity.nl,
egon.willighagen@maastrichtuniversity.nl
e The Scripps Research Institute, US
E-mail: agonzalez@scripps.edu
f Hologic Inc, US
E-mail: bysabahulhasan@gmail.com
g School of Informatics, The University of Edinburgh, UK
E-mail: f.j.mcneill@ed.ac.uk

Editors: Lucie-Aimée Kaffee, University of Southampton, United Kingdom; Simon Razniewski, Max Planck Institute for Informatics,
Germany; Pavlos Vougiouklis, Huawei Technologies, United Kingdom
Solicited reviews: Daniel Erenrich, Etsy, United States; Wolfgang Fahl, BITPlan, Germany; one anonymous reviewer

Abstract. Wikidata is a massive Knowledge Graph (KG), including more than 100 million data items and nearly 1.5 billion
statements, covering a wide range of topics such as geography, history, scholarly articles, and life science data. The large volume
of Wikidata is difficult to handle for research purposes; many researchers cannot afford the costs of hosting 100 GB of data. While
Wikidata provides a public SPARQL endpoint, it can only be used for short-running queries. Often, researchers only require a
limited range of data from Wikidata focusing on a particular topic for their use case. Subsetting is the process of defining and
extracting the required data range from the KG; this process has received increasing attention in recent years. Specific tools and
several approaches have been developed for subsetting, which have not been evaluated yet. In this paper, we survey the available
subsetting approaches, introducing their general strengths and weaknesses, and evaluate four practical tools specific for Wikidata
subsetting – WDSub, KGTK, WDumper, and WDF – in terms of execution performance, extraction accuracy, and flexibility in
defining the subsets. Results show that all four tools have a minimum of 99.96% accuracy in extracting defined items and 99.25%
in extracting statements. The fastest tool in extraction is WDF, while the most flexible tool is WDSub. During the experiments,
multiple subset use cases have been defined and the extracted subsets have been analyzed, obtaining valuable information about
the variety and quality of Wikidata, which would otherwise not be possible through the public Wikidata SPARQL endpoint.

Keywords: Knowledge Graph, Wikidata, Subsetting, Big Data, Accuracy, Performance

*These authors contributed equally to this work and share first authorship.
**Corresponding author. E-mail: sh200@hw.ac.uk.

1570-0844 © 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:sh200@hw.ac.uk
mailto:A.J.G.Gray@hw.ac.uk
mailto:labra@uniovi.es
mailto:andra@micel.io
mailto:a.ammar@maastrichtuniversity.nl
mailto:denise.slenter@maastrichtuniversity.nl
mailto:egon.willighagen@maastrichtuniversity.nl
mailto:agonzalez@scripps.edu
mailto:bysabahulhasan@gmail.com
mailto:f.j.mcneill@ed.ac.uk
mailto:sh200@hw.ac.uk
https://creativecommons.org/licenses/by/4.0/

CORRECTED P
ROOF

2 S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation

1. Introduction

Wikidata [41] is a collaborative and open knowledge graph founded by the Wikimedia Foundation on 29 October
2012. The initial purpose of Wikidata is to provide reliable structured data to feed other Wikimedia projects such as
Wikipedia. Wikidata contains 101,449,901 data items and more than 1.4 billion statements as of 19 January 2023.
Wikidata and its RDF and JSON dumps are licensed under Creative Commons Zero v1.0 ,1 making it publicly
available for all commercial or non-commercial use cases. It can be queried directly over a free SPARQL endpoint,2

a free query service GUI3 and is interlinked with the other Linked Open Data on the web [41].
Wikidata is a key player in Linked Open Data and provides a massive amount of linked information about items

in a wide range of topics. The topical coverage of Wikidata spans from scientific research and historical events to
cultural heritage and everyday facts. With its ability to integrate data from multiple sources, Wikidata serves as a
powerful tool for knowledge management and data integration. Its structured format and rich linking capabilities
make it an ideal resource for machine learning and artificial intelligence applications. Although there is this massive
data, most research and industrial use cases need a subset of items, statements, and metadata. This paper discusses
the new research problem of Wikidata subsets. What those are? Why we need them? This paper also addresses the
methods to retrieve them.

1.1. What is a subset?

In its broadest sense, subsetting refers to extracting the relevant parts from a KG. Considering a KG (regardless of
semantics) as a collection of nodes, edges and an associated ontology, a subset can be an arbitrary number of com-
binations of these three. Thus, in a broad definition, any query graph pattern can be considered a subset, but subsets
can include more general cases. Including repetitive graph algorithms such as shortest paths and connectivity [37].
To the best of our knowledge, there is no precise formal definition for submitting accepted by the community [5].

The input of the subsetting process is generally a KG. Over the KG, filters are applied to separate the desired
parts of the graph. The output of this process can be in the form of a graph (directed edge-labelled or property
graph) in various formats, tables, or JSON. The most straightforward way to subset an RDF KG is to use SPARQL
CONSTRUCT queries on the endpoints of a triplestore. This method is suitable for simple and small subsets but
has limitations for large and complex subsets. SPARQL endpoints are usually slow and have run-time restrictions.
Moreover, recursive data models are not supported in standard SPARQL implementations [20].

1.2. The significance of subsets

Having subsets of KGs has many benefits, widening the span from avoiding massive size and computational
power issues to data reuse and benchmarking purposes.

Size issues General purpose KGs such as Wikidata are valuable sources of facts about various topics. On the
Linked Data Web, they serve as a common linking point between inter-, and sometimes intra-, domain KGs.4

However, their increasing size makes them costly and slow to use locally. Although compact formats such as RDF
HDT [13] have been proposed to reduce data size, these formats are not standardized, are not widely supported, and
are designed read-only, such that working with them ultimately requires continuous conversion to plain RDF.

Computational resources The large volume of data in Wikidata increases the time required to run complex queries.
This often restricts the types of queries that can be posed over the public endpoint since it has a strict 60-second limit
on the execution time of queries. Any query that takes more time to execute than this will timeout.5 Downloading
and using a local version of Wikidata is one way of circumventing the timeout limit. However, it is not a cheap

1https://creativecommons.org/publicdomain/zero/1.0/ – accessed 19 February 2023.
2https://query.wikidata.org/bigdata/namespace/wdq/sparql?query=SPARQL – accessed 19 January 2023.
3https://query.wikidata.org/ – accessed 19 January 2023.
4https://lod-cloud.net/ accessed 20 February 2022.
5https://en.wikibooks.org/wiki/SPARQL/Wikidata_Query_Service/

https://creativecommons.org/publicdomain/zero/1.0/
https://query.wikidata.org/bigdata/namespace/wdq/sparql?query=SPARQL
https://query.wikidata.org/
https://lod-cloud.net/
https://en.wikibooks.org/wiki/SPARQL/Wikidata_Query_Service/

CORRECTED P
ROOF

S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation 3

option due to the size of the data. Wikidata JSON dump of 14 December 2022 is 112 GB in a compressed format. A
suggested hardware required to have a personal copy of Wikidata includes 16 vCPUs, 128 GB memory, and 800 GB
of raided SSD space.6 A Google Cloud computation engine with these specifications would cost more than $527 per
month.7 Although the costs for infrastructure are relatively affordable, considering the value and potential use cases
of having a local copy of Wikidata, there are many instances where only a small portion of Wikidata is relevant. In
such cases, hosting a complete copy can be considered excessive and unnecessary. This makes it difficult to secure
the necessary funds for such an infrastructure.

Data reuse Out of a 112 GB Wikidata dump, one might need no more than 1 GB on a specific topic. There are
several use case scenarios where users do not need access to all topics in a massive general-purpose KG. A small
and complete enough subset can be more suitable for many purposes. For example, a subset of all information about
genes, proteins, drugs, and diseases can be used in pharmaceutical research [43]. Even in general-purpose use cases
covering broad domains, small subsets can help. For example, in an open-domain Question Answering interface,
the system may detect the domain category of a given question first, then refer to the smaller subsets in the detected
domain to retrieve the facts, speeding up the query time. With a small subset, inference strategies can be applied to
the data and completed in a reasonable time. Subsets can also be published along with papers, which provides better
reproducibility of experiments [49]. Small subsets are also easier to archive and are more likely to be reused [19].
Various topical archives can be created from Wikidata, which gives better access to the data, while multiple time
snapshots can be built from this data. Subsets enable complex querying on cheap servers or personal computers —
reducing the overall cost — and making the experiments reproducible.

Comparison benchmarks Establishing comparison platforms is the other benefit of subsetting. Consider the aim
to examine a feature unique to Wikidata (e.g., referencing). As there is no comparable KG, different subsets of
Wikidata in multiple topics can be used as comparison parties. Also, random subsets of Wikidata can be regarded
as random samples of Wikidata items and statements. Subsetting also allows us to see whether there is uniform
coverage of references across all of Wikidata and identify variations between different contributor communities.

KG creation Another advantage of subsets is populating new topic-oriented KGs. An example of Dan Brickley
can be taken in this context: “Subsetting KGs is like cutting a plant and placing it in a new pot. So it can grow
and become a new topic-specific KG ...”.8 For example, in the case of extracting a life science subset of Wikidata,
the extracted subset can be considered a life science knowledge graph, which can subsequently be enriched with
additional triples, creating a new Life Science KG based on the Wikidata data model and enriching its contents with
other contents.

1.3. Objectives and contribution

This research aims to collect all available Wikidata subsetting approaches and tools, test their capabilities, and
analyse their advantages and disadvantages. The scope is individual, independent, local and arbitrary subsetting,
i.e., use cases where users can subset Wikidata locally over any subsetting filters they desire without relying on
publicly available servers or datasets. The main reason is that public servers usually apply limitations on the type
and run-time of applications. The contributions of this paper are:

1. A survey of emerging practical knowledge graph subsetting tools (Section 3);
2. Performance analysis of practical Wikidata subsetting tools (Section 4);
3. Discussion of the flexibility of practical subsetting tools through tangible Life Science subsetting use cases

(Section 5).

6See this post: https://addshore.com/2019/10/your-own-wikidata-query-service-with-no-limits/.
7Estimated by Google Cloud Pricing Calculator: https://cloud.google.com/products/calculator/##id=32eca290-7628-48af-9988-

20508f4bc861 accessed 11 February 2023.
8BioHackathon Europe 2021, Project 21: Handling Knowledge Graphs Subsets (group discussions). Notes: https://seyedahbr.github.io/Blog/

Biohackathon21.html – accessed 12 Feburary 2023.

https://addshore.com/2019/10/your-own-wikidata-query-service-with-no-limits/
https://cloud.google.com/products/calculator/##id=32eca290-7628-48af-9988-20508f4bc861
https://cloud.google.com/products/calculator/##id=32eca290-7628-48af-9988-20508f4bc861
https://seyedahbr.github.io/Blog/Biohackathon21.html
https://seyedahbr.github.io/Blog/Biohackathon21.html

CORRECTED P
ROOF

4 S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation

This paper first reviews the Wikidata RDF model and the terminology used in the paper in Section 2. In Section 3,
a survey of the available methods for subsetting will be presented in detail.

In Section 4, the paper investigates the performance (run-time and extraction statistics) and accuracy (what has
been extracted and excluded) of the state-of-the-art subsetting tools. In Section 5, a discussion of the flexibility of
the practical tools will be given by going through three Life Science subsetting use cases. Finally, the paper will be
concluded in Section 6.

2. Wikidata RDF model

2.1. Core format

The fundamental components of Wikidata are items which are concepts or entities from the real world, such as
humans, chemicals, articles, etc. and properties, which are relationships between two items or between items and
values. Items and properties have internal identifiers: item IDs start with a ‘Q’, and property IDs with a ‘P’ character,
followed by an incremental number in their category. Relationships between entities create claims: a property that
explains a fact about an item. Claims can be enriched by adding qualifiers to provide contextual information and/or
references, to provide provenance and form statements. In other words, statements are those claims having some
additional contextual metadata.

2.2. Underloying software stack: Wikibase and Blazegraph

Wikidata is powered by the Wikibase9 software collection which provides applications and libraries for creating,
managing and sharing structured data, created by Wikimedia Foundation and is freely available as a Docker image.10

Wikibase provides a syntax highlighting SPARQL query interface that supports federated queries, a Javascript-based
GUI for populating data, and a Blazegraph triplestore [10] to store and manage RDF data. Wikibase also provides the
EntitySchema extension that supports Shape Expressions, which as will be described later, has a role in subsetting.
Wikibase has several other software components that are needed to create a knowledge base similar to Wikidata
data model. Data can be exported in many formats like JSON, RDF/XML, OR N3, and it defines its data model
which is used by Wikidata. In addition to Wikidata, there are other open KGs hosted in Wikibase instances, e.g., the
Rhizome [36], FactGRID [12], and EU Knowledge Graph [11].

2.3. Metadata rendering reification

Wikidata uses reification based on intermediate nodes to store contextual metadata, known as qualifiers, and
provenance metadata, known as references, for statements. As an example, Fig. 1 shows the representation for the
speed limit (P3086) statement in Germany (Q183). The top of the image shows the representation of this statement
in the Wikidata GUI. The bottom of the image shows the RDF graph of the information. The speed limit statement
value can be reached directly by the wdt:P3086. To access qualifiers, references, and the rank of the statement,
the intermediate ‘Statement Node’ must be used, represented with a wds: prefix. This intermediate node can be
accessed by the p: combined with the same statement property identifier. From the statement node, qualifiers are
accessible by the pq:, references by the prov:wasDerivedFrom, ranks by the wikibase:rank, the default
value-unit with psv:, and the conversion to the default IRI mapping using psn:. Note that in Wikidata, values can
be simple literals (i.e. text or values), IRIs, or complex data types called a full value, storing more metadata about a
literal value such as units, ranges, precision, and the calendar used [48]. Another important notion in Wikidata is the
rank of statements. In Wikidata, statements can have normal, preferred, or deprecated ranks. Deprecated rank refers
to a property value that is not considered correct (based on the statement’s context, such as qualifiers or references).
In Wikidata, “statements that have the best non-deprecated rank for given property” are called Truthy statements
[48]. In other words, a deprecated statement can never be a Truthy statement. Items, statements, contextual metadata,
provenance metadata, and all other parts of this reification can be used to define a subset.

9https://wikiba.se/ – accessed 12 December 2022.
10https://hub.docker.com/r/wikibase/wikibase – accessed 15 December 2022.

https://wikiba.se/
https://hub.docker.com/r/wikibase/wikibase

CORRECTED P
ROOF

S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation 5

Fig. 1. Top: one of the speed limit (P3086) statements of Germany (Q183) on Wikidata GUI (retrieved on 14 December 2022). Bottom: various
elements that can be extracted from Wikidata from Germany (Q183).

3. Subsetting state of the art

Subsetting is a recent research problem in KGs. To the best of our knowledge, the early demand for creating a
biomedical subset of Wikidata was in 2017 [29], the subsetting discussions in the Wikidata biomedical commu-
nity were concretely started at the 12th international SWAT4HCLS conference in 2019 by Andra Waagmeester et
al. [42] and then followed in Project 3511 of ELIXIR BioHackathon-Europe 2020 [27], Project 2112 of ELIXIR
BioHackathon-Europe 2021, and Project 1113 of ELIXIR BioHackathon-Europe 2022 [26].

3.1. General purpose subsetting approaches

Matsumoto et al. [30] have introduced the Graph-to-Graph Mapping Language (G2GML) that aims to convert
RDF graphs to property graphs. G2G Mapper14 is a tool that receives a mapping configuration file written in G2GML
and an RDF turtle file (or a SPARQL endpoint) as input and creates a property graph from the RDF data specified by
the input mapping. Although the purpose of the G2GML language was to generate property graphs from RDF graphs

11https://github.com/elixir-europe/BioHackathon-projects-2020/tree/master/projects/35 – accessed 20 December 2022.
12https://github.com/elixir-europe/BioHackathon-projects-2021/tree/main/projects/21 – accessed 20 December 2022.
13https://github.com/elixir-europe/biohackathon-projects-2022/tree/main/11 – accessed 20 December 2022.
14GitHub: https://github.com/g2glab/g2g – accessed 20 December 2022.

https://github.com/elixir-europe/BioHackathon-projects-2020/tree/master/projects/35
https://github.com/elixir-europe/BioHackathon-projects-2021/tree/main/projects/21
https://github.com/elixir-europe/biohackathon-projects-2022/tree/main/11
https://github.com/g2glab/g2g

CORRECTED P
ROOF

6 S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation

to take advantage of the property graphs, it can be used as a subsetting tool; however, the output will be a property
graph. For subsetting, an RDF output is preferable as it is standardized, and evaluating them is straightforward.
Another limitation is that one needs to completely define the Wikidata ontological structure and data model in the
form of property graphs, especially references. In that way, a mistake or forgotten property can affect the future
evaluation of the subset.

Mimouni et al. [32,33] use a concept called the Context Graph to generate a smaller dataset than the original
massive KGs, such as DBpedia and Wikidata, which enables them to test their knowledge base completion method
on this dataset instead of the entire KG. The context graph construction algorithm starts with an initial set of seed
nodes, and in each round, adjacent nodes of the seed set (that are not in a forbidden set) and their relations are added
to the seed nodes. This operation continues for several rounds called the radius. The context graph production
process seems to be suitable for generating random subsets; however, it is not an integrated method for generating
subsets around a topic. To produce subsets around a topic, it is necessary to identify the member entities of a
particular topic. However, there is no such concept in the context graph. One has to extract all the nodes related to
a topic from the beginning and put them in the initial seed set. On the other hand, extracting node neighbours to a
radius � 2 may enter information that is not relevant to the topic. Another limitation is that this approach is not able
to extract Wikidata contextual metadata, especially references.

Henselmann and Harth [15] developed an algorithm for creating on-demand subsets around a given topic from
Wikidata, starting from a seed set of nodes and performing multiple SPARQL queries to obtain the desired triples.
Their approach can be used to create subsets around topics. However, the authors do not provide use cases or
evaluation of their algorithm, thus it is more a theoretical approach than a practical tool. The proposed algorithm
and its SPARQL queries are also not compatible with references. Aghaei et al. [1] proposed an approach to create
an on-demand sub-graph of a KG for Question Answering (QA), which is a common approach in heuristic-based
QA over KGs [1]. In this approach, a set of entities is first fetched from the question. A neighbour graph query
pattern is then used to create a knowledge sub-graph of those nodes’ neighbours and their relationships from the
KG. Similar to the context graph approach, the neighbour nodes are extracted up to a specific distance (hop). The
limitation of this subsetting approach is that those are specific-purpose methods designed to answer natural language
questions. These methods create the subset at the moment of answering the question, do not care about extracting
the contextual metadata, and do not return the constructed subset as a portable output.

Shape Expressions (ShEx) [28] is a structural schema language allowing validation, traversal and transformation
of RDF graphs. There are several ShEx validator implementations, e.g., shex.js [35] and PyShex [39], which receive
a ShEx schema as the input and validate an RDF graph over it. These validators can keep track of the triples traversed
during validation and return the matched triples out (called ‘slurping’), which can be used to define data schemata
which could result in extracting a subset. ShEx is a language for validating RDF data, and its evaluators are for
checking the shape of the graph against a schema, not for extracting. Although the language has the most flexible
way to define subsets, its evaluators’ slurping capabilities are limited as they can not handle the massive size of
Wikidata.

3.2. Practical tools

WDumper15 [14] is a third-party tool for creating custom and partial RDF dumps of Wikidata suggested at the
Wikidata database download page [44]. The WDumper backend uses the Wikidata Toolkit (WDTK) Java library to
apply filters on the Wikidata entities and statements, based on a specified configuration that is created by its Python
frontend. This tool needs a complete JSON dump of Wikidata and creates an N-Triple file as output based on filters
defined in the configuration file. This tool can be used as a topical subset creator; however, it cannot be said that
WDumper can build a complete topical subset. This is due to the limitations of this tool, e.g., not supporting ex-
tracting the subclasses and the lack of making connections between separate filters. With a few changes and using
a Python random generator script,16 WDumper can be extended to extract random subsets from Wikidata of any

15Demo: https://wdumps.toolforge.org/ – accessed 20 December 2022.
16https://github.com/seyedahbr/wdumper/blob/12f0ddf/extensions/create_random_spec.py – accessed 10 June 2023.

https://wdumps.toolforge.org/
https://github.com/seyedahbr/wdumper/blob/12f0ddf/extensions/create_random_spec.py

CORRECTED P
ROOF

S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation 7

size [2]. Beghaeiraveri et al. [5] introduced the concept of Topical Subsetting over Wikidata using WDumper, ex-
tracting four topical Wikidata subsets. Beghaeiraveri et al. [4] used WDumper to extract six Wikidata topical subsets
corresponding to six Wikidata Wikiprojects: Gene Wiki, Taxonomy, Astronomy, Music, Law, and Ships. Topical and
random subsets of Wikidata are being used as the comparison platform for evaluating Wikidata references [3].

The flexibility of the ShEx language motivated researchers to develop a specific subsetting tool for Wikidata based
on this language. WDSub [22] is a subsetting tool implemented in Scala that accepts ShEx schemata and extracts a
subset corresponding to the defined schema from a local Wikidata JSON dump. The extractor part of the WDSub
is similar to WDumper, i.e., the WDTK java library. In addition to traditional ShEx schemata in ShExC format,
WDSub has its own subsetting language, WDShEx [21], which is a shape expression language based on ShEx and
optimized for Wikidata RDF data model. WDSub can produce both RDF and Wikibase-like JSON outputs.

Knowledge Graph Toolkit (KGTK) [16,40] is a collection of libraries and programs to manipulate KGs. KGTK is
designed to make working with knowledge graphs easier, both for populating new KGs or developing applications
on top of KGs. It is implemented in Python, including a command-line tool for multiple utilities such as importing
and exporting Knowledge from various formats (e.g., RDF, CSV, JSON), merging and combining KG data, creating
KGs from unstructured sources, querying and analyzing KG data, etc. The fundamental operations in KGTK are
importing and querying. KGTK imports massive KGs, converts the data to TSV files, and uses a Cypher-inspired
language (called Kypher) to query from these TSV files. In the context of Wikidata, KGTK has been deployed in
multiple quality and population-related studies (such as [17,38]). However, its main limitation in Wikibase-driven
datasets is not to support indexing of referencing metadata.

Wikibase Dump Filter (WDF) [31] is a Node.js tool to filter and process the JSON data dumps Wikibase, devel-
oped and maintained by the Wikimedia Foundation. Similar to WDumper, WDF is an item-based filtering tool, i.e.,
it applies different filters on items, claims, qualifiers and other Wikibase JSON dump components to create a new
dump of desired items of Wikidata. It can also be used to filter revision dumps of Wikibase-driven datasets. WDF
can transform the filtered data into CSV, as well as NDJSON.17

Table 1 summarises the capabilities of tools in the following columns:

– The first column lists the name of the tool.
– The second column lists the output format the tool generates.
– The third column shows the required data input format for the tool.
– The fourth column lists the language/format used to define a subset.
– The fifth column reflects the average hardware and software infrastructure required for using the tool to extract

a subset.

Table 1

The summary of subsetting tools capabilities. WIP stands for work in progress

Tool
Output
Format

Input
Format

Subset
Definition
Language

Average
Infrastructure
Requirements

Requires
Full

Dump

Live
Subsetting

Supports
Massive

Data

Supports
Qualifiers

Supports
References

Graph
Traversal

Further
Output

Transforms

Analytics

ShEx
+
Slurp

RDF
RDF

(SPARQL)
ShEx PC - + - + + + - -

WDumper
RDF

(N-Triple)
Wikibase

JSON
JSON

spec file
PC - - + + + - - -

WDSub
Wikibase

JSON/RDF
Wikibase

JSON
ShEx/

WShEx
PC + - + + + - - +

SparkWDSub
Wikibase

JSON
Wikibase

JSON
ShEx

Spark
Cluster

+ - + WIP WIP + - -

WDF NDJSON
Wikibase

JSON

Command
line

filters
PC + - + + + - - -

KGTK TSV/RDF
Wikibase

JSON/RDF
Kypher PC + - + + WIP + + +

SPARQL
Construct
Queries

RDF
RDF

(SPARQL)
SPARQL PC - + - + + - + -

17http://ndjson.org/ – NDJSON is a line-separated file in which every line is a valid JSON value. In WDF output, each line is a JSON blob of
Wikidata JSON dump representing one item.

http://ndjson.org/

CORRECTED P
ROOF

8 S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation

– The sixth column reflects whether or not a full Wikidata dump download is required for submission.
– The seventh column indicates whether or not the tool runs on live data.
– The eighth column reflects whether or not the tool is scalable for large subsets or extract subsets of Massive

KG.
– The ninth column indicates whether or not the tool supports extracting qualifiers.
– The tenth column indicates whether or not the tool supports extracting references.
– The eleventh column indicates whether or not the tool provides support for graph traversal (i.e. exploring paths

between nodes, including cycles to define a subset).
– The twelfth column indicates whether or not it is possible to use the tool to perform additional data transfor-

mations (e.g., RDF format conversion) without third-party tools once the subset is extracted. The thirteenth
column reflects whether the tool provides analytics about the content of the extracted subset, e.g., the number
of triples and items. Note that approaches such as the Context Graph or Aghaei et al. are not listed as those are
one-purpose and cannot be reused for arbitrary subsetting.

The table shows that no tool provides all positive functionalities. Most of the tools can be run on PCs except
SparkWDSub, which is designed for scalability purposes. WDumper is considered a tool that requires no access
to the local dump as it is available from an online demo which uses the latest Wikidata JSON dump. None of the
practical tools is capable of live subsetting. Instead, they can deal with massive dumps, where ShEx slurping and
SPARQL queries fail. Supporting graph traversal is also a challenging feature available in KGTK and SparkWDSub
amongst the practical tools (however, SparkWDSub is in the early development stages).

The SPARQL CONSTRUCT queries can be considered the most available approach for subsetting Wikidata and
other KGs, while regarding independent and local subsetting, they have limitations that exclude them from being
a practical approach. The first limitation is defining a subset with CONSTRUCT queries is time-consuming, as the
end-user needs to write the entire graph shape they want to extract. For example, if the end-user defines a subset
of Genes, (in addition to the select filters) they should explicitly define what statements, labels, qualifiers, and
references should be in the output. Once the scope of the subset gets complicated, specifying the connectivity of the
output graph is even more challenging. Such detailed graph patterns can also be outdated very fast as the RDF data
is schema-independent; therefore, users should constantly review and modify their queries. Another limitation is
the query endpoint. Public endpoints usually apply concrete run-time and query-type limitations, which reduces the
capabilities of CONSTRUCT queries (for example, users can not extract rdf:type triples or write heavy queries
with more classes included), and raising a local endpoint (on a Blazegraph instance or other triplestores) returns us
to the cost limitations again. Another limitation to using SPARQL CONSTRUCT queries to describe the subsets is
the lack of support for recursion so it would not be able to handle the definition of subsets with cyclic data models.
While SPARQL CONSTRUCT queries are a tangible approach for small subsetting use cases, we don’t consider
them a practical solution for subsetting.

4. Performance and accuracy evaluation

This section is dedicated to an evaluation experiment on the performance and accuracy of the four practical tools:
WDSub, WDumper, WDF, and KGTK. Considering the size of Wikidata, the subsetting tools need to extract data
in a feasible time. A fast extraction can reduce processing costs and pave the way for regular subset updates and live
subset generation. Subsetting tools should also create accurate outputs. Accuracy in this context means the output
of a subsetting tool should include all desired statements and exclude any other data. To assess the performance
and the accuracy of the practical Wikidata subsetting tools, a unified test on each subsetting tool is performed
and the extraction time and the content of the output are reported. The scripts, schemas, and SPARQL queries of
this experiment can be found in the GitHub repository of the paper18 [18]. The extracted subsets, along with the
specification files can be found on Zenodo [6].

18https://github.com/kg-subsetting/paper-wikidata-subsetting-2023

https://github.com/kg-subsetting/paper-wikidata-subsetting-2023

CORRECTED P
ROOF

S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation 9

Table 2

Details of the 3 January 2022 Wikidata dump used as the data input for experiments

Dump date Dump format Compressed size Total items Total statements

3 Jan 2022 JSON.gz 102 GB 95,900,304 1,353,626,249

4.1. Experimental methodology

In addition to the size of Wikidata, there are other factors contributing to the speed of subset extraction: (i) the
number and complexity of filters applied to the input, (ii) the type of the output data (RDF, JSON, etc.), and (iii)
the internal operations of the tool. By keeping the input dump and the desired filters fixed, the internal operations
run-time is calculated.

4.1.1. Input dump
The Wikidata JSON dump of 3 January 2022 [45] is used as the input to the four subsetting tools. Table 2 shows

the details of the input dump. The input dump was downloaded from the Wikidata Database Download page [46].

4.1.2. Subsetting filters (performance test)
The experiment considers a life-science subset of Wikidata as the test use case with the following conditions.

– The subset includes all and only ‘instances of(P31)’ gene (Q7187), protein (Q8054), chemical compound
(Q11173), and disease (Q12136).

– The subset does not include the instances of subclasses. For example, if the tools extract the instances of gene
(Q7187) class, instances of the operon (Q139677) class should not appear in the output.

– The subset includes all statements about the items but does not require qualifiers or references.

chemical compound (Q11173), disease (Q12136), gene (Q7187), and protein (Q8054) are the main Gene Wiki
WikiProject classes. Each of these classes includes several subclasses in Wikidata that have many instances. For
example, the gene (Q7187) class has 1,004,350 subclasses19 of which operon (Q139677) is one. The condition of
including no subclass examines the sensitivity in detecting the defined class only. Since KGTK cannot index and
extract references, no filters are applied to the references to keep the evaluation equal.

4.1.3. Subsets validation (accuracy test)
To measure the accuracy, after finishing the extraction and recording the execution time and the raw volume of

the output, we perform the following set of queries on the input (Wikidata dump) and the output of each tool:

Condition 1: The total number of items (Q-IDs) that are instances of chemical compound (Q11173), disease
(Q12136), gene (Q7187), and protein (Q8054) classes.
Condition 2: The total number of statements of the items that are instances of chemical compound (Q11173),
disease (Q12136), gene (Q7187), and protein (Q8054) classes.
Condition 3: The total number of items (Q-IDs) that are instances of operon (Q139677) and acid (Q11158).

Comparing the results of Condition 1 and Condition 2 in the input dump and the output of each tool is a measure
of how well the tools extract what they are supposed to fetch. Condition 3 checks the existence of two subclass
instances (Operon as a subclass of Gene, and Acid as a subclass of Chemical Compound), aiming to avoid including
false positives. The Operon and Acid are arbitrary subclasses; however, operons have an extra semantic relation to
genes (an operon is a functioning unit of DNA containing a cluster of genes) and proteins, while acids do not have
such extra relation to chemical compounds. In that way, the two subclassing relations can be further compared and
the misconfiguration of the tools can be found.

19https://w.wiki/69Bt – queried 24 December 2022.

https://w.wiki/69Bt

CORRECTED P
ROOF

10 S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation

Table 3

Software versions and compiler/interpreter used

Tool Version Compilers/Interpreters details License

WDSub version 0.0.28 sbt version 1.6.2, openjdk version “11” MIT

WDumper commit dc325fc gradle 7.0.2, openjdk version “11” MIT

WDF version 5.0.7 npm 8.19.2 MIT

KGTK version 1.4.3 conda 22.9.0 MIT

4.1.4. Output format
In this experiment, the output type of WDumper and WDSub is RDF. WDumper creates GZip NTriple files.

WDSub creates GZip Turtle files. WDF produces NDJSON files. The output type of KGTK is a TSV file. There are
also differences in the size of different RDF formats. The type and the format of the outputs are reported; however,
the difference should be kept in mind when comparing the results. The calculated time includes serialization to RDF
and the time required to write to disk.

4.2. Experimental setup

4.2.1. Host machine
The experiments were performed on a multi-core server powered by 2 AMD EPYC 7302 CPUs (16 cores and 32

threads per CPU), 320 GB of memory, and 2 hard disks: a 256 GB SSD that runs the operating system (CentOS 7
kernel 3.10.0-1160.81.1.el7.x86_64 amd64) and a 6TB HDD that is used for the extraction steps.

4.2.2. Software versions
Table 3 shows the versions of subsetting tools and software used for compiling. All versions were available on 12

November 2022. WDumper has no released version; therefore, the used commit ID is mentioned. All tools except
WDF have Docker containers; however, all mentioned versions are cloned and compiled with no need to have root
permissions. For KGTK, the repository-recommended binary package in Conda is installed, using pip. To the best
of our knowledge, WDSub and KGTK are being upgraded regularly.

4.2.3. Experimental run
A Python script20 runs each tool three times separately from the moment of starting with the raw input dump to

the moment it saves the output on disk. In this way, the time required for any indexing and pre-processing of the
dump (if any), as well as the time of writing the output, is included in the extraction time, which is in line with the
local and independent subsetting scope. Since the host machine is assumed to run other tasks at the same time, the
extraction is repeated three times and the average and the standard deviation of the three runs are presented. While
WDF and KGTK accept the filtering embedded in the command line, WDumper accepts a JSON specification
file21 and WDSub accepts a ShEx schema.22 RDF outputs of WDumper and WDSub were imported in Blazegraph
triplestore. In all cases, the recommended configurations and command line arguments which are mentioned in the
online documentation of the tools are deployed. Note that amongst the four tools, KGTK supports multithreading.
However, KGTK focuses on handling KGs on laptop computers [9]; therefore, its recommended settings use only
six threads.23 Then a set of SPARQL queries24 has been performed to count the instances and statements in RDF

20https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/a517842/performance-experiments/tool_runner.py – accessed 10
June 2023.

21https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/a80a867/performance-experiments/gene_protein_disease_
chemicals.json – accessed 10 June 2023.

22https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/performance-experiments/gene_protein_disease_
chemicals.shex – accessed 10 June 2023.

23It is worth reporting that KGTK v1.5.3 over 32 threads and avoiding deprecated statements has been run and the tool was unsuccessful to
return an output after three days of processing.

24https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/tree/1eab3d9/performance-experiments/sparql – accessed 10 June 2023.

https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/a517842/performance-experiments/tool_runner.py
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/a80a867/performance-experiments/gene_protein_disease_chemicals.json
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/a80a867/performance-experiments/gene_protein_disease_chemicals.json
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/performance-experiments/gene_protein_disease_chemicals.shex
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/performance-experiments/gene_protein_disease_chemicals.shex
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/tree/1eab3d9/performance-experiments/sparql

CORRECTED P
ROOF

S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation 11

Table 4

The results of running the four practical tools: size and type of the output, the average (Avg.) and standard deviation (STD) of the extraction
time, the number of items and the number of statements

Tool Output
type

Output
size (GB)

Extraction time (sec) Items Statements

Avg. STD

WDSub ttl.gz 2.7 43,060 126 3,434,509 38,372,871

WDumper nt.gz 3.1 23,427 97 3,434,538 38,373,706

WDF ndjson 36 13,876 52 3,434,538 38,373,706

KGTK tsv 3.6 17,148 1,020 3,434,506 38,366,611

outputs. For KGTK which produces TSV outputs, a Python script (using pandas package) has been used .25 For
counting the number of instances and statements in the WDF output and the input dump (which are JSON files), a
parallelized Python script26 with efficient time consumption has been used.

Note that while each Wikidata JSON dump has an RDF pair dump, these two different serializations are not
identical [34]. Therefore the JSON dump is queried directly using the Python parallel program.

4.3. Performance test results

Table 4 shows the output detail, results of extraction time, and the total number of distinct items and statements
in the output of each tool. The output of WDSub and WDumper is significantly smaller due to compression. The
KGTK output is not compressed; however, it is still as small as WDSub and WDumper. It is because other tools
extract the entire metadata of the matched item, including labels, descriptions, qualifiers, etc., while KGTK extracts
the statement triples only. In its TSV output, KGTK keeps the Q-IDs only and omits any prefixes, which results
in light and fast-writing outputs. Note that KGTK can be set to extract other metadata; however, performing this
requires additional conditions and filters, which are not necessary for the experimental scenario (see Section 4.1.2)
and increases its extraction time. As well, WDumper, WDF, and WDSub can be set not to extract metadata; however,
applying such filters enforces unnecessary overhead in their extraction time.

The extraction times show that WDF is the fastest tool. Part of that is because JavaScript is efficient in reading
JSON files. The WDF filters are also basic, and parsing the conditions can be done straightforwardly. KGTK is
the second fastest tool which benefits from multithreading, providing a high variance of extraction time. KGTK
extraction includes two stages: importing Wikidata and the query itself. In these experiments, 40% of the KGTK
run-time was spent importing the Wikidata JSON dump and converting it into three TSV files corresponding to
nodes, edges, and qualifiers. The rest 60% of the run-time was spent on the query. KGTK creates a graph cache in
SQLite format from the edges TSV file once the first query is performed, which significantly speeds up subsequent
queries to at most one hour. Thus, most of the query run-time is spent creating the graph cache for the first time.
With such a feature, KGTK can be used to compute the graph cache once. Then the graph cache can be shared
by Wikimedia or third-party associates for queries. However, in the context of this investigation, since the paper
considers autonomous and arbitrary subsetting (and not publicly available servers), the graph cache processing
in the run-time is included. Although WDF and WDumper traverse the JSON dump similarly line by line, and
WDumper is a compiled tool, WDumper is slower. A part of this slowness is because WDumper serializes the
matched JSON blobs to RDF. Also, WDumper can accept more complex filters that create a level of overhead in
extraction (regardless of having a simple specification input). The same is true for WDSub. The RDF serializer in
WDumper and WDSub is the same; however, the WDSub filtering system (based on ShEx) can parse quite complex

25https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/dc2869c/performance-experiments/count_instances_tsv.py – ac-
cessed 10 June 2023.

26https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/d63a3b1/performance-experiments/count_instances_json_iter.py –
accessed 4 June 2023.

https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/dc2869c/performance-experiments/count_instances_tsv.py
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/d63a3b1/performance-experiments/count_instances_json_iter.py

CORRECTED P
ROOF

12 S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation

Table 5

Accuracy test results of the four tools

Condition 1: Item counts Condition 2 Condition 3:

Class Items Statements Class Items

Input Dump Gene 1,196,532 15,993,915 Operon 731

Protein 987,636 11,365,759

Chemical Compound 1,244,881 10,942,239 Acid 22

Disease 5,513 72,480

WDSub Gene 1,196,488 15,993,260 Operon 0

Protein 987,614 11,365,230

Chemical Compound 1,244,859 10,941,100 Acid 7

Disease 5,511 72,416

WDumper Gene 1,196,503 15,993,730 Operon 0

Protein 987,636 11,365,759

Chemical Compound 1,244,874 10,941,562 Acid 7

Disease 5,512 72,477

WDF Gene 1,196,532 15,993,915 Operon 0

Protein 987,636 11,365,759

Chemical Compound 1,244,881 10,942,239 Acid 7

Disease 5,513 72,480

KGTK Gene 1,196,503 15,988,146 Operon 0

Protein 987,636 11,366,235

Chemical Compound 1,244,879 10,941,671 Acid 7

Disease 5,512 71,933

filters at the SPARQL level, which creates a massive overhead. WDumper also has a better level of multithreading
than WDSub.

Comparing the number of extracted items and statements shows that KGTK has the least number. The reason
behind the higher ratio of missed items and statements in KGTK output is not clear, but it can be hypothesized to
be due to the greater complexity of indexing and query procedures in KGTK compared to other tools, a higher like-
lihood exists for skipping more blobs during intermediate steps due to their un-parsability. The number of extracted
items and statements in WDF and WDumper is identical, although this identicality is coincidental as these numbers
are the distinct add-up of four different classes. The disaggregated statistics, as discussed in Section 4.4, show that
these tools extract a different number of instances in each class.

4.4. Accuracy test results

Table 5 shows the result of accuracy test queries on the input dump and each tool separately. In the Condition 1
column, the number of instances of each class can be seen. Compared to the input dump, all tools missed extracting
some Q-IDs except WDF. The WDF filter matching process is the simplest among the available tools. It involves
scanning the input dump line by line, with each line containing a JSON blob corresponding to a Wikidata item. The
filters provided are then applied to the values within each JSON blob, and if a successful match is found, the entire
blob is returned. Moreover, the number of extracted statements matches the input dump, highlighting the exceptional
accuracy of WDF compared to other tools. The ratio of the missing items in other tools is less than 0.05%, and the
ratio of missing statements is less than 0.75%. From 1,196,532 gene instances in the input dump, WDSub did not
extract 44, and WDumper and KGTK did not extract 29 gene instances. Although the rate is acceptable, a 100%
accuracy is expected for this task. Reviewing the gene instances items that are present in the input dump but are not

CORRECTED P
ROOF

S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation 13

in the outputs of tools shows that the 29 missed items in KGTK27 and WDumper28 are identical. Plus an additional
15 instances, those 29 items are missed in WDSub29 too.

Analysis of the JSON blobs for some missed instances, such as xmas-1 (Q29718370), NGB (Q418553), AH10.3
(Q29685684), and EGAP798.1 (Q29678017) revealed no issue concerning the instance of (P31) claims which serve
as the basis for filters. However, we noticed some malformed characters, such as <200d> and \\ in the Unicode
label values.30 Two other missed instances have a _ character in their Bangala label values.31 Note that characters
such as _ are regarded as permissible. Nevertheless, subsetting tools’ internal processes could potentially misinter-
pret these characters to other RDF terms, (for example blank node IDs), leading to possible confusion. The effect of
bad characters has been already reported in the context of Wikidata RDF dumps [5, §4.4]. The fact that WDF did
not miss any items or statements leads us to assume that other tools may struggle with parsing those certain values
within different parts of the JSON blobs, such as names, descriptions, or date-time values, resulting in the skipping
of the entire blob. All three tools involve intermediate operations that are potentially sensitive to datatype parsing.
In the case of WDumper and WDSub, the RDF serialization step may cause unparsing, while KGTK utilizes a ShEx
engine, which can introduce further sensitivity. Moreover, KGTK’s use of the graph cache is considered a potentially
sensitive stage, especially since missed items appear in the output of the importing step (the initial “nodefile.tsv”)
but are not extracted during the query step. Malformed characters of this nature can arise either from internal mis-
functioning of the Wikibase software or through direct entry by contributors. Another observation is that 19 instance
of (P31) claims for 15 Q-IDs were duplicated in the KGTK output,32 i.e., the entire <item,P31,Q7187> was
repeated. The reason for this phenomenon is unknown; however, checking one of the instances, NGB (Q418553)33

shows that the item is an instance of chemical compound (Q11173) and gene (Q7187) at the same time. The presence
of both gene and chemical compound classes in the extraction filters can lead to erroneous duplication of statements,
potentially attributed to an internal malfunctioning of KGTK.

4.5. Discussion

Choosing amongst the available subsetting approaches depends on the task at hand. The methods introduced in
Section 3.1 are single-purpose and usually cannot be reused to create any arbitrary subset. Amongst the practical
tools (Section 3.2), the performance and accuracy evaluation showed that WDF has the fastest and most accurate
performance; however, this tool is not flexible in defining subsets. This problem also exists in WDumper. In these
two tools the inclusion and exclusion of items, statements, and contextual metadata can be defined, there is no
possibility to make a connection between these conditions. For example, disease instances and chemical compound
instances can be extracted together; however, if only the chemical compounds related to the extracted diseases are
needed, this joined KG cannot be extracted with these tools.

KGTK and WDSub offer much higher flexibility due to their subset-defining structure derived from graph query
languages. KGTK extracts data after a round of indexing relatively fast; however, in the context of Wikidata lacks
indexing references, which is a major drawback. WDSub has the most flexible subset-defining structure in the Wiki-
data ecosystem and is reasonably accurate; however, response time is slow and still in its early stages of development
(as of June 2023).

27List of missed gene instance Q-IDs: https://zenodo.org/record/8015611/files/dump_kgtk_unique_items.txt?download=1 – accessed 10 June
2023.

28List of missed gene instance Q-IDs: https://zenodo.org/record/8015611/files/dump_wdumper_unique_items.txt?download=1 – accessed 10
June 2023.

29List of missed gene instance Q-IDs: https://zenodo.org/record/8015611/files/dump_wdsub_unique_items.txt?download=1 – accessed 10
June 2023.

30See Line 111 of file ‘item-Q418553-found.json’ in [6] and Line 40 of file ‘item-Q29718370-found.json’ in [6] – accessed 8 Jun 2023.
31See Line 11 of file ‘item-Q29685684-found.json’ in [6] and Line 11 of file ‘item-Q29678017-found.json’ in [6] – accessed 8 Jun 2023.
32List of duplicated gene instance Q-IDs: https://zenodo.org/record/8015611/files/kgtk_repetitive_items.txt?download=1 – accessed 10 June

2023.
33See Lines 407–481 of file ‘item-Q418553-found.json’ in [6] – accessed 10 June 2023.

https://zenodo.org/record/8015611/files/dump_kgtk_unique_items.txt?download=1
https://zenodo.org/record/8015611/files/dump_wdumper_unique_items.txt?download=1
https://zenodo.org/record/8015611/files/dump_wdsub_unique_items.txt?download=1
https://zenodo.org/record/8015611/files/kgtk_repetitive_items.txt?download=1

CORRECTED P
ROOF

14 S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation

5. Flexibility evaluation

The extent to which each tool supports common subsetting workflows is crucial. While Section 4 focuses on
the performance and accuracy in a single subsetting scenario, it should be noted that tools offer varying degrees
of support for various subsetting tasks, depending on their functionalities and features. The flexibility experiments
showcase the range of potential applications and highlight the appropriateness of each tool for specific subsetting
requirements. This section investigates more diverse subsetting tasks involving different parts of the Wikidata data
model supported by each evaluated tool, thereby providing a more comprehensive understanding of their practical
applicability. The first use case is the Gene Wiki project evolution from 2015 to 2022, the second is genes names and
descriptions in four languages, and the third is instances of chemical compounds that are referenced with reference
URL (P854). All subsets were extracted using WDSub; however, the possibility of creating a similar subset using
other practical tools is discussed. The scripts, schemas, and SPARQL queries of this experiment can be found in the
GitHub repository of the paper [18].

5.1. Gene wiki evolution

The Gene Wiki Project [47] focuses on populating and maintaining Wikidata as a central hub of linked knowledge
on genes, proteins, diseases, drugs, and related Life Science items. This project is one of the most active WikiPro-
jects in terms of human and bot contribution [4]. The project is initiated based on a class-level diagram of the
Wikidata knowledge graph for biomedical entities, which specifies 17 main classes [8]. The Wikidata WikiProject
has extended the classes into 24 item classes.

The Gene Wiki evolution experiment aims to (i) capture a subsetting schema where the participating classes have
connectivity to each other, and (ii) show the change in the amount of data instances from the early years of Wikidata.
WDSub is deployed to extract the Gene Wiki subsets containing instances of the 20 classes pictured in [47] UML
class diagram. The steps are:

– Creating a ShEx schema that represents the data model depicted in [47]. The ShExC format of the defined
shapes is in Appendix A;

– Downloading the Wikidata JSON dumps from 2015 to 2022 (exact dates are in Appendix B) which are available
at Internet Archive;34

– Deploying WDSub to create a subset from each dump.

A SPARQL query script is then run that counts the number of each item for each shape (class) and each link between
shapes. Table 6 shows the number of instances for each class.

The first attention-drawing point is the variation in the number of instances in different classes. The taxon, gene,
protein and chemical compound classes have the highest number of items, such that more than 97% of the items
in all the investigated dumps are instances of these four classes. Part of this heterogeneity is due to the nature of
the abundance of classes. For example, the number of genes should be more than diseases, but it is not clear why
in some classes the number of instances is so low, e.g., the number of anatomical structure instances seems less
than expected. The number of instances in all classes except the biological process, cellular component, disease,
molecular function, sequence variant, and symptom has increased continuously from 2015 to 2022. In addition to
having the largest amount of data in all dumps, the data growth acceleration in the taxon, gene, protein, and chemical
compound classes is also more than the other classes from 2015 and 2022. In all exceptional classes above, the peak
point belongs to dump 2020. Then, the number of instances decreases in 2021 and 2022, reaching the previous 2020
level in 2023, where the Wikidata SPARQL endpoint has been queried. The reason for this behaviour is not clear. It
has been hypothesized that the number of instances was raised due to inaccurate bot activities in 2020, which was

34https://www.wikidata.org/wiki/Wikidata:Database_download – accessed 14 February 2023.

https://www.wikidata.org/wiki/Wikidata:Database_download

CORRECTED P
ROOF

S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation 15

Table 6

The number of instances for each gene wiki class from 2015 to 2022 and the number of instances on the live Wikidata query service (queried on
22 December 2022)

Class 2015 2016 2017 2018 2019 2020 2021 2022 Wikidata

active site 0 0 132 132 132 132 132 132 132

anatomical structure 4 62 470 483 614 732 738 812 746

binding site 0 0 76 76 76 77 77 77 76

biological pathway 0 0 425 2,754 2,929 3,279 3,429 3,486 3,554

biological process 11 12 31,263 31,222 42,058 43,417 42,061 41,857 42,449

cellular component 1 1 4,017 4,081 4,239 4,298 4,137 4,139 4,211

chemical compound 19,144 21,128 156,718 157,018 157,685 1,050,488 1,201,719 1,245,041 1,249,719

chromosome 0 0 149 152 432 9,167 9,224 9,223 9,224

disease 124 931 9,578 9,926 11,439 13,197 5,395 5,607 5,698

gene 17 20 679,372 677,836 811,574 1,196,193 1,196,334 1,211,506 Timed-Out

medication 46 2,127 2,459 2,472 2,699 3,210 3,336 3,424 3,450

molecular function 0 0 9,413 9,801 11,258 11,226 10,940 10,898 11,246

pharmaceutical product 0 0 1,067 1,067 2,725 2,754 2,759 2,774 2,784

protein domain 2 3 9,581 8,847 9,348 10,770 11,274 11,709 11,736

protein family 0 212 20,912 20,632 22,240 22,170 23,277 24,204 24,266

protein 118 166 450,785 487,781 579,979 980,520 985,755 988,099 Timed-Out

sequence variant 0 0 1,411 918 774 724 695 686 686

supersecondary structure 0 0 687 687 688 688 694 696 696

symptom 16 235 273 283 328 366 319 335 343

taxon 1,920,049 2,121,404 2,213,907 2,318,731 2,492,613 2,769,303 2,929,068 3,478,871 3,491,430

restored during human curations in the following two years and reached the same level again due to more accurate
bots. Another observation is the low number of genes, proteins and chemical compound instances before 2017. The
Gene Wiki WikiProject started and began populating data in 2015. These classes are the main focuses of the Gene
Wiki community data population. It is found that the low number of instances in the 2015 and 2016 dumps is not
due to the lack of A-Boxes, but due to the lack of instance of (P31) statements in the A-Boxes. Using instance of
(P31) statements to specify the class of an item is a recent practice in Wikidata, thus, there was approximately the
same number of the gene, protein, and chemical compound instances in 2015 and 2016 on Wikidata identified by
external identifiers such as Entrez Gene ID (P351), UniProt protein ID (P352), and InChI (P234), instead of instance
of (P31) property.

The extracted subsets in this experiment can also be constructed by other practical tools of Section 3.2. The
definition of these subsets in WDSub is based on writing a shape corresponding to each class containing the prop-
erties defined in the class diagram [47]. Such filters can be implemented by all other tools as well. In WDumper
and WDF, one can simply write the corresponding filters based on the value of the parameters of the mentioned
properties (the properties inside a Shape will be logical AND together). However, in some definitions, WDumper
and WDF can not imitate the WDSub definition exactly. The reason for this is that in WDSub any number of re-
lationships amongst shapes can be defined. For example, the :active_site class in Appendix A is related to
the form :protein_family class via wdt:P361 property. Now suppose the * operator in line 34 is replaced
with a +. At extraction time, WDSub will not extract any active site instances that are not connected to at least one
instance of a protein family. Unfortunately, such filtering and connections are not possible in WDumper and WDF.
In these two tools, only one specific value can be defined for a property filter; it is not possible for the value to be of
a specific class or related to other conditions (in WDumper, there is a possibility to define a condition saying a value
should have existed, whatever that value is). KGTK can establish any relationship between conditions as its Kypher
definition system is based on Cypher query language and has definition flexibility similar to ShEx. The extracted
subsets can be found on Zenodo [24].

CORRECTED P
ROOF

16 S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation

5.2. Subsetting on labels and comments: Genes + taxons

Using the ShEx schema in Appendix C, a subset of Genes and Taxons instances from 2015 to 2022 is created,
considering instances which have both labels and descriptions in English, Dutch, Farsi, and Spanish. Item instances
that do not have a label or description in one of these four languages should not be extracted (aliases condition
is considered with a * operator, which means that instances with zero aliases in the four languages can be in the
subset).

Table 7 shows the number of instances separated by label, description, and alias languages along with the total
number of extracted items. The difference between the number of labels, descriptions and aliases can also be seen.
In general, English aliases are more than labels, which shows that on average each item has more than one En-
glish alias. By comparing between languages, it can be seen that the amount of labels, descriptions, and aliases in
Farsi is lower than in other languages. This is more obvious in Genes compared to Taxons. In Spanish and Dutch,
the number of labels and descriptions are close, which shows that wherever there is a label for this language, a
description has also been added (note that labels and descriptions are usually added once for each language while
aliases are more than one). While having fewer Farsi labels and aliases can be justified by the lack of proper trans-
lation, having fewer descriptions is due to the fewer Farsi-speaking participants (or their limited activity in Genes
and Taxons). The low amount of data in Genes before 2017 which is explained in Section 5.1, can be seen here

Table 7

The total and language seperated number of instances for gene and taxon class from 2015 to 2022 and the number of instances on the live
Wikidata query service (queried on 14 February 2023)

Class Casework 2015 2016 2017 2018 2019 2020 2021 2022 Wikidata

Gene Total 17 20 679,372 677,836 811,574 1,196,193 1,196,334 1,211,506 1,215,324

English Labels 16 18 679,365 677,827 811,567 1,196,185 1,196,326 1,211,497 1,215,314

English Desc. 7 9 679,294 677,756 756,847 756,590 756,738 772,034 775,878

English Aliases 2 15 1,954,528 1,843,927 1,810,033 1,945,779 1,947,441 1,975,129 1,980,192

Spanish Labels 2 2 174,041 173,978 194,966 195,079 195,065 194,231 194,232

Spanish Desc. 2 2 174,034 173,971 194,959 195,062 195,041 194,203 194,201

Spanish Aliases 1 1 123 99 114 162 176 183 184

Farsi Labels 1 0 130 132 528 814 872 917 1,033

Farsi Desc. 0 0 37 37 38 58 60 65 67

Farsi Aliases 0 0 22 21 21 21 21 24 21

Dutch Labels 0 1 174,064 174,002 577,876 1,139,308 1,139,333 1,138,431 1,138,415

Dutch Desc. 0 1 174,238 174,175 578,398 1,139,889 1,139,913 1,139,012 1,138,995

Dutch Aliases 0 0 18 16 20 97 136 137 138

Taxon Total 1,920,049 2,121,404 2,213,907 2,318,731 2,492,613 2,769,303 2,929,068 3,478,871 3,501,933

English Labels 1,919,371 2,097,013 2,189,417 2,296,723 2,480,923 2,766,134 2,925,938 3,475,703 Timed-Out

English Desc. 278,192 1,996,512 2,057,254 2,064,478 2,072,360 2,422,773 2,448,469 2,656,646 Timed-Out

English Aliases 9,446 52,100 70,484 72,596 78,735 91,967 95,733 111,908 Timed-Out

Spanish Labels 1,917,529 2,085,263 2,187,890 2,295,164 2,476,641 2,764,597 2,923,922 3,470,714 Timed-Out

Spanish Desc. 18,846 24,991 770,220 1,610,043 1,622,695 1,625,360 1,626,266 1,628,861 Timed-Out

Spanish Aliases 82,482 83,497 85,599 86,393 86,988 87,833 88,231 88,176 11,1641

Farsi Labels 17,418 18,074 17,990 18,000 24,021 28,017 28,354 29,436 Timed-Out

Farsi Desc. 169,462 167,849 166,932 166,880 166,773 167,075 166,900 167,226 Timed-Out

Farsi Aliases 2,912 2,749 2,720 2,728 2,736 2,774 2,769 2,799 2,810

Dutch Labels 926,956 2,089,454 2,191,695 2,297,575 2,478,838 2,766,321 2,926,153 3,474,191 Timed-Out

Dutch Desc. 17,345 2,073,612 2,197,568 2,224,851 2,410,399 2,690,073 2,838,424 3,278,973 Timed-Out

Dutch Aliases 29,744 31,425 32,467 33,471 34,289 35,977 36,739 37,767 38,151

CORRECTED P
ROOF

S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation 17

again. As the table shows, counting the number on Wikidata Query Service has been timed out in multiple taxon
queries.

Subsetting on labels and comments can also be done by KGTK. KGTK and WDSub can define conditions even
on the values of the label, e.g. define a shape (in KGTK a Kypher term) with a label condition the value specified to
"John Smith" and extract all entities with the name John Smith from Wikidata. Filtering labels and comments
is not possible with this flexibility in WDF and WDumper. In both WDF and WDumper, users can choose whether
to skip labels and textual metadata (such as descriptions) along with the selected item. It is also possible to extract
labels and comments in their specified languages (and not all languages). However, these options are considered
post-filters, i.e., items are first selected based on property-based conditions, and then textual metadata can be ignored
or kept on the selected items. Another limitation is that this option can be deployed either on all extracted items or
none of them, e.g., it is not possible to extract a group of items with English labels and another group with Farsi
labels. Initial selection based on language or value of a label/comment is not doable in WDF and WDumper. The
extracted subsets can be found on Zenodo [25].

5.3. Subsetting on references: Referenced chemical compounds

This section deploys references as filters and extracts those chemical compound instances that their instance
of (P31) fact has been referenced by a reference URL (P854). Using WDSub, the scenario is to extract two different
subsets according to the following schemas:

Schema 1 (Only referenced instances) This schema is designed to extract all instances of (P31) chemical com-
pounds (Q11173) that have been referenced by at least one reference URL (P854). Any chemical compound
instances whose instances of (P31) fact have no reference using reference URL (P854) property should be
excluded and not be in the subset. The schema can be seen in Appendix D.1.

Schema 2 (All instances) This schema extracts all instances of (P31) chemical compounds (Q11173), no matter
whether the instances of (P31) fact has been referenced or not. The schema can be seen in Appendix D.2.

The property reference URL (P854) provides primary external sources which are preferable provenance types ac-
cording to Wikidata referencing policies. Choosing instance of (P31) statement is arbitrary. To observe the amount
of such referenced statements, subsets from Wikidata dumps from 2015 to 2022 are extracted similarly to Sec-
tions 5.1 and 5.2. To investigate whether extraction via Schema 1 includes only referenced instances, the following
queries are performed on both Schema 1 and Schema 2 subsets:

Query 1 (Only referenced instances) Counts those chemical compound instances that their instances of (P31)
statement has a reference URL (P854).35

Query 2 (All instances) Counts the number of chemical compound instances in general.36

Table 8 shows the number of chemical compound instances obtained from performing the two queries on the 2015
to 2022 subsets. In the last column, it can be seen the number of referenced and not referenced chemical com-
pound instances on Wikidata. As the results show, WDSub accurately excludes not-referenced chemical compound
instances in extraction. In all dumps, the number of referenced instances fetched by the referenced query (Query1)
in the general subset (extracted using Schema 2) is equal to the total number of instances (fetched by the general
query, Query2) in the referenced subset (extracted using Schema 1). The only inconsistency is in the column of
dump 2021, where there are 17 referenced instances in the subset extracted by the general schema, while there are
16 instances in the subset extracted by the referenced schema. In other words, there is one referenced instance in
the input dump which is not extracted by WDsub. However, this is not an unexpected missing item. The missed
item is nirmatrelvir (Q106405348), which has two separate reference URL (P854) values in its instance of (P31)
statement. To extract shapes with more than one property, the ShEx schema requires the EXTRA qualifier to open

35https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/flexibility-experiments/referenced-chemical-compounds/
sparql/number_chemical_referenced.sparql – accessed 10 June 2023.

36https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/flexibility-experiments/referenced-chemical-compounds/
sparql/number_chemical_not_referenced.sparql – accessed 10 June 2023.

https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/flexibility-experiments/referenced-chemical-compounds/sparql/number_chemical_referenced.sparql
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/flexibility-experiments/referenced-chemical-compounds/sparql/number_chemical_referenced.sparql
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/flexibility-experiments/referenced-chemical-compounds/sparql/number_chemical_not_referenced.sparql
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/flexibility-experiments/referenced-chemical-compounds/sparql/number_chemical_not_referenced.sparql

CORRECTED P
ROOF

18 S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation

Table 8

The number of referenced and not referenced chemical compound instances in Wikidata subsets from 2015 to 2022 and the Wikidata query
service (queried on 14 February 2023)

Chemical compound (Q11173) 2015 2016 2017 2018 2019 2020 2021 2022 Wikidata

Query 1
(referenced
instances)

1 0 26 27 25 18 16 16 Not
Applicable

Schema 1
(referenced
instances)

Query 2
(all
instances)

1 0 26 27 25 18 16 16 Not
Applicable

Query 1
(referenced
instances)

1 0 26 27 25 18 17 16 32

Schema 2
(not referenced
instances)

Query 2
(all
instances)

18,630 17,477 15,1970 15,1716 15,1506 1,036,696 1,187,186 1,109,165 1,251,822

the reference URL (P854) triple constraint. Thus, adding EXTRA prov:wasDerivedFrom to Line 11 of the
Schema D.1 solves this inconsistency. Overall, the number of instances referenced by the reference URL (P854)
property is low in all subsets and Wikidata. Subsetting based on references is not possible in KGTK, WDumper,
and WDF. The extracted subsets can be found on Zenodo [7].

6. Conclusions

In this paper, the problem of subsetting in Wikidata was reviewed. As a continuously edited KG, Wikidata has
a massive amount of data which cannot be queried from the SPARQL endpoint in all cases. Its weekly RDF and
JSON dumps are maintained for a short period of time and hosting a Wikidata dump is costly. On the other hand,
research and applications may need a specific scope of its data. Subsetting provides a platform to extract a dedicated
part of the data from Wikidata, reducing the overall cost and facilitating the reproducibility of experiments.

The paper surveyed all available subsetting approaches over Wikidata and other KGs and explained their ad-
vantages and limitations. In the context of Wikidata, four subsetting approaches are distinguishable as practical
subsetting tools that can be deployed to extract a given defined subset: WDSub, WDumper, WDF, and KGTK. The
performance, accuracy, and flexibility evaluations were then established over these four practical tools by defining
several subsetting use cases. The results show that in terms of performance (i.e., the speed of extraction), WDF is
the fastest tool and it can extract a subset in less than 4 hours. In terms of accuracy (i.e., extracting what is defined
exactly, not more or less) the results show that WDF extracts all items and statements exactly as they are present in
the input dump. The ratio of missed items is less than 0.05% all tools missed less than 4% of items and that can be
justified by the inconsistencies and syntax errors in the input dumps. In terms of flexibility (i.e., how much the tool
allows the designer to define complex subsets on different parts of the Wikidata data model), three use cases have
been defined and several subsets have been extracted from Wikidata dumps from 2015 to 2022. At first, a subsetting
on different classes of the Gene Wiki WikiProject was performed and all tools supported such a subsetting. Then
the subsets of genes and taxons were extracted based on having English, Spanish, Farsi, and Dutch labels and com-
ments, which WDSub and KGTK supported such filtering. In the end, subsets of referenced chemical compounds
were extracted and only WDSub was able to perform filters on references. The flexibility tests show that the most
flexible tool for subsetting is WDSub, mainly because of its defining language which is ShEx and has the flexibility
of SPARQL queries. During the subsetting, valuable information was gained about the amount of data in Wikidata
from 2015 to 2022.

In KG subsetting, many open questions and future work remains. The first open question is subsetting other KGs,
such as DBPedia, where the vocabulary is different and the dumps are not in JSON. There are also many massive
collections of data supporting RDF, such as Uniprot and PubChem that can be the subject of subsetting. Future work
also includes building more flexibility and performance with one tool. WDSub is the most flexible tool but when

CORRECTED P
ROOF

S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation 19

you have flexibility, your filters take a longer time to be applied on the input dump items. SparkWDSub [23] is
an under-development subsetting tool for Wikidata based on WDSub, which implements graph traversal for subset
creation. To improve the speed, SparkWDSub uses the Apache Spark platform to distribute the computation. This
tool is in the initial stages of development. Live subsets are the other future path. In this study (as well as in other
related projects) several topical subsets have been extracted for which reusability is one of the main features. Over
time with the new edits coming, the gap between these subsets and the corresponding data in Wikidata will increase.
This gap can be reduced by repeating the subsetting process regularly, and by reducing the interval to an acceptable
level (e.g., one day), end users can reach practically live subsets. A better solution is not to spend the extraction
time for each repetition, instead, to generate the subset and apply the edits in real-time by establishing an active link
between the Wikidata database and the subset. The main challenge in this task is hosting issues and the fact that
Wikidata does not have a public API for establishing active links to the best of our knowledge. Subsetting suffers
from not having proper documentation for tools, definitions, and use cases. It is essential to aggregate and document
all subsetting definition efforts as a training wiki, in which users can effectively learn and define desired subsets
in a reasonable time. Having such a wiki, further performance, accuracy, and flexibility tests can be established in
different fields.

Acknowledgements

This paper has progressed in several hackathons and tutorials of the ELIXIR BioHackathon-Europe series and
SWAT4HCLS, and we would like to thank the organizers and participants. Suggestions and intellectual contributions
of Dan Brickley, Lydia Pintscher, Eric Prud’hommeaux, Thad Guidry, and Filip Ilievski are greatly appreciated. This
project has benefited from part of the following research grants: project PID2020-117912RB, ANGLIRU: Applying
kNowledge Graphs to research data interoperability and ReUsability. The Alfred P. Sloan Foundation under grant
number G-2021-17106 for the development of Scholia. The project R01GM089820 from the National Institutes of
General Medical Sciences.

Appendix A. Gene wiki ShEx

The ShExC shape expressions that is used to extract Gene Wiki subsets via WDSub is as follow:

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX wd: <http://www.wikidata.org/entity/>
4 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
5 PREFIX : <http://example.org/>
6

7 start= @:active_site OR
8 @:anatomical_structure OR
9 @:binding_site OR

10 @:biological_pathway OR
11 @:biological_process OR
12 @:cellular_component OR
13 @:chemical_compound OR
14 @:chromosome OR
15 @:disease OR
16 @:gene OR
17 @:mechanism_of_action OR
18 @:medication OR
19 @:molecular_function OR
20 @:pharmaceutical_product OR
21 @:pharmacologic_action OR
22 @:protein_domain OR
23 @:protein_family OR

CORRECTED P
ROOF

20 S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation

24 @:protein OR
25 @:sequence_variant OR
26 @:supersecondary_structure OR
27 @:symptom OR
28 @:taxon OR
29 @:therapeutic_use
30

31 :active_site EXTRA wdt:P31 {
32 rdfs:label [@en] ;
33 wdt:P31 [wd:Q423026] ;
34 wdt:P361 @:protein_family * ;
35 wdt:P527 @:protein_family * ;
36 }
37

38 :anatomical_structure EXTRA wdt:P31 {
39 rdfs:label [@en] ;
40 wdt:P31 [wd:Q4936952] ;
41 wdt:P361 @:anatomical_structure * ; # part of (P361)
42 wdt:P527 @:anatomical_structure * # has part(s) (P527)
43 }
44

45 :binding_site EXTRA wdt:P31 {
46 rdfs:label [@en] ;
47 wdt:P31 [wd:Q616005] ;
48 wdt:P361 @:protein_family * ;
49 wdt:P527 @:protein_family * ;
50 }
51

52 :biological_pathway EXTRA wdt:P31 {
53 rdfs:label [@en] ;
54 wdt:P31 [wd:Q4915012] ;
55 wdt:P527 @:biological_pathway * ;
56 wdt:P361 @:biological_pathway * ;
57 wdt:P361 @:gene * ;
58 wdt:P527 @:gene * ;
59 wdt:P361 @:medication * ;
60 wdt:P527 @:medication * ;
61 wdt:P361 @:chemical_compound * ;
62 wdt:P527 @:chemical_compound * ;
63 wdt:P703 @:taxon * ;
64 wdt:P1050 @:disease* ;
65 }
66

67 :biological_process EXTRA wdt:P31 {
68 rdfs:label [@en] ;
69 wdt:P31 [wd:Q2996394] ;
70 wdt:P279 @:biological_process * ; # subclass of (P279)
71 wdt:P361 @:biological_process * ; # part of (P361)
72 wdt:P527 @:biological_process * ; # has part(s) (P527)
73 wdt:P128 @:biological_process * ; # has part(s) (P527)
74 wdt:P128 @:molecular_function * ; # regulates (molecular biology) (P128)
75 wdt:P361 @:medication * ; # part of (P361)
76 wdt:P527 @:medication * ; # has part(s) (P527)
77 wdt:P361 @:chemical_compound * ; # part of (P361)
78 wdt:P527 @:chemical_compound * ; # has part(s) (P527)
79 wdt:P279 @:biological_process * # subclass of (P279)
80 }
81

82 :cellular_component EXTRA wdt:P31 {
83 rdfs:label [@en] ;
84 wdt:P31 [wd:Q5058355] ;

CORRECTED P
ROOF

S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation 21

85 wdt:P279 @:cellular_component * ; # subclass of (P279)
86 wdt:P361 @:cellular_component * ; # part of (P361)
87 wdt:P681 @:cellular_component * ; # cell component (P681)
88 wdt:P527 @:cellular_component * ; # has part(s) (P527)
89 }
90

91 :chemical_compound EXTRA wdt:P31 {
92 rdfs:label [@en] ;
93 wdt:P31 [wd:Q11173] ;
94 wdt:P3364 @:chemical_compound * ;
95 wdt:P769 @:chemical_compound * ;
96 wdt:P2868 @:pharmacologic_action * ;
97 wdt:P769 @:pharmacologic_action * ; # significant drug interaction (P769)
98 wdt:P279 @:pharmacologic_action * ; # subclass of (P279)
99 wdt:P361 @:medication * ; # part of (P361)

100 wdt:P527 @:medication * ; # has part(s) (P527)
101 wdt:P2868 @:mechanism_of_action *; # subject has role (P2868)
102 wdt:P3489 @:disease * ; # pregnancy category (P3489)
103 }
104

105 :chromosome EXTRA wdt:P31 {
106 rdfs:label [@en] ;
107 wdt:P31 [wd:Q37748] ;
108 }
109

110 :disease EXTRA wdt:P31 {
111 rdfs:label [@en] ;
112 wdt:P31 [wd:Q12136] ;
113 wdt:P279 @:disease * ;
114 wdt:P780 @:disease * ; # symptoms and signs (P780)
115 wdt:P828 @:taxon * ; # has cause (P828)
116 wdt:P2293 @:gene * ; # genetic association (P2293)
117 wdt:P927 @:anatomical_structure * ; # anatomical location (P927)
118 wdt:P2176 @:medication * ; # drug or therapy used for treatment (P2176)
119 wdt:P2176 @:chemical_compound * ; # drug or therapy used for treatment (P2176)
120 wdt:P2176 @:therapeutic_use * ; # drug or therapy used for treatment (P2176)
121 wdt:P2175 @:medication * ; # medical condition treated (P2175)
122 wdt:P2175 @:chemical_compound * ; # medical condition treated (P2175)
123 wdt:P2175 @:therapeutic_use * ; # medical condition treated (P2175)
124 }
125

126 :gene EXTRA wdt:P31 {
127 rdfs:label [@en] ;
128 wdt:P31 [wd:Q7187] ;
129 wdt:P684 @:gene * ; # ortholog (P684)
130 wdt:P2293 @:disease * ; # genetic association (P2293)
131 wdt:P703 @:taxon * ; # found in taxon (P703)
132 wdt:P1057 @:chromosome * ; # chromosome (P1057)
133 wdt:P682 @:biological_process * ; # biological process (P682)
134 wdt:P688 @:protein * ; # encodes (P688)
135 }
136

137 :mechanism_of_action EXTRA wdt:P31 {
138 rdfs:label [@en] ;
139 wdt:P31 [wd:Q3271540] ;
140 }
141

142 :medication EXTRA wdt:P31 {
143 rdfs:label [@en] ;
144 wdt:P31 [wd:Q12140] ;
145 wdt:P2175 @:disease * ; # medical condition treated (P2175)

CORRECTED P
ROOF

22 S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation

146 wdt:P3780 @:pharmaceutical_product * ;# active ingredient in (P3780)
147 wdt:P769 @:pharmacologic_action * ; # significant drug interaction (P769)
148 wdt:P769 @:chemical_compound * ; # significant drug interaction (P769)
149 wdt:P769 @:therapeutic_use * ; # significant drug interaction (P769)
150 wdt:P2868 @:pharmacologic_action * ; # subject has role (P2868)
151 wdt:P2868 @:therapeutic_use * ; # subject has role (P2868)
152 wdt:P279 @:pharmacologic_action * ; # subclass of (P279)
153 wdt:P279 @:therapeutic_use * ; # subclass of (P279)
154 wdt:P2868 @:mechanism_of_action * ; # subject has role (P2868)
155 wdt:P2175 @:symptom * # medical condition treated (P2175)
156 }
157

158 :molecular_function EXTRA wdt:P31 {
159 rdfs:label [@en] ;
160 wdt:P31 [wd:Q14860489] ;
161 wdt:P361 @:molecular_function * ;
162 wdt:P527 @:molecular_function * ;
163 wdt:P279 @:molecular_function * ;
164 }
165

166 :pharmaceutical_product EXTRA wdt:P31 {
167 rdfs:label [@en] ;
168 wdt:P31 [wd:Q28885102] ;
169 wdt:P3781 @:therapeutic_use * ; # has active ingredient (P3781)
170 wdt:P3781 @:pharmacologic_action * ; # has active ingredient (P3781)
171 wdt:P3781 @:chemical_compound * ; # has active ingredient (P3781)
172 wdt:P3781 @:medication * ; # has active ingredient (P3781)
173 wdt:P3780 @:therapeutic_use * ; # active ingredient in (P3780)
174 wdt:P3780 @:pharmacologic_action * ; # active ingredient in (P3780)
175 wdt:P3780 @:chemical_compound * ; # active ingredient in (P3780)
176 wdt:P3780 @:medication * ; # active ingredient in (P3780)
177 wdt:P4044 @:disease *; # therapeutic area (P4044)
178 }
179

180 :pharmacologic_action EXTRA wdt:P31 {
181 rdfs:label [@en] ;
182 wdt:P31 [wd:Q50377224] ;
183 wdt:P3780 @:pharmaceutical_product * ;# active ingredient in (P3780)
184 wdt:P3781 @:pharmaceutical_product * ;# has active ingredient (P3781)
185 wdt:P2175 @:disease * ; # medical condition treated (P2175)
186 wdt:P2176 @:disease * ; # drug or therapy used for treatment (P2176)
187 }
188

189 :protein_domain EXTRA wdt:P31 {
190 rdfs:label [@en] ;
191 wdt:P31 [wd:Q898273] ;
192 wdt:P279 @:protein_domain * ; # subclass of (P279)
193 wdt:P128 @:protein_domain * ; # regulates (molecular biology) (P128)
194 wdt:P527 @:protein_domain * ; # has part(s) (P527)
195 wdt:P361 @:protein_domain * ; # part of (P361)
196 }
197

198 :protein_family EXTRA wdt:P31 {
199 rdfs:label [@en] ;
200 wdt:P31 [wd:Q417841] ;
201 wdt:P527 @:protein * ; # has part(s) (P527)
202 wdt:P279 @:protein_family* ; # subclass of (P279)
203 wdt:P527 @:protein * ; # part of (P361)
204 }
205

206 :protein EXTRA wdt:P31 {

CORRECTED P
ROOF

S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation 23

207 rdfs:label [@en] ;
208 wdt:P31 [wd:Q8054] ;
209 wdt:P129 @:protein * ; # physically interacts with (P129)
210 wdt:P681 @:protein * ; # cell component (P681)
211 wdt:P129 @:medication * ; # physically interacts with (P129)
212 wdt:P680 @:molecular_function * ; # molecular function (P680)
213 wdt:P681 @:cellular_component * ; # cell component (P681)
214 wdt:P681 @:anatomical_structure * ; # cell component (P681)
215 wdt:P682 @:biological_process * ; # biological process (P682)
216 wdt:P527 @:active_site * ; # has part(s) (P527)
217 wdt:P361 @:active_site * ; # part of (P361)
218 wdt:P527 @:protein_domain * ; # has part(s) (P527)
219 wdt:P361 @:protein_domain * ; # part of (P361)
220 wdt:P361 @:protein_family * ; # part of (P361)
221 wdt:P527 @:protein_family * ; # has part(s) (P527)
222 wdt:P527 @:active_site * ;
223 wdt:P361 @:active_site * ;
224 wdt:P361 @:binding_site * ;
225 wdt:P527 @:binding_site * ;
226 wdt:P129 @:chemical_compound * ; # physically interacts with (P129)
227 wdt:P129 @:medication * ; # physically interacts with (P129)
228 wdt:P702 @:gene * ; # encoded by (P702)
229 wdt:P703 @:taxon * ; # found in taxon (P703)
230 }
231

232 :sequence_variant EXTRA wdt:P31 {
233 rdfs:label [@en] ;
234 wdt:P31 [wd:Q15304597] ;
235 wdt:P3433 @:gene * ; # sequence variant (Q15304597)
236 wdt:P3355 @:chemical_compound * ; # negative therapeutic predictor for (P3355)
237 wdt:P3354 @:chemical_compound * ; # positive therapeutic predictor for (P3354)
238 wdt:P3354 @:medication * ;
239 wdt:P3355 @:medication * ;
240 wdt:P1057 @:chromosome * ; # chromosome (P1057)
241 }
242

243 :supersecondary_structure EXTRA wdt:P31 {
244 rdfs:label [@en] ;
245 wdt:P31 [wd:Q7644128] ;
246 wdt:P361 @:protein * ;
247 wdt:P361 @:protein_family * ;
248 wdt:P361 @:protein_domain * ;
249 }
250

251 :symptom EXTRA wdt:P31 {
252 rdfs:label [@en] ;
253 wdt:P31 [wd:Q169872] ;
254 wdt:P2176 @:chemical_compound * ; # drug or therapy used for treatment (P2176)
255 }
256

257 :taxon EXTRA wdt:P31 {
258 rdfs:label [@en] ;
259 wdt:P31 [wd:Q16521] ;
260 }
261

262 :therapeutic_use EXTRA wdt:P31 {
263 rdfs:label [@en] ;
264 wdt:P31 [wd:Q50379781] ;
265 }

CORRECTED P
ROOF

24 S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation

Appendix B. Wikidata dumps dates

Table 9

The exact dates, size, and download URL of Wikidata dumps used in the flexibility experiments

Dump Exact date Size Download URL

2015 2015-06-01 4.5 Gb https://archive.org/download/wikidata-json-20150601/wikidata-20150601-all.json.gz

2016 2016-06-13 7.19 Gb https://archive.org/download/wikidata-json-20160613/wikidata-20160613-all.json.gz

2017 2017-08-21 15.7 Gb https://archive.org/download/wikibase-wikidatawiki-20170821/wikidata-20170821-all.json.gz

2018 2018-01-15 26.48 Gb https://archive.org/download/wikibase-wikidatawiki-20180319/wikidata-20180319-all.json.gz

2019 2019-01-21 48.14 Gb https://archive.org/download/wikibase-wikidatawiki-20190121/wikidata-20190121-all.json.gz

2020 2020-11-02 83.94 Gb https://archive.org/download/wikibase-wikidatawiki-20201102/wikidata-20201102-all.json.gz

2021 2021-05-31 93.93 Gb https://archive.org/download/wikibase-wikidatawiki-20210531/wikidata-20210531-all.json.gz

2022 2022-06-30 107.66 Gb https://archive.org/download/wikidata-20220630-all.json.gz/wikidata-20220630-all.json.gz

Appendix C. Genes + taxons labeling and commenting ShEx

The ShExC shape expression that is used to extract Genes and Taxons subsets via WDSub based on labels,
descriptions, and aliases in four languages is as follow:

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX wd: <http://www.wikidata.org/entity/>
4 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
5 PREFIX : <http://example.org/>
6 PREFIX schema: <http://schema.org/>
7 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
8

9 start= @:gene OR
10 @:taxon
11

12 :gene EXTRA wdt:P31 {
13 rdfs:label [@en @es @fa @nl] ;

14 schema:description [@en @es @fa @nl] ;

15 skos:altLabel [@en @es @fa @nl] * ;
16 wdt:P31 [wd:Q7187] ;
17 wdt:P703 @:taxon * ;
18 }
19

20 :taxon EXTRA wdt:P31 {
21 rdfs:label[@en @es @fa @nl] ;

22 schema:description [@en @es @fa @nl] ;

23 skos:altLabel [@en @es @fa @nl] * ;
24 wdt:P31 [wd:Q16521] ;
25 }

https://archive.org/download/wikidata-json-20150601/wikidata-20150601-all.json.gz
https://archive.org/download/wikidata-json-20160613/wikidata-20160613-all.json.gz
https://archive.org/download/wikibase-wikidatawiki-20170821/wikidata-20170821-all.json.gz
https://archive.org/download/wikibase-wikidatawiki-20180319/wikidata-20180319-all.json.gz
https://archive.org/download/wikibase-wikidatawiki-20190121/wikidata-20190121-all.json.gz
https://archive.org/download/wikibase-wikidatawiki-20201102/wikidata-20201102-all.json.gz
https://archive.org/download/wikibase-wikidatawiki-20210531/wikidata-20210531-all.json.gz
https://archive.org/download/wikidata-20220630-all.json.gz/wikidata-20220630-all.json.gz

CORRECTED P
ROOF

S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation 25

Appendix D. Referenced chemicals ShExes

D.1. Schema 1 (referenced instances)

This schema extract those instances of chemical compounds that their instances of (P31) fact has been referenced
by at least one reference URL (P854):

1 PREFIX wd: <http://www.wikidata.org/entity/>
2 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
3 PREFIX ps: <http://www.wikidata.org/prop/statement/>
4 PREFIX p: <http://www.wikidata.org/prop/>
5 PREFIX prov: <http://www.w3.org/ns/prov#>
6 PREFIX pr: <http://www.wikidata.org/prop/reference/>
7

8

9 start = @<chemical_compound>
10

11 <chemical_compound> {
12 wdt:P31 [wd:Q11173] ;
13 p:P31 {
14 ps:P31 [wd:Q11173] ; # is instance of (P31) chemical_compound (Q11173)
15 prov:wasDerivedFrom @<reference> # has a reference
16 }
17 }
18 <reference>{
19 pr:P854 .
20 }

D.2. Schema 2 (not referenced instances)

This schema extracts all instances of chemical compounds.

1 PREFIX wd: <http://www.wikidata.org/entity/>
2 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
3 PREFIX ps: <http://www.wikidata.org/prop/statement/>
4 PREFIX p: <http://www.wikidata.org/prop/>
5 PREFIX pr: <http://www.wikidata.org/prop/reference/>
6 PREFIX prov: <http://www.w3.org/ns/prov#>
7

8

9 start = @<chemical_compound>
10

11 <chemical_compound> {
12 wdt:P31 [wd:Q11173] + ; # is instance of (P31) chemical_compound (Q11173)
13 }

References

[1] S. Aghaei, K. Angele and A. Fensel, Building knowledge subgraphs in question answering over knowledge graphs, in: Lecture Notes in
Computer Science, W. Engineering, T. Di Noia, I.-Y. Ko, M. Schedl and C. Ardito, eds, Springer International Publishing, Cham, 2022,
pp. 237–251. ISBN 978-3-031-09917-5. doi:10.1007/978-3-031-09917-5_16.

[2] S.A.H. Beghaeiraveri, WDumper, 2021, https://github.com/seyedahbr/wdumper.
[3] S.A.H. Beghaeiraveri, Towards automated technologies in the referencing quality of Wikidata, in: Companion Proceedings of the Web

Conference 2022, 2022, https://www2022.thewebconf.org/PaperFiles/8.pdf.

https://doi.org/10.1007/978-3-031-09917-5_16
https://github.com/seyedahbr/wdumper
https://www2022.thewebconf.org/PaperFiles/8.pdf

CORRECTED P
ROOF

26 S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation

[4] S.A.H. Beghaeiraveri, A. Gray and F. McNeill, Reference statistics in Wikidata topical subsets, in: Proceedings of the 2nd Wikidata Work-
shop (Wikidata 2021), CEUR Workshop Proceedings, CEUR, Virtual Conference, Vol. 2982, 2021, ISSN: 1613-0073, https://researchportal.
hw.ac.uk/files/53252708/Reference_Statistics_in_Wikidata_Topical_Subsets_corrected_version.pdf.

[5] S.A.H. Beghaeiraveri, A.J.G. Gray and F.J. McNeill, Experiences of using WDumper to create topical subsets from Wikidata, in: CEUR
Workshop Proceedings, Vols 2873, CEUR-WS, 2021, p. 13, ISSN: 1613–0073, https://researchportal.hw.ac.uk/files/45184682/paper13.pdf.

[6] S.A.H. Beghaeiraveri, J.E. Labra-Gayo and A. Waagmeester, Wikidata Subsetting: Performance and Accuracy Experiment Datasets, Zen-
odo, 2023. doi:10.5281/zenodo.8015611.

[7] S.A.H. Beghaeiraveri, J.E. Labra-Gayo and A. Waagmeester, Wikidata Subsetting: Reference-based Subsetting Experiment Datasets, Zen-
odo, 2023. doi:10.5281/zenodo.8015689.

[8] S. Burgstaller-Muehlbacher, A. Waagmeester, E. Mitraka, J. Turner, T. Putman, J. Leong, C. Naik, P. Pavlidis, L. Schriml, B.M. Good and
A.I. Su, Wikidata as a semantic framework for the Gene Wiki initiative, Database (Oxford) 2016 (2016). doi:10.1093/database/baw015.

[9] H. Chalupsky, P. Szekely, F. Ilievski, D. Garijo and K. Shenoy, Creating and Querying Personalized Versions of Wikidata on a Laptop,
2021, http://arxiv.org/abs/2108.07119.

[10] M. Cutcher, M. Personick and B. Thompson, The Bigdata® RDF graph database, in: Linked Data Management, Chapman and Hall/CRC,
2014, 46 pp. ISBN 978-0-429-10245-5.

[11] D. Diefenbach, M.D. Wilde and S. Alipio, Wikibase as an infrastructure for knowledge graphs: The EU knowledge graph, in: The Semantic
Web – ISWC 2021, A. Hotho, E. Blomqvist, S. Dietze, A. Fokoue, Y. Ding, P. Barnaghi, A. Haller, M. Dragoni and H. Alani, eds, Lecture
Notes in Computer Science, Springer International Publishing, Cham, 2021, pp. 631–647. ISBN 978-3-030-88361-4. doi:10.1007/978-3-
030-88361-4_37.

[12] F. FactGrid, 2022, https://database.factgrid.de/wiki/Main_Page.
[13] J.D. Fernández, M.A. Martínez-Prieto, C. Gutiérrez, A. Polleres and M. Arias, Binary RDF representation for publication and exchange

(HDT), Journal of Web Semantics 19 (2013), 22–41, https://www.sciencedirect.com/science/article/pii/S1570826813000036. doi:10.1016/
j.websem.2013.01.002.

[14] B. Fünfstück, WDumper, 2019, https://github.com/bennofs/wdumper.
[15] D. Henselmann and A. Harth, Constructing demand-driven Wikidata subsets, in: Wikidata@ ISWC, 2021.
[16] F. Ilievski, D. Garijo, H. Chalupsky, N.T. Divvala, Y. Yao, C. Rogers, R. Li, J. Liu, A. Singh and D. Schwabe, KGTK: A toolkit for large

knowledge graph manipulation and analysis, in: International Semantic Web Conference, Springer, 2020, pp. 278–293, https://arxiv.org/
pdf/2006.00088.pdf.

[17] F. Ilievski, P. Szekely and B. Zhang, Cskg: The Commonsense Knowledge Graph, in: European Semantic Web Conference, Springer, 2021,
pp. 680–696.

[18] kg-subsetting, kg-subsetting/paper-wikidata-subsetting-2023, kg-subsetting, 2023, https://github.com/kg-subsetting/paper-wikidata-
subsetting-2023/releases/tag/v2.0.0.

[19] L. Koesten, P. Vougiouklis, E. Simperl and P. Groth, Dataset reuse: toward translating principles to practice, Patterns 1(8) (2020), 100–136,
https://www.sciencedirect.com/science/article/pii/S2666389920301847. doi:10.1016/j.patter.2020.100136.

[20] J.E. Labra-Gayo, Creating Knowledge Graphs Subsets using Shape Expressions, 2021, http://arxiv.org/abs/2110.11709, arXiv:2110.11709
[cs].

[21] J.E. Labra-Gayo, WShEx: A language to describe and validate Wikibase entities, in: Proceedings of the 3rd Wikidata Workshop 2022
Co-Located with the 21st International Semantic Web Conference (ISWC2022), Vols Vol-3262, 2022.

[22] J.E. Labra-Gayo, wdsub, Web Semantics Oviedo, University of Oviedo, 2022, original-date: 2021-07-05T09:27:56Z, https://github.com/
weso/wdsub.

[23] J.E. Labra-Gayo, sparkwdsub, Web Semantics Oviedo, University of Oviedo, 2021, original-date: 2021-08-18T06:29:18Z, https://github.
com/weso/sparkwdsub.

[24] J.E. Labra-Gayo, S.A.H. Beghaeiraveri and A. Waagmeester, Generated Wikidata Subset for Gene Wiki Evolution, Zenodo, 2023, URLs:
Dump 2015: https://zenodo.org/record/7869017, Dump 2016: https://zenodo.org/record/7883958, Dump 2017: https://zenodo.org/record/
7872555, Dump 2018: https://zenodo.org/record/7872054, Dump 2019: https://zenodo.org/record/7871988, Dump 2020: https://zenodo.
org/record/7871627, Dump 2021: https://zenodo.org/record/7870223, Dump 2022, https://zenodo.org/record/7869110.

[25] J.E. Labra-Gayo, S.A.H. Beghaeiraveri and A. Waagmeester, Generated Wikidata Subset for Genes + Taxons, Zenodo, 2023, URLS:
Dump 2015: https://zenodo.org/record/7884057, Dump 2016: https://zenodo.org/record/7884081, Dump 2017: https://zenodo.org/record/
7884116, Dump 2018: https://zenodo.org/record/7884297, Dump 2019: https://zenodo.org/record/7884316, Dump 2020: https://zenodo.
org/record/7884424, Dump 2021: https://zenodo.org/record/7943929#.ZGSKw3bP2Uk, Dump 2022, https://zenodo.org/record/7944035#.
ZGSTOXbP2Uk.

[26] J.E. Labra-Gayo, A.C. González Cavazos, A. Waagmeester, N. Hofmann, S.A.H. Beghaeiraveri, E. Prud’hommeaux, S. Ul-Hasan, E. Wil-
lighagen and A. Ammar, Enhancement and Reusage of Biomedical Knowledge Graph, Subset, Technical Report, 2022. doi:10.37044/osf.
io/n7qku.

[27] J.E. Labra-Gayo, A. González-Hevia, D. Fernández-Álvarez, A. Ammar, D. Brickley, A. Gray, E. Prud’hommeaux, D. Slenter, H. Solbrig,
S.A.H. Beghaeiraveri, B. Fünkfstük, A. Waagmeester, E. Willighagen, L. Ovchinnikova, G. Benjaminsen, R. García-González, L.J. Garcia-
Castro and D. Mietchen, Knowledge graphs and wikidata subsetting, Technical Report, 2021. doi:10.37044/osf.io/wu9et.

[28] J.E. Labra-Gayo, E. Prud’Hommeaux, I. Boneva and D. Kontokostas, Validating RDF Data, Vol. 7, Morgan & Claypool Publishers, 2017,
pp. 1–328.

[29] S. Lampa, E. Willighagen, P. Kohonen, A. King, D. Vrandečić, R. Grafström and O. Spjuth, RDFIO: Extending semantic MediaWiki for
interoperable biomedical data management, Journal of Biomedical Semantics 8(1) (2017), 35. doi:10.1186/s13326-017-0136-y.

https://researchportal.hw.ac.uk/files/53252708/Reference_Statistics_in_Wikidata_Topical_Subsets_corrected_version.pdf
https://researchportal.hw.ac.uk/files/53252708/Reference_Statistics_in_Wikidata_Topical_Subsets_corrected_version.pdf
https://researchportal.hw.ac.uk/files/45184682/paper13.pdf
https://doi.org/10.5281/zenodo.8015611
https://doi.org/10.5281/zenodo.8015689
https://doi.org/10.1093/database/baw015
http://arxiv.org/abs/2108.07119
https://doi.org/10.1007/978-3-030-88361-4_37
https://doi.org/10.1007/978-3-030-88361-4_37
https://database.factgrid.de/wiki/Main_Page
https://www.sciencedirect.com/science/article/pii/S1570826813000036
https://doi.org/10.1016/j.websem.2013.01.002
https://doi.org/10.1016/j.websem.2013.01.002
https://github.com/bennofs/wdumper
https://arxiv.org/pdf/2006.00088.pdf
https://arxiv.org/pdf/2006.00088.pdf
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/releases/tag/v2.0.0
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/releases/tag/v2.0.0
https://www.sciencedirect.com/science/article/pii/S2666389920301847
https://doi.org/10.1016/j.patter.2020.100136
http://arxiv.org/abs/2110.11709
http://arxiv.org/abs/arXiv:2110.11709
https://github.com/weso/wdsub
https://github.com/weso/wdsub
https://github.com/weso/sparkwdsub
https://github.com/weso/sparkwdsub
https://zenodo.org/record/7869017
https://zenodo.org/record/7883958
https://zenodo.org/record/7872555
https://zenodo.org/record/7872555
https://zenodo.org/record/7872054
https://zenodo.org/record/7871988
https://zenodo.org/record/7871627
https://zenodo.org/record/7871627
https://zenodo.org/record/7870223
https://zenodo.org/record/7869110
https://zenodo.org/record/7884057
https://zenodo.org/record/7884081
https://zenodo.org/record/7884116
https://zenodo.org/record/7884116
https://zenodo.org/record/7884297
https://zenodo.org/record/7884316
https://zenodo.org/record/7884424
https://zenodo.org/record/7884424
https://zenodo.org/record/7943929#.ZGSKw3bP2Uk
https://zenodo.org/record/7944035#.ZGSTOXbP2Uk
https://zenodo.org/record/7944035#.ZGSTOXbP2Uk
https://doi.org/10.37044/osf.io/n7qku
https://doi.org/10.37044/osf.io/n7qku
https://doi.org/10.37044/osf.io/wu9et
https://doi.org/10.1186/s13326-017-0136-y

CORRECTED P
ROOF

S.A. Hosseini Beghaeiraveri et al. / Wikidata subsetting: Approaches, tools, and evaluation 27

[30] S. Matsumoto, R. Yamanaka and H. Chiba, Mapping RDF graphs to property graphs, 2018, arXiv preprint arXiv:1812.01801.
[31] maxlath, wikibase-dump-filter, 2022, original-date: 2016-04-27T22:18:04Z, https://github.com/maxlath/wikibase-dump-filter.
[32] N. Mimouni, J.-C. Moissinac and A. Tuan, Domain Specific Knowledge Graph Embedding for Analogical Link Discovery, Advances in

Intelligent Systems (2020).
[33] N. Mimouni, J.-C. Moissinac and A. Vu, Knowledge base completion with analogical inference on context graphs, in: Semapro 2019, 2019.
[34] L. Pintscher, Wikidata EntitySchemas Telegram Group, 2022, Message: https://t.me/joinchat/ZeRz5wPDxpNkZGVk, https://t.me/c/

1540810474/327.
[35] E. Prud’hommeaux, shex.js, shexjs, 2022, original-date: 2015-08-06T07:18:07Z, https://github.com/shexjs/shex.js.
[36] Rhizome, Rhizome Artbase, 2021, https://artbase.rhizome.org/wiki/Main_Page.
[37] M.A. Rodriguez, The Gremlin graph traversal machine and language (invited talk), in: Proceedings of the 15th Symposium on Database

Programming Languages, DBPL 2015, Association for Computing Machinery, New York, NY, USA, 2015, pp. 1–10. ISBN 978-1-4503-
3902-5. doi:10.1145/2815072.2815073.

[38] K. Shenoy, F. Ilievski, D. Garijo, D. Schwabe and P. Szekely, A study of the quality of Wikidata, in: Journal of Web Semantics, Vol. 72,
Elsevier, 2022, p. 100679.

[39] H. Solbrig, Python implementation of ShEx 2.0, 2022, original-date: 2018-01-02T17:56:53Z, https://github.com/hsolbrig/PyShEx.
[40] USC-ISI, KGTK: Knowledge Graph Toolkit, USC ISI I2, 2022, original-date: 2020-01-18T03:34:48Z, https://github.com/usc-isi-i2/kgtk.
[41] D. Vrandečić and M. Krötzsch, Wikidata: A free collaborative knowledgebase, Communications of the ACM 57(10) (2014), 78–85. doi:10.

1145/2629489.
[42] A. Waagmeester et al., Wikidata:WikiProject Schemas/Subsetting – Wikidata, 2019, https://www.wikidata.org/wiki/Wikidata:WikiProject_

Schemas/Subsetting – accessed 31 December 2020.
[43] A. Waagmeester, G. Stupp, S. Burgstaller-Muehlbacher et al., Wikidata as a knowledge graph for the life sciences, eLife 9 (2020), e52614.

doi:10.7554/eLife.52614.
[44] Wikimedia, Wikidata:Database download, 2022, https://www.wikidata.org/wiki/Wikidata:Database_download.
[45] Wikimedia, Wikidata json.gz Full Dump (3 Jan 2022), 2022, https://academictorrents.com/details/

229cfeb2331ad43d4706efd435f6d78f40a3c438.
[46] Wikimedia, Wikidata:Database download, 2022, https://dumps.wikimedia.org/wikidatawiki/entities/.
[47] Wikimedia, Wikidata:WikiProject Gene Wiki, 2020, https://www.wikidata.org/wiki/Wikidata:WikiProject_Gene_Wiki.
[48] Wikimedia, Wikibase/Indexing/RDF Dump Format – MediaWiki, 2022, https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_

Format.
[49] M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg et al., The FAIR guiding principles for scientific data management and stewardship,

Scientific Data 3(1) (2016), 160018. doi:10.1038/sdata.2016.18.

http://arxiv.org/abs/arXiv:1812.01801
https://github.com/maxlath/wikibase-dump-filter
https://t.me/joinchat/ZeRz5wPDxpNkZGVk
https://t.me/c/1540810474/327
https://t.me/c/1540810474/327
https://github.com/shexjs/shex.js
https://artbase.rhizome.org/wiki/Main_Page
https://doi.org/10.1145/2815072.2815073
https://github.com/hsolbrig/PyShEx
https://github.com/usc-isi-i2/kgtk
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas/Subsetting
https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas/Subsetting
https://doi.org/10.7554/eLife.52614
https://www.wikidata.org/wiki/Wikidata:Database_download
https://academictorrents.com/details/229cfeb2331ad43d4706efd435f6d78f40a3c438
https://academictorrents.com/details/229cfeb2331ad43d4706efd435f6d78f40a3c438
https://dumps.wikimedia.org/wikidatawiki/entities/
https://www.wikidata.org/wiki/Wikidata:WikiProject_Gene_Wiki
https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format
https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format
https://doi.org/10.1038/sdata.2016.18

	Introduction
	What is a subset?
	The significance of subsets
	Objectives and contribution

	Wikidata RDF model
	Core format
	Underloying software stack: Wikibase and Blazegraph
	Metadata rendering reification

	Subsetting state of the art
	General purpose subsetting approaches
	Practical tools

	Performance and accuracy evaluation
	Experimental methodology
	Input dump
	Subsetting filters (performance test)
	Subsets validation (accuracy test)
	Output format

	Experimental setup
	Host machine
	Software versions
	Experimental run

	Performance test results
	Accuracy test results
	Discussion

	Flexibility evaluation
	Gene wiki evolution
	Subsetting on labels and comments: Genes + taxons
	Subsetting on references: Referenced chemical compounds

	Conclusions
	Acknowledgements
	Appendix A. Gene wiki ShEx
	Appendix B. Wikidata dumps dates
	Appendix C. Genes + taxons labeling and commenting ShEx
	Appendix D. Referenced chemicals ShExes
	Schema 1 (referenced instances)
	Schema 2 (not referenced instances)

	References

