
Semantic Web 14 (2023) 1121–1165 1121
DOI 10.3233/SW-233438
IOS Press

Optimizing SPARQL queries over
decentralized knowledge graphs
Christian Aebeloe a,*, Gabriela Montoya a and Katja Hose a,b

a Department of Computer Science, Aalborg University, Selma Lagerlöfs Vej 300, DK-9220 Aalborg Ø, Denmark
E-mails: caebel@cs.aau.dk, gmontoya@cs.aau.dk, khose@cs.aau.dk
b Institute of Logic and Computation, TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria
E-mail: katja.hose@tuwien.ac.at

Editor: Aidan Hogan, Universidad de Chile, Chile
Solicited reviews: Olaf Hartig, Linköping University, Sweden; Antonis Troumpoukis, University of Athens, Greece; one anonymous reviewer

Abstract. While the Web of Data in principle offers access to a wide range of interlinked data, the architecture of the Semantic
Web today relies mostly on the data providers to maintain access to their data through SPARQL endpoints. Several studies,
however, have shown that such endpoints often experience downtime, meaning that the data they maintain becomes inaccessible.
While decentralized systems based on Peer-to-Peer (P2P) technology have previously shown to increase the availability of
knowledge graphs, even when a large proportion of the nodes fail, processing queries in such a setup can be an expensive task
since data necessary to answer a single query might be distributed over multiple nodes. In this paper, we therefore propose an
approach to optimizing SPARQL queries over decentralized knowledge graphs, called LOTHBROK. While there are potentially
many aspects to consider when optimizing such queries, we focus on three aspects: cardinality estimation, locality awareness, and
data fragmentation. We empirically show that LOTHBROK is able to achieve significantly faster query processing performance
compared to the state of the art when processing challenging queries as well as when the network is under high load.

Keywords: Peer-to-Peer, knowledge graphs, decentralization, query optimization, cardinality estimation, data locality, SPARQL,
RDF

1. Introduction

Due to the popularity of decentralized knowledge graphs on the Web, more and increasingly large knowledge
graphs encoded in RDF are becoming available [37]. Furthermore, RDF knowledge graphs made available today
are becoming exceedingly large. For instance, Wikidata [70] and Bio2RDF [22] contain more than 14 billion triples
each. As a result, data providers experience an increasing burden of maintaining access to the datasets; and without
any monetary incentives to do so, datasets often end up becoming unavailable [4,12,67] and outdated [6].

In recent years, several decentralized systems [3,4,6,13,45,68] have been proposed to alleviate the aforemen-
tioned burden from the data providers by reducing the computational load required to keep the data available, albeit
using different methods to do so. For instance, Linked Data Fragments (LDF)-based approaches [3,13,14,34,68]
reduce the computational load on the server by distributing some of the query processing effort to the client, en-
suring that the server only processes requests with low time complexity. On the other hand, Peer-to-Peer (P2P)

*Corresponding author. E-mail: caebel@cs.aau.dk.

1570-0844 © 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:caebel@cs.aau.dk
mailto:gmontoya@cs.aau.dk
mailto:khose@cs.aau.dk
mailto:katja.hose@tuwien.ac.at
mailto:caebel@cs.aau.dk
https://creativecommons.org/licenses/by/4.0/

1122 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

systems [4,6,45] remove the centralized point of failure that a server represents and replicate the data across several
nodes in a decentralized fashion, ensuring that even if the uploading node fails, the data is still accessible. For in-
stance, RDFPeers [17] uses a structured overlay over a P2P network that relies on Dynamic Hash Tables (DHTs) to
determine where to replicate certain data. However, in situations where nodes frequently leave or join the network
(i.e., churn), and data is often uploaded to the network, nodes have to go through a costly adjustment process to
update the overlay and redistribute the data. Instead, systems like PIQNIC [4] and COLCHAIN [6] use unstructured
P2P systems as foundation, where there is no global control over where data is replicated, making the network more
stable under churn.

COLCHAIN builds upon PIQNIC and divides the entire network into communities of nodes that not only replicate
the same data, but also collaborate on keeping certain data (fragments) up to date. This is done by using blockchain
technology [27,54,65,73] where chains of updates maintain the history of changes to the data fragments. By linking
such update chains to the data fragments in a community, COLCHAIN allows community participants to collaborate
on keeping the data up-to-date while using consensus to make malicious updates less likely and allowing users
to roll-back updates to an earlier version on request. Furthermore, the decentralized nature of COLCHAIN also
increases the availability of the uploaded data by replicating the data on nodes within the community.

Nevertheless, while PIQNIC and COLCHAIN already use decentralized indexes [5] to determine where data is
located during query time, subgraphs needed to answer a query are usually scattered across multiple nodes. Fur-
thermore, the indexes provide limited information that prevents the nodes from considering locality and accurately
estimating join cardinalities when optimizing queries. As a result, such systems often experience an unnecessarily
large amount of intermediate results when processing a query. This problem is exacerbated by the decentralized
nature of the systems, since the intermediate results have to be transferred between nodes, causing a significant
communication overhead.

While there are potentially many aspects to consider when optimizing queries in a decentralized setup, we will
focus on three such aspects: cardinality estimation, locality awareness, and data fragmentation. Suboptimal so-
lutions to any of these three aspects can lead to an increased communication overhead and lower performance.
For instance, while fragmenting large knowledge graphs into smaller fragments ensures that nodes do not have to
replicate entire knowledge graphs, using a fragmentation technique that spreads out the data relevant to a single
(sub)query across several fragments can increase the communication overhead since nodes might have to send an
excessive number of requests to obtain all relevant data to answer a particular query [7,8,24,39]. On the other hand,
inaccurate cardinality estimations can lead to a suboptimal join strategy that increases the amount of intermediate
results and therefore runtime [52,55]. And while several approaches have proposed reasonably accurate cardinality
estimation techniques [52,55,57] over knowledge graphs, and for federated engines in particular [30,38,52,66], such
approaches cannot easily be transferred to a decentralized setup since nodes in a decentralized setup lack a global
overview of the network and the data is scattered across multiple nodes. Finally, considering locality of the data
when processing queries can help ensure that larger subqueries are delegated to nodes that can process them without
communicating with other nodes, lowering the data transfer overall.

Nevertheless, while an optimization approach that maximizes the degree to which entire queries can be processed
by a single node could decrease the communication overhead, a study [7] found that processing entire queries on
one node can actually decrease the overall performance when the network is under heavy load, and that it is equally
important to balance out the query load between nodes. As such, there is a need for a more holistic approach to query
optimization that is able to delegate the processing of subqueries to other nodes in the network, thus reducing the
communication overhead to the extent possible. For instance, query optimization techniques that are based on star-
shaped subqueries have previously been shown to increase performance by at least an order of magnitude [3,13,14,
69]. This, and the fact that conjunctive subqueries are relatively efficient to process [58], means that decomposing
and processing queries based on star-shaped subqueries can significantly reduce the communication overhead in
decentralized systems.

In this paper, we therefore extend our work on PIQNIC [4] and COLCHAIN [6] in three aspects that work together
to reduce the communication overhead when processing SPARQL queries, and in doing so, improve query process-
ing performance in an approach that we call LOTHBROK. LOTHBROK adapts Characteristic Sets [3,13,14,55] to
fragment data in decentralized P2P systems. Furthermore, LOTHBROK builds upon Prefix-Partitioned Bloom Filters
(PPBFs) [5] and proposes a new indexing scheme called Semantically Partitioned Bloom Filters (SPBFs) to obtain

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1123

Fig. 1. Overview flow diagram of the contributions of LOTHBROK.

more accurate cardinality estimations. Lastly, LOTHBROK also introduces a locality-aware query optimization strat-
egy that takes advantage of the SPBF indexes and is able to delegate the processing of (sub)queries to neighboring
nodes in the network holding relevant data.

Figure 1 shows a high-level overview of the contributions of LOTHBROK, following the approach described
above. First, knowledge graphs are fragmented using the Characteristic Set fragmentation, and indexed using the
SPBF indexes. The query optimizer uses the information available in the SPBF indexes to build a query execution
plan in consideration of data locality. To obtain the final results for a given query, the execution plan is finally
executed over the network.

We evaluate LOTHBROK thoroughly using LargeRDFBench [61], a benchmark suite for federated RDF systems
that comprises 13 datasets with over a billion triples and includes 40 queries of varying complexity and sizes of
intermediate results. Furthermore, we evaluate LOTHBROK using synthetic data and queries from WatDiv [9] to
test the scalability of LOTHBROK under load. Thus, in this paper, we focus on the query optimization problem
for distributed knowledge graphs. Generalizing the approaches presented in the paper to other types of distributed
graphs is an interesting topic for future work. Futhermore, the presentation of our contributions focuses on static
knowledge graphs, however, updates can be managed by the underlying P2P, e.g., as done by COLCHAIN [6]. In
summary, we make the following contributions:

– A data fragmentation technique that builds on Characteristic Sets [55]
– SPBF indexes adapted to the characteristic set fragmentation technique
– A cardinality estimation approach over decentralized RDF fragments using the SPBF indexes to provide more

accurate cardinality estimations
– A locality-aware query optimization algorithm that uses SPBF indexes to delegate subqueries to neighboring

nodes and reduce the communication overhead
– A thorough experimental evaluation of the impact of the presented techniques on query processing performance

using real-world data from a well-known benchmark suite, and large-scale synthetic datasets

The paper is structured as follows: Section 2 discusses related work while Section 3 describes background infor-
mation. Then, Section 4 presents LOTHBROK, Section 5 details how LOTHBROK optimizes queries, and Section 6
describes the query execution approach, while Section 7 presents our experimental evaluation. Lastly, Section 8
concludes the paper with an outlook to future work.

2. Related work

The availability problem has prompted significant amount of research in the areas of decentralized query process-
ing and decentralized architectures for knowledge graphs. In this section, we therefore discuss existing approaches
related to LOTHBROK; client-server architectures, federated systems, and P2P systems.

2.1. Client-server architectures

SPARQL endpoints are Web services providing an HTTP interface that accepts SPARQL queries and remain
some of the most popular interfaces for querying RDF data on the Web. However, studies [12,67] have found that
such endpoints are often unavailable and experience downtime.

1124 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

Linked Data Fragment (LDF) interfaces, such as Triple Pattern Fragments (TPF) [68], attempt to increase the
availability of the server by shifting some of the query processing load towards the client while the server only
processes requests with low time complexity. For instance, TPF servers only process individual triple patterns while
the TPF clients process joins and other expensive operations. Today, several TPF clients exist that rely on either a
greedy algorithm [68], a metadata based strategy [36], or star-shaped query decomposition combined with adaptive
query processing techniques [1] to determine the join order of the triple patterns in a query. However, while in
all these approaches the server can handle more concurrent requests in comparison to SPARQL endpoints without
becoming unresponsive, TPF naturally incurs a large network overhead when processing queries since intermediate
bindings from previously evaluated triple patterns are transferred along with subsequently evaluated triple patterns
to limit the amount of intermediate results, one by one. Furthermore, studies found that the performance of TPF is
heavily affected by the type of triple pattern (i.e., the position of variables in the triple pattern) [34] and the shape
of the query [50,51].

Several different systems have since been proposed to lower the network overhead. For instance, Bindings-
Restricted TPF (brTPF) [32] bulks bindings from previously evaluated triple patterns such that multiple bindings
can be attached to a single request. While this reduces the number of requests made for a triple pattern, it still incurs
a somewhat large data transfer overhead, since each request still evaluates a single triple pattern. hybridSE [49]
combines a brTPF server with a SPARQL endpoint and takes advantage of the strengths of each approach; sub-
queries with large numbers of intermediate results are sent to the SPARQL endpoint to overcome the limitations
posed by LDF systems. However, hybridSE often answers complex queries using the SPARQL endpoint and is thus
vulnerable to server failure.

To further limit the network overhead, Star Pattern Fragments (SPF) [3] clients send conjunctive subqueries in the
shape of stars (star patterns) to the server and process more complex patterns locally on the client. Such conjunctive
subqueries can be processed relatively efficiently by the server [58], which results in the transfer of significantly
fewer intermediate results than in systems like TPF and brTPF. On the other hand, Smart-KG [14] ships predicate-
family partitions (i.e., characteristic sets) to the client and processes the entire query locally; however, triple patterns
with infrequent predicate values (according to a certain threshold) are sent to and evaluated by the server. While this
takes advantage of the distributed resources that the clients possess, Smart-KG often ends up transferring excessive
amounts of data unnecessarily since entire partitions of a dataset are transferred regardless of any bindings from
previously evaluated star patterns. WiseKG [13] combines SPF and Smart-KG and uses a cost model to determine
which strategy (SPF or Smart-KG) is the most cost-effective to process a given star-shaped subquery. Like SPF
and Smart-KG, WiseKG processes more complex patterns on the client. Nevertheless, all the aforementioned LDF
approaches rely on a centralized server or a fixed set of servers that are subject to failure.

Lastly, different from LDF approaches, SaGe [48] decreases the load on the server by suspending queries after
a fixed time quantum to prevent long-running queries from exhausting server resources; the queries can then be
restarted by making a new request to the server. However, SaGe processes entire, and possibly complex, queries on
the server, and as stated above, such servers are subject to failure.

2.2. Federated systems

Federated systems enable answering queries over data spread out across multiple independent SPARQL end-
points [2,18,26,40,64] or LDF servers [33] offering access to different datasets. While such approaches spread out
query processing over several servers, lowering the load on each individual server, they sometimes generate subop-
timal query execution plans that increase the number of intermediate results and the load on individual servers [43].
As such, several approaches [30,38,52,53,62,66] have attempted to optimize federated queries in different ways. For
instance, [64] builds an index over time by remembering which endpoints in the federation can provide answers to
which triple patterns. Furthermore, [53] decomposes queries into subqueries that can be evaluated by a single end-
point. While [53] uses a similar query decomposition strategy as LOTHBROK, they target federations over SPARQL
endpoints, and as previously mentioned, such endpoints suffer from availability issues. On the other hand, [52,62]
estimate the selectivity of joins to produce more efficient join plans. For instance, [52] uses characteristic sets [55]
and pairs [28] to index the data in the federation and combines this with Dynamic Programming (DP) to optimize
query execution plans. Furthermore, [33] proposes an interface for processing federated queries over heterogeneous

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1125

LDF interfaces. To achieve this, the query optimizer is adapted to the characteristics of the different interfaces as
well as the locality of the data, i.e., knowledge of which nodes hold which data. Inspired by these approaches, LOTH-
BROK fragments knowledge graphs based on characteristic sets and uses a similar cardinality estimation technique
to optimize join plans in consideration of data locality in the network.

2.3. Peer-to-peer systems

Peer-to-Peer (P2P) systems [4,6,17,24,44,45,47] tackle the availability issue from a different perspective: by
removing the central point of failure completely and replicating the data across multiple nodes in a P2P network,
they can ensure the data remains available even if the original node that uploaded the data fails. As such, they consist
of a set of nodes (often resource limited) that act both as servers and clients, maintaining a limited local datastore.
The structure of the network, i.e., connections between the nodes, as well as data placement (data allocation), varies
from system to system. For instance, some systems [17,44,45] enforce data placement by applying a structured
overlay over the network, such as Dynamic Hash Tables (DHTs) [46]. On the other hand, PIQNIC [4] imposes no
structure on top the network; nodes are connected randomly to a set of neighbors that are shuffled periodically with
another node’s neighbors to increase the degree of joinability between the fragments of neighboring nodes. Lastly,
COLCHAIN [6] extends PIQNIC and divides the entire network into smaller communities of nodes that collaborate
on keeping certain data available and up-to-date. By applying community-based ledgers of updates and relying on
a consensus protocol within a community, COLCHAIN lets users actively participate in keeping the data up-to-date.

Each P2P system has different ways of processing queries. For instance, due to the lack of global knowledge over
the network, basic P2P systems have to flood the network with requests for a given horizon to increase the likely-
hood of receiving complete query results. To counteract this, distributed indexes [5,20,66] like Prefix-Partitioned
Bloom Filter (PPBF) indexes [5] determine which nodes may include relevant data for a given query and thus allow
the system to prune nodes from consideration during query optimization. Yet, the aforementioned systems still ex-
perience a significant overhead partly caused by inaccurate cardinality estimations, query optimization that does not
consider the locality of data, as well as data fragmentation that splits up closely related data. For instance, PIQNIC

and COLCHAIN both use a predicate-based fragmentation strategy that creates a fragment for each predicate. This,
together with the replication and allocation strategy used, means that data relevant to a single query is distributed
over a significant number of fragments and nodes.

However, while an approach that maximizes the degree to which entire queries can be processed by one node
can lower the communication overhead, distributing some of the query processing load across multiple nodes is
equally important when optimizing queries in a decentralized context [7] to avoid overloading individual nodes. As
such, LOTHBROK introduces a query optimization technique that distributes the processing of subqueries to nodes in
the network based on data locality and fragment compatibility, while the characteristic set fragmentation technique
allows entire star-shaped subqueries to be processed on the same node.

3. Background

A commonly used format for storing semantic data is the Resource Description Framework (RDF) [16]. RDF
structures data as triples, defined as follows.

Definition 1 (RDF Triple). Let I , B, and L be the disjoint sets of IRIs, blank nodes, and literals. An RDF triple is
a triple t of the form t = (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L), where s, p, and o are called subject, predicate, and
object.

Given the definition of an RDF triple, a knowledge graph G is a finite set of RDF triples. The most popular
language to query knowledge graphs is SPARQL [19]. A SPARQL query consists of one or more triple patterns. A
triple pattern t is a triple of the form t = (s, p, o) ∈ (I ∪ B ∪ V) × (I ∪ V) × (I ∪ B ∪ L ∪ V) where V is the
set of all variables. A Basic Graph Pattern (BGP) is a set of triple patterns. Without loss of generality, we focus our
discussion in the main part of this paper on BGPs and describe in Section 5 how our approach can support other

1126 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

operators, such as UNION and OPTIONAL; our experimental evaluation in Section 7 includes queries with a variety
of SPARQL operators including UNION and OPTIONAL.

A complex BGP P can be decomposed into a set of star patterns. A star pattern P ′ is a set of triple pat-
terns that share the same subject, i.e., ∀t1 = (s1, p1, o1), t2 = (s2, p2, o2) such that t1, t2 ∈ P ′, it is the case
that s1 = s2. Note that while star patterns can be defined as both subject-based and object-based star patterns,
for ease of presentation, we focus on subject-based star patterns only since subject-subject joins are much more
common in real query loads [63]; LOTHBROK can trivially be adapted to object-based star patterns by using the
same principles presented in this paper for object-object joins rather than subject-subject joins. Given a BGP
P = {(s1, p1, o1), . . . , (sn, pn, on)}, the set of subjects in P , denoted SP , is the set of distinct subject values
across the triples in P , i.e., SP = {s | ∃p, o : (s, p, o) ∈ P }.
Definition 2 (Star Decomposition [3]). Given a BGP P = {t1, . . . , tn} with subjects SP = {s1, . . . , sm}, the star
decomposition of P , S(P) = {Ps(P) | s ∈ SP }, is a set of star patterns Ps(P) for each s ∈ SP , such that
P = ⋃

s∈SP
Ps(P) where Ps(P) = {(s′, p′, o′) | (s′, p′, o′) ∈ P ∧ s′ = s}.

The answer to a BGP P over a knowledge graph G is a set of solution mappings, defined as follows.

Definition 3 (Solution mapping [6,68]). Given the sets I , B, L, V from above, a solution mapping μ is a partial
mapping μ : V �→ (I ∪ B ∪ L).

Given a BGP P and a solution mapping μ, the notation μ[P] denotes the triple (patterns) obtained by replacing
variables in P according to the bindings in μ. Furthermore, dom(μ) returns the domain of μ, i.e., the set of variables
that are bound in μ, and vars(P) returns the variables in P . Given a knowledge graph G and BGP P , [[P]]G
denotes the set of solution mappings that constitutes the answer to P over G, i.e., ∀μ ∈ [[P]]G , μ[P] ⊆ G and
dom(μ) = vars(P). [[P]]G contains all possible solution mappings that satisfy the previous conditions. A set of
triples T is said to be matching a BGP P over a knowledge graph G, denoted TG[P], iff ∃μ ∈ [[P]]G where
T = μ[P].

Since updates to the data are managed by the underlying P2P layer, solution mappings (Definition 3) are defined
independently from the updating process. That is, in the general case, solution mappings are obtained on query
time over the latest version of the knowledge graphs. To expand our work to support dynamic datasets, we could
make use of the underlying P2P layer; if a dataset changes, the node recomputes the index and broadcasts the update
throughout the network. This is what systems like COLCHAIN [6] do, and in our experimental evaluation (Section 7)
we have already implemented LOTHBROK on top of COLCHAIN. Furthermore, conflicting or inconsistent datasets in
a LOTHBROK network could lead to unexpected or erroneous results [72] when querying. However, the focus of this
paper is on query optimization techniques and considering the quality of the datasets in LOTHBROK is outside its
scope. Nevertheless, in the future, we could expand LOTHBROK with existing knowledge graph quality management
techniques (e.g., [42,71,72]) to mitigate this problem. Thus, we refer to related work for more details on handling
dynamic [6] or inconsistent [42,71,72] datasets.

3.1. Peer-to-peer

In its simplest form, an unstructured P2P system consists of a set of interconnected nodes that all maintain a local
datastore managing a set of (partial) knowledge graphs, where each node maintains a local view over the network,
i.e., a set of neighboring nodes and nodes reachable from those neighbors within a certain number of steps (also
known as hops), called the horizon of a node.

Formally, we define a P2P network N as a set of interconnected nodes N = {n1, . . . , nn} where each node
maintains a local datastore and a local view over the network. The data uploaded to a node in N is replicated
throughout the network. Furthermore, in line with previous work [5,6], each node maintains a distributed index
describing the knowledge graphs reachable within its horizon. A node n is defined as follows:

Definition 4 (Node [4,5]). A node n is a triple n = (G, I,N) where:

– G is the set of knowledge graphs in n’s local datastore
– I is n’s distributed index

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1127

Fig. 2. (a) Example of an unstructured P2P network N = {n1, . . . , n5} and (b) architecture of a single node n5 that indexes data within a horizon
of 2 nodes.

– N is a set of neighboring nodes

While maintaining the structure of the network is important for P2P systems, it is not relevant for the data and
query processing techniques that this paper is focusing on. As such, we do not go into detail on network topology,
data replication and allocation, and periodic shuffles. Instead, we refer the interested reader to related work such
as [4,6] for more details. In the following, we define data fragmentation and introduce a running example.

In line with previous work [4,6], and to avoid having to replicate large knowledge graphs throughout the network,
LOTHBROK divides knowledge graphs into smaller disjoint fragments, i.e., partial knowledge graphs, which can be
replicated more easily. Fragments can be obtained using a fragmentation function. A fragmentation function is a
function that, given a knowledge graph, returns a set of disjoint fragments, and is formally defined as follows:

Definition 5 (Fragmentation Function [4,6]). A fragmentation function F is a function that maps a knowledge graph
G to a set of disjoint knowledge graph fragments, i.e., F : G �→ 2G such that

⋃
f ∈F(G) f = G, and ∀f1, f2 ∈ F(G),

f1 ∩ f2 = ∅.

Different fragmentation functions can have different granularities. For instance, the most coarse-granular frag-
mentation function is FCG(G) = {G}, i.e., the fragmentation function does not split up the original knowl-
edge graph. COLCHAIN [6] as well as PIQNIC [4] use a predicate-based fragmentation function for G, i.e.,
FP (G) = {{(s′, p′, o′) | (s′, p′, o′) ∈ G ∧ p′ = p} | ∃s, o : (s, p, o) ∈ G}, which creates a fragment for each
unique predicate in G. LOTHBROK uses a fragmentation function based on characteristic sets [55] (i.e., predicate
families) that is detailed in Section 4.2.

The fragments created by the fragmentation function are replicated and allocated at multiple nodes in the network
to ensure availability in case the original provider of the knowledge graph becomes unavailable and to enable
load balancing. The replication and allocation factor are parameters of the underlying network; for instance, in
PIQNIC [4], fragments are replicated and allocated across the node’s neighbors, and nodes index all fragments
available within a certain horizon. On the other hand, COLCHAIN [6] replicates and allocates fragments at nodes that
participate within the same communities. Since this paper focuses on data fragmentation and query optimization,
we omit details on data replication and allocation and refer the interested reader to related work [4,6] for details.

Consider, as a running example, the unstructured P2P network in Fig. 2(a) consisting of five nodes (N =
{n1, . . . , n5}) that replicate a total of five fragments (f1, . . . , f5). In this example, each node maintains a set of
two neighbors and each fragment is replicated across two nodes. For instance, node n5 has {n2, n4} as its set of
neighbors, and replicates the fragments {f2, f4, f5} in its local datastore. While the running example is based on
an unstructured network, such as the one presented in [4], LOTHBROK could be adapted to more structured setups,
such as the one presented in [6].

3.2. Distributed indexes

To speed up query processing performance, systems like PIQNIC [4] and COLCHAIN [6] use distributed in-
dexes [5,20] to efficiently identify nodes holding relevant data for a given SPARQL query. The indexes capture

1128 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

information about the fragments stored locally at the node itself as well as information about fragments that can be
accessed via its neighbors.

A distributed index, as defined in [5,6], is a structure that maps the triple patterns in a query to nodes that hold
relevant fragments to those triple patterns. In line with [5,6], we thus define distributed indexes as follows.

Definition 6 (Distributed Index [5,6]). Let N be a P2P network, n be a node such that n ∈ N , T be the set of all
possible triple patterns, and F be the set of fragments that n has access to within its horizon. A distributed index on
n is a tuple In = (ν, η) with ν : T �→ 2F and η : F �→ 2N . For a triple pattern t , ν(t) returns the set of fragments
in F that t matches. For a fragment f ∈ F , η(f) returns the nodes within n’s horizon on which f is located.

Given a node n, n’s distributed index is denoted In. Given the definition of a distributed index, we define a node
mapping as a mapping from a triple pattern t in a BGP P to a set of nodes that contain relevant fragments to t , as
follows:

Definition 7 (Node Mapping [5,6]). For any BPG P and distributed index I , there exists a function match(P, I)

that returns a node mapping M : P �→ 2N , such that ∀t ∈ P , M(t) = ⋃
f ∈ν(t) η(f), i.e., M(t) returns the indexed

nodes that have fragments holding data matching the triple t .

To build the index for a node’s local view over the network, nodes share partial indexes, i.e., partial mappings,
for the fragments that they have access to, called index slices. An index slice for a fragment is a partial mapping
from triple patterns to the fragments that contain relevant triples to the triple patterns, as well as a mapping from the
fragment to the nodes that replicate it, and is defined as follows:

Definition 8 (Index Slice [5,6]). Let f be a fragment. The index slice of f , sf , is a tuple sf = (ν′, η′), where ν′(t)
returns {f } if there exists a triple in f that matches t , or ∅ otherwise, and η′(f) returns the set of all nodes that
contain f in their local datastore. The function s(f) returns the index slice describing f , i.e., s(f) = sf .

Index slices for the fragments that a node has access to are combined into a distributed index for that particular
node using the ⊕ operator.1 The distributed index is then used to check the relevancy and overlap of fragments
during query time to optimize the query. Given a set of slices S, the index obtained by combining the slices in S,
I (S), can be computed using the formula in Equation (1) [5,6].

I (S) =
(⊕

s∈S

s.ν′,
⊕
s∈S

s.η′
)

(1)

While the definition of distributed indexes allows for several different types of indexes, the index slices used in
PIQNIC [4] and COLCHAIN [6] correspond to Prefix-Partitioned Bloom Filters (PPBFs) [5], which extend regular
Bloom filters [15]. Given a set S of IRIs, a Bloom filter B for S is a tuple B = (b̂, H) where b̂ is a bitvector of size
m and H is a set of k hash functions [5]. Each hash function in H maps the elements from S (i.e., IRIs) to a position
in b̂; these positions are thus set to 1 whereas the positions not mapped to by a function in H are 0. In other words,
index slices in [5] represent the set of entities in a fragment as bitvectors following the approach described above.
Looking up whether an element e is in S using the Bloom filter for S is done by hashing e using the hash functions
in H and checking the value of each position in b̂. If at least one of those positions is set to 0, it is certain that e /∈ S .
However, if all corresponding bits are set to 1, it is not certain that e ∈ S , since it could be a false positive caused by
hash collisions, i.e., different values are mapped to the same positions in the underlying bitvector. In this case, we
say that e may be in S , denoted e

∃S .
To check the compatibility of two fragments relevant for conjunctive triple patterns, we check whether or not they

produce any join results. To do this, we could check whether or not the intersection of the bitvectors describing the
subjects and objects of the fragments is empty (i.e., if they have some IRI in common). Given two Bloom filters
B1 = (b̂1,H) and B2 = (b̂2,H), the intersection of B1 and B2 is approximated by the logic AND operation between
b̂1 and b̂2, B1 ∩ B2 ≈ b̂1&b̂2.

1⊕ is defined in [5,6] as (f ⊕ g)(x) = f (x) ∪ g(x) if f and g are defined at x; (f ⊕ g)(x) = f (x) if f is defined at x and g is not defined at
x; (f ⊕ g)(x) = g(x) if g is defined at x and f is not defined at x; (f ⊕ g)(x) = ∅ if neither f nor g is defined at x.

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1129

Fig. 3. Example of (a) inserting an IRI into a PPBF BP
1 and (b) intersection between two PPBFs BP

1 ∩ BP
2 [5].

To avoid exceedingly large bitvectors, PPBFs partition the bitvector based on the prefix of the IRIs. The prefix
of an IRI u corresponds to the IRI of the namespace of u.2 The name of an IRI is then the IRI minus the prefix.
For instance, the IRI http://dbpedia.org/resource/Denmark has the prefix (i.e., namespace IRI) http://dbpedia.org/
resource/ and the name Denmark. A PPBF is formally defined in [5] as follows.

Definition 9 (Prefix-Partitioned Bloom Filter [5]). A PPBF BP is a 4-tuple BP = (P, B̂, θ,H) where

– P a set of prefixes
– B̂ is a set of bitvectors such that ∀b̂1, b̂2 ∈ B̂ : |b̂1| = |b̂2|
– θ : P → B̂ is a prefix-mapping function such that ∀p1, p2 ∈ P where p1 �= p2, θ(p1) �= θ(p2).
– H is a set of hash functions

For each pi ∈ P , Bi = (θ(pi),H) is the Bloom Filter that encodes the name of the IRIs with prefix pi and is called
a partition of BP .

Consider the example where the IRI dbr:Copenhagen is inserted into a PPBF, visualized in Fig. 3(a). In this
case, the IRI is matched to the prefix dbr, and the name Copenhagen is hashed using each hash function in the
PPBF; each corresponding bit in the bitvector for the dbr prefix is thus set to 1.

Like for regular Bloom filters, we say that an IRI i with prefix p and name n may be in a PPBF BP , denoted
i

∃BP , if and only if all positions given by h(n) such that h ∈ H are set to 1 in the bitvector θ(p). PPBFs are used
by PIQNIC and COLCHAIN to prune non-overlapping fragments of joining triple patterns from the query execution
plan (i.e., the match(P, I) function in Definition 7). This is done by finding the intersection of the two PPBFs to
check whether or not they overlap; if the intersection of the two PPBFs is empty, the corresponding fragments do
not produce any join results. The PPBF intersection is defined in [5] as follows.

Definition 10 (Prefix-Partitioned Bloom Filter Intersection [5]). The intersection of two PPBFs with the same set
of hash functions H and bitvectors of the same size, denoted BP

1 ∩ BP
2 , is BP

1 ∩ BP
2 = (P∩, B̂∩, θ∩,H), where

P∩ = BP
1 .P ∩ BP

2 .P , B̂∩ = {BP
1 .θ(p)&BP

2 .θ(p) | p ∈ P∩}, and θ∩ : P∩ → B̂∩.

Consider the example intersection visualized in Fig. 3(b). As described above, the intersection of two PPBFs is the
bitwise AND operation on the bitvectors for the prefixes that BP

1 and BP
2 have in common. In this example, BP

2 does
not have a bitvector with the prefix dbp, thus this partition is omitted from the intersection. Similarly, the bitvector
partition with the dbo prefix is omitted. Since both PPBFs have bitvectors for the dbr prefix, the resulting PPBF
has one partition for the dbr prefix that is the result of the bitwise AND operation between the two corresponding
partitions in BP

1 and BP
2 .

Furthermore, given a partitioned bitvector B and b̂ ∈ B.B̂, let t (b̂) be a function that returns the number of bits
in b̂ that are set. Then, the estimated cardinality of a partitioned bitvector B, denoted cardP (B), is the sum of the
estimated cardinality for all bitvector partitions in B.B̂ [5,56] and is formally defined as follows:

cardP (B) =
∑

b̂∈B.B̂

ln(1 − t (b̂)/|b̂|)
|B.H | · ln(1 − 1/|b̂|) (2)

2As defined in https://www.w3.org/TR/rdf11-concepts/#vocabularies.

http://dbpedia.org/resource/Denmark
http://dbpedia.org/resource/
http://dbpedia.org/resource/
https://www.w3.org/TR/rdf11-concepts/#vocabularies

1130 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

Fig. 4. (a) Example SPARQL query Q and (b) corresponding characteristic sets in the example network.

Consider, for instance, a PPBF BP such that |BP .H | = 5 and that |b̂| = 20000 for all b̂ ∈ BP .B̂ with two
partitions, dbr and dbp. Since the partitioned bitvector has two partitions, obtaining the estimated cardinality for
BP is the sum of estimating the cardinality of both prefix partitions. Let the number of set bits in the bitvector for
the dbr prefix be 736 and the number of set bits in the bitvector for the dbp prefix be 249. Then, the estimated
cardinality using Equation (2) is:

cardP
(
BP

) = ln(1 − 736/20000)

5 · ln(1 − 1/20000)
+ ln(1 − 249/20000)

5 · ln(1 − 1/20000)
≈ −0.0375

−0.00025
+ −0.0125

−0.00025
≈ 150 + 50 ≈ 200

4. The LOTHBROK approach

Differently from PIQNIC and COLCHAIN, LOTHBROK uses a fragmentation strategy based on characteristic sets.
To accommodate efficient query processing over such fragments, as well as to enable locality-awareness and more
accurate cardinality estimation, LOTHBROK introduces an indexing scheme that maps star patterns to fragments
rather than triple patterns. In the remainder of this section, we provide a brief overview of the LOTHBROK ar-
chitecture and how LOTHBROK optimizes SPARQL queries over decentralized knowledge graphs, followed by a
formal definition of the fragmentation and indexing approach. Query optimization with details on how to exploit
locality-awareness and join ordering are explained in Section 5.

4.1. Design and overview

LOTHBROK introduces three contributions, that altogether decrease the communication overhead and in doing so
increases query processing performance. First, LOTHBROK creates fragments based on characteristic sets such that
entire star patterns can be answered by a single fragment. This is beneficial since, as we discussed in Section 1, such
star patterns are relatively efficiently processed by the nodes [58] and reduce the communication overhead. The
characteristic set of a subject value (entity) is the set of predicates that occur in triples with that subject. As such,
LOTHBROK creates one fragment per unique characteristic set and each fragment thus contains all the triples with
the subjects that match the characteristic set of the fragment. Consider, for instance, the example network in Fig. 2
and query Q shown in Fig. 4(a). Figure 4(b) shows the characteristic sets of each fragment in the network. Using
this fragmentation method, each fragment can provide answers to entire star patterns; for instance, P3 ∈ S(Q) can
be processed over just f5, since it is the only fragment containing triples with both predicates present in P3. The
formal definition of the fragmentation approach is presented in Section 4.2.

Second, to accommodate processing entire star patterns over individual fragments, and to encode structural infor-
mation that can be used for cardinality estimation and locality awareness, LOTHBROK introduces a novel indexing
scheme, called Semantically Partitioned Bloom Filter (SPBF) Indexes, that builds upon the Prefix-Partitioned Bloom
Filter (PPBF) indexes presented in [5]. In particular, SPBFs partition the bitvectors based on the IRI’s position in
the fragment, i.e., whether it is a subject, predicate, or object. For instance, in the running example, the SPBF for f5
contains a partition encoding all the subjects with the characteristic set {dbo:publisher,dbo:language}, as
well as partitions encoding all the objects in f5 that occur in a triple with each predicate. The formal definition of
SPBF indexes is discussed in Section 4.3.

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1131

Fig. 5. Flow diagram of the contributions of LOTHBROK (extended from Fig. 1).

Third, LOTHBROK proposes a query optimization technique that takes advantage of the fragmentation based on
characteristic sets and the SPBF indexes to estimate cardinalities and consider data locality while optimizing the
query execution plan. First, LOTHBROK builds a compatibility graph using the SPBF indexes that describes, for a
given query, which fragments are compatible with one another for each join in the query (i.e., which fragments may
produce results for the joins). In other words, the nodes in a compatibility graph denote the relevant fragments, and
the edges denote which fragments may produce join results with one another for the given query. Then, LOTHBROK

builds a query execution plan using a Dynamic Programming (DP) algorithm that considers the compatibility of
fragments in the compatibility graph and the locality of the fragments in the index. The query execution plan built
by the query optimizer follows a left-deep approach that uses the bindings obtained from previously evaluated
subplans as input (filter) when processing joins. Furthermore, the plan obtained from this step includes all the
relevant fragments (i.e., only non-relevant fragments are pruned).

Figure 5 shows an extended version of Fig. 1 using the principles explained in Section 3.1 and the contributions
explained above. The query optimizer thus contains three sequential steps; (1) fragment selection, (2) compatibility
graph, and (3) query planning, that altogether computes the query execution plan for a given query.

Notice that for star patterns P with a large number of solution mappings, [[P]]G could become computationally
expensive to enumerate. However, as shown in our experimental evaluation in Section 7, LOTHBROK actually de-
creases the number of intermediate results to be enumerated by up to two orders of magnitude compared to triple
pattern-based query executors using the optimization techniques explained above. Furthermore, we apply pagina-
tion of large result sets, which related studies [32,68] have already shown can effectively limit the effects of a large
number of solution mappings, even for star pattern-based query execution [3].

In the remainder of this section, we detail data fragmentation (Section 4.2) and indexing (Section 4.3) in LOTH-
BROK. Section 5 details the query optimization approach used by LOTHBROK.

4.2. Data fragmentation

As discussed in Section 1, star-shaped subqueries can be processed relatively efficiently over a fragment [58], thus
they can also help achieving a better balance between reducing the communication overhead and distributing the
query processing load [3,13,14]. To facilitate processing such star patterns on single nodes, we propose to fragment
the uploaded knowledge graphs based on characteristic sets [13,14,55]. This is the first contribution as explained in
Section 4.1, and corresponds to the CS Fragments step in Fig. 5. Formally, a characteristic set is defined as follows:

Definition 11 (Characteristic Set [13,14,55]). The characteristic set for a subject s in a given knowledge graph G,
CG(s), is the set of predicates associated with s, i.e., CG(s) = {p | ∃o : (s, p, o) ∈ G}. The set of characteristic sets
of a knowledge graph G is C(G) = {CG(s) | ∃p, o : (s, p, o) ∈ G}.

In other words, the characteristic set of a subject is the set of predicates (i.e., predicate combination)
used to describe the subject, i.e., that occur in the same triples as the subject. For instance, if the triples
(dbr:Denmark,dbo:capital,dbr:Copenhagen) and (dbr:Denmark,dbo:currency,dbr:Danish_
Krone) are the only ones with subject dbr:Denmark, then this subject is described by the characteristic set
{dbo:capital,dbo:currency}.

1132 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

Characteristic sets were first introduced in [55], used for cardinality estimation and, in extension of that, join
ordering. WiseKG [13] and Smart-KG [14] used the notion of characteristic sets for fragmentation of knowledge
graphs in LDF systems to balance the query load between clients and servers. In this paper, we use characteristic
set based fragments as an alternative to the purely predicate-based fragmentation used by for example PIQNIC. We
define the characteristic set based fragmentation function as follows:

Definition 12 (Characteristic Set Fragmentation Function). Let G be a knowledge graph, then the characteristic set
fragmentation function of G, FC(G), is defined using the notation introduced in Definition 11, as:

FC(G) = {{
(s, p, o) | (s, p, o) ∈ G ∧ CG(s) = Ci

} | Ci ∈ C(G)
}

(3)

That is, the characteristic set fragmentation function creates a fragment for each characteristic set in the knowl-
edge graph. In the characteristic sets shown in Fig. 4(b), f4 thus contains all triples of all subjects that are described
by the characteristic set {dbo:capital,dbo:currency}.

Depending on the complexity of the knowledge graph, however, using fragmentation purely based on charac-
teristic sets can quickly lead to an unwieldy number of fragments. In our experimental evaluation in Section 7,
fragmenting the data from LargeRDFBench [61] using Equation (3) led to 181,859 distinct fragments most of
which contain very few subjects. Consider, for instance, in the running example, the situation where the following
five characteristic sets are found in the uploaded knowledge graph; for illustration purposes we have extended the
notation with the number of subjects covered by each characteristic set:

CS1 = ({dbo : nationality,dbo : author,dbo : deathDate}, 500
)

CS2 = ({dbo : nationality,dbo : author}, 550
)

CS3 = ({dbo : publisher,dbo : language}, 1000
)

CS4 = ({dbo : nationality,dbo : author,dbo : language}, 2
)

CS5 = ({dbo : nationality}, 1
)

The fragments in the above example are skewed with a significant difference between the largests and smallest
fragments. For instance, a separate fragment is created for CS4 even though it does not carry very much information
because it describes only two subjects. As documented in previous studies [28,52,55], similar approaches using
DP to optimize the join order often struggle when presented with a large number of sources since they generally
have to compare the cost of each possible combination of the sources. Concretely, in our case, the DP algorithm
presented in Section 5 has polynomial time complexity with the number of relevant fragments; in the worst case, the
DP algorithm has to check compatibility between each pair of relevant fragments. This means that as the number of
relevant fragments increases, the potential number of compatibility checks increases polynomially as well. Clearly,
this could affect lookup time during query optimization.

To partially address the data skew issue, we merge fragments with infrequent characteristic sets into fragments
with more frequent characteristic sets, similar to [55]. While such an approach potentially has the tradeoff that some
of the information in the merged fragments is lost, which could in rare cases lead to incomplete query results, we
did not encounter such incomplete results in our experimental evaluation (Section 7). After fragmenting datasets
using Equation (3), we iteratively merge the fragments with the lowest number of distinct subject values into other
fragments until the total number of fragments is below a threshold, or all fragments with fewer subject values than
a threshold have been merged, using the following strategy. In our experiments (Section 7), we computed two sets
of fragments for each dataset; one where the total number of fragments matched the number of predicate-based
fragments, and one where all fragments with fewer than 50 subjects (determined empirically based on the data used
in our experiments) were merged.

First, for infrequent fragments f1 with characteristic set CS1 where there exists another fragment f2 with a more
frequent characteristic set CS2, such that CS1 ⊆ CS2, we merge f1 into f2 by adding the triples of f1 to f2; if
there are multiple candidates for f2, we select the one with the smallest set of predicates, since that fragment has

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1133

the fewest additional predicates. In the example above, for instance, since CS5 ⊆ CS2, we merge CS5 into CS2 by
adding the triples from f5 to f2.

Second, the remaining fragments f , i.e., ones that cannot directly be merged into any frequent fragments, are
split into a set of disjoint fragments, {f1, . . . , fn}, such that each fi ∈ {f1, . . . , fn} can be merged into other
fragments with more frequent characteristic sets using the first step. This is done by continuously selecting the
largest possible set of predicates that can be merged into other fragments, until no predicates are left. In the (rare)
case that some predicates do not occur in any frequent fragments, we store the (small) fragments containing those
predicates separately; however, this never happened in our experimental evaluation in Section 7. For instance, in the
example above, since CS4 is not a subset of any frequent characteristic set, we have to split f4 into smaller fragments.
As such, we first create a fragment f ′

4 with the characteristic set {dbo:nationality,dbo:author}, since this
is the largest subset of CS4 that can be merged into other fragments (either f1 or f2). Then, we create a fragment
f ′′

4 with the characteristic set {dbo:language}, since this is the only predicate left in the original fragment, and
merge f ′

4 with f2 and f ′′
4 with f3 according to the first step above.

The steps above are sequential, i.e., all fragments that can be merged into other fragments without splitting are
merged according to the first step, whereas the remaining infrequent fragments afterwards have to be split and
merged according to the second step. In the example above, we end up with the following fragments:

CS1 = ({dbo : nationality,dbo : author,dbo : deathDate}, 500
)

CS2 = ({dbo : nationality,dbo : author}, 553
)

CS3 = ({dbo : publisher,dbo : language}, 1002
)

Clearly, the data skew caused by the fragmentation approach is affected by the structuredness and heterogeneity
of the datasets. In LOTHBROK, we logically expect well-structured datasets to perform well, while unstructured
datasets should lead to a large number of fragments. This is also what we see in our experimental evaluation in
Section 7, where a few very unstructured datasets in LargeRDFBench [61] (e.g., the DBPedia subset) caused a large
number of fragments some of which have very similar characteristic sets, whereas more structured datasets (e.g.,
LinkedTCGA-E) resulted in fewer fragments (Table 3) with less similar characteristic sets. Furthermore, we were
able to decrease the number of fragments in our experiments by up to two orders of magnitude. For LargeRDFBench
specifically, we decreased the number of fragments from 181,859 to 2,160, which significantly reduces the number
of compatibility checks in the DP algorithm as well; as shown in our experimental evaluation (Section 7), using
the merging procedure presented above, we were able to achieve significantly improved performance compared to
triple-pattern-based query processors.

Since the merging procedure described above has already been reasoned and documented by previous studies [28,
52,55], and our experimental results (Section 7) are in line with those studies, we will not provide an in-depth
analysis of the benefits and tradeoffs of the merging procedure. It is, however, a topic for future work. Furthermore,
a complete analysis of the effects of graph complexity measures on the different fragmentation approaches and on
the data skew incurred by each fragmentation approach, is a topic for future work.

4.3. Semantically partitioned bloom filter indexes

The updated fragmentation function described in Section 4.2 often results in fragments that contain characteristic
sets with several predicates. However, as described in Section 3.2, the PPBF indexes from [5] encode the set of
entities in a fragment without any regard for the position of the entity in the fragment or the connection between the
subjects, predicates, and objects.

Hence, we propose a novel indexing schema called Semantically Partitioned Bloom Filters (SPBFs), which builds
upon PPBF as baseline. This is the second contribution of LOTHBROK described in Section 4.1. Specifically, SPBFs
encode the subject values in a single prefix-partitioned bitvector, while there is one prefix-partitioned bitvector
for each predicate in the fragment that encodes the objects occurring in triples with that predicate. This structural
change in the index lets us do two things: (1) by checking the overlap of the partitioned bitvectors that correspond
to the position of the join, we can more accurately determine whether or not fragments produce join results with one

1134 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

another, and (2) we can maintain the link between the subjects, predicates, and objects. As explained in Section 4.1,
the SPBF indexes are the second contribution of LOTHBROK, and corresponds to SPBF Index in Fig. 5. The change
in indexing structure requires adjustments in the following query optimization procedure. This procedure is outlined
in Fig. 5 and detailed in Section 5, and involves source selection based on the compatibility of the fragments and
Dynamic Programming (DP).

Note that since LOTHBROK fragments and indexes data based on characteristic sets, the query optimizer described
in Section 5 decomposes queries into star patterns. The following description therefore does not mirror exactly the
definitions from Section 3.2 [5], since SPBF indexes have to match entire star patterns to fragments rather than triple
patterns.

Formally, an SPBF is defined as follows:

Definition 13 (Semantically Partitioned Bloom Filter). An SPBF BS is a 5-tuple BS = (P,Bs , Bo,�,H) where:

– P is a set of distinct predicate values
– Bs is the prefix-partitioned bitvector that summarizes the subjects
– Bo is the set of prefix-partitioned bitvectors that summarize the objects
– ∀Bi ∈ {Bs} ∪ Bo, Bi = (Pi, B̂i , θi) where:

∗ Pi is a set of prefixes
∗ B̂i is a set of bitvectors such that ∀b̂1, b̂2 ∈ B̂i : |b̂1| = |b̂2|
∗ θi : Pi → B̂i is a prefix-mapping function such that ∀p1, p2 ∈ Pi where p1 �= p2, θi(p1) �= θi(p2)

– � : P → Bo is a predicate-mapping function such that ∀p ∈ P : �(p) ∈ Bo

– H is a set of hash functions

Given a fragment f , BS(f) describes the SPBF for f . For instance, in the running example (Fig. 4), the SPBF
for f2, BS(f2), contains a prefix-partitioned bitvector encoding all the subject values in f2, BS(f2).Bs , as well as
a separate prefix-partitioned bitvector for each predicate encoding the object values for those predicates, i.e., the
partition BS(f2).�(dbo:author) that describes the objects that are connected with the dbo:author predicate,
and so on. The SPBF for f2 is visualized in Fig. 6(b); Fig. 6 further visualizes the SPBFs for each fragment in the
running example (Fig. 4).

Similarly to PPBFs (Section 3.2), we say that an IRI i at position ρ ∈ {s, p, o} may be in an SPBF BS , denoted
i

∃ρBS , if and only if i

∃BS.Bs if ρ = s, ∃p ∈ BS.P : i

∃BS.�(p) if ρ = o, or i ∈ BS.P if ρ = p. For instance,
dbo : nationality ∃pBS(f2) means that the IRI dbo:nationality may be in f2 on the predicate position.
Furthermore, Bp(BS) denotes a function that computes and returns the prefix-partitioned bitvector that contains all
predicates in BS.P .

To adapt the general definition of distributed indexes from Section 3.2 [5] to the characteristic set fragmentation
and star-shaped query decomposition of LOTHBROK, in the following, we change the definition of the In.ν(t)

function from Definition 6 to map entire star patterns to the relevant fragments rather than triple patterns. To do this,
we formally define the relevantFragment(P, f) function as a binary function that, for a given star pattern P and
fragment f , determines whether f is a relevant fragment to P , as follows.

Definition 14 (Fragment Relevance). Given a star pattern P and a fragment f , relevantFragment(P, f) is a binary
function such that:

– relevantFragment(P, f) = true iff ∀t = (s, p, o) ∈ P , the following conditions hold:

∗ s ∈ V or s

∃sBS(f)

∗ p ∈ V or p

∃pBS(f)

∗ o ∈ V or o

∃BS(f).�(p)

– relevantFragment(P, f) = false otherwise

Consider, as an example, the star pattern P1 in the example query in Fig. 4(a) and the SPBFs for the fragments
in Fig. 6. In this example, relevantFragment(P1, f1) = true, since both dbo : nationality ∃pBS(f1) and
dbo : author ∃pBS(f1), and so we say the f1 is a relevant fragment to P1.

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1135

Fig. 6. SPBFs of the fragments in the running example from Fig. 4.

Note, that fragment relevance in LOTHBROK is a binary decision, relevantFragment(P, f) returns either true
or false, and is not based on a relevance score. However, extending our work to consider relevance scores could
be interesting future work.

Given the definition of the relevantFragment(P, f) function above, we define an SPBF index as follows:

Definition 15 (Semantically Partitioned Bloom Filter Index [5,6]). Let n be a node and N be the set of nodes within
n’s horizon, P be the set of all possible star patterns, and F be the set of fragments stored by at least one node in N .
The SPBF index on n is a tuple IS

n = (υ, η) with υ : P �→ 2F and η : F �→ 2N . υ(P) returns the set of fragments
F such that ∀f ∈ F , relevantFragment(P, f) = true. η(f) returns the set of nodes N such that f ∈ ni.G,
∀ni ∈ N and ni ∈ N .

Consider again the running example in Fig. 4 and the example network and fragment distribution in Fig. 2(a). In
this case, given the SPBF index IS

n1
that comprises the SPBFs from all the fragments in Fig. 6 (given that n1 has a

horizon of 2 hops), then IS
n1

.υ(P1) = {f1, f2}, since f1 and f2 both contain partitions with the dbo:national-
ity and dbo:author predicates. Furthermore, in this example, IS

n1
.η(f1) = {n2, n4}, since they are the nodes

replicating f1 in their local datastore.
Since LOTHBROK, like PIQNIC and COLCHAIN, builds partial indexes, i.e., slices (cf. Section 3.2), for each frag-

ment that are combined to form the node’s distributed index, we define an SPBF index slice similar to Definition 8
as follows:

Definition 16 (SPBF Slice). Let f be a fragment. The SPBF slice describing f is a tuple sS
f = (υ ′, η′) where υ ′(P)

returns {f } if and only if relevantFragment(P, f) = true, or ∅ otherwise, and η′(f) returns the set of all nodes
that contain f in its local datastore.

In the running example, for instance, the SPBF slice for f1, sS
f1

, is the SPBF visualized in Fig. 6(a), and

sS
f1

.υ ′(P1) = {f1}, since relevantFragment(P1, f1) = true, as explained above. In other words, the SPBF slice

describing a particular fragment is the SPBF obtained from the respective fragment. The function sS(f) finds the
SPBF slice describing f .

1136 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

Since the SPBF indexes presented in this section are more complex than the ones presented in [5], combined
with the more complex query optimization technique outlined in Section 5, we expect a slightly increased query
optimization overhead compared to existing approaches [5]. However, this overhead should be compensated with
the increased query execution efficiency that is partially obtained from the usage of the SPBF indexes. In fact, this
is also what our experimental evaluation in Section 7 shows. Nevertheless, a deeper analysis of this tradeoff using
even more diverse real-world datasets and queries is part of our future work.

Like the fragmentation approach (Section 4.2), the indexes are structurally affected by graph complexity mea-
sures. Unstructured datasets can lead to skewed partitions where some partitioned bitvectors encode a large number
of values. Nevertheless, a complete analysis of the effect of the graph complexity on the indexing approach is a topic
for future work. In Section 5, we detail how SPBF indexes are used to optimize queries using cardinality estimations
and the locality of the data.

5. Query optimization

Besides the characteristic set fragmentation method (Section 4.2) and the SPBF indexes (Section 4.3), LOTHBROK

introduces a query optimizer that uses the SPBF indexes to build query execution plans in consideration of data
locality, that minimizes the number of intermediate results nodes have to transfer between one another. Doing so
significantly reduces the network overhead, as we see in our experimental evaluation in Section 7.

As explained in Section 4.1, and visualized in Fig. 5, the query optimizer consists of three sequential steps. The
first step is fragment selection, which matches relevant fragments to each star pattern in the query. We use the
IS
n .υ(P) function from Definition 15 for this purpose. As in Section 4.3, we again emphasize that the relevance

of fragments in LOTHBROK is a binary decision; defining the relevance of different fragments based on the rate of
overlap could be interesting future work.

In the second step of the query optimizer, LOTHBROK uses the mapping of relevant fragments from the first step
to build a compatibility graph that describes which fragments are compatible (i.e., joinable) for the star patterns
in the query, i.e., which fragments produce join results with one another for the given query. As such, the nodes
in a compatibility graph are the relevant fragments, and the edges connect the compatible ones. Compatibility
graphs encapsulate two things; (1) fragments that do not contribute to the overall query result are pruned (based on
joinability), and (2) different branches of a compatibility graph for the same subqueries can be processed in parallel.

Using the compatibility graph from the previous step, the third step from Fig. 5 uses a Dynamic Programming
(DP) algorithm similar to [52,55] to build a query execution plan that specifies which parts of the query can be
processed in parallel on which nodes. To decrease the network overhead, a cost function is used by the DP algorithm
to reduce the number of intermediate results that have to be transferred over the network.

The output of the query optimization is an annotated query execution plan specifying join order, join delegations,
and which subqueries can be processed in parallel on which nodes. Formally, a query execution plan is defined as:

Definition 17 (Query Execution Plan). A query execution plan � specifies the node that processes the plan, called
a delegation, and can be one of four types:

– Join � = �1 ��n �2 where �1 and �2 are two (sub)plans and n is the node the join is delegated to.
– Cartesian product � = �1 ×n�2 where �1 and �2 are two (sub)plans and n is the node the Cartesian product

is delegated to.
– Union � = �1 ∪ �2 where �1 and �2 are two (sub)plans.
– Selection � = [[P]]nf where P is a star pattern, f is the fragment that P is processed over, and n is the node

the selection is delegated to.

Since unions are not explicitly executed by any node, the partial results of each subplan in the union are transferred
to the node that uses those intermediate results. Hence, we omit the specification of delegations for unions from
Definition 17 and the description below. Furthermore, we assume that query execution plans are always left-deep,
i.e., the right side of a join can only consist of a selection or a union of selections. As part of our future work, we
will investigate whether execution plans that are not left-deep could further improve the potential for optimization

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1137

Fig. 7. Checking compatibility of fragments for the join P1 �� P2 in the example query Q (Fig. 2).

in certain cases. As an example, the execution plan for query Q, � = (([[P2]]n2
f4

��n2 [[P1]]n2
f1

) ∪ ([[P2]]n3
f3

��n3

[[P1]]n3
f2

)) ��n1 [[P3]]n1
f5

(Fig. 13(g)) specifies that the join [[P2]]f4 �� [[P1]]f1 is delegated to n2 and processed in
parallel with [[P2]]f3 �� [[P1]]f2 on n3 (specified by the union), the result of which is transferred to n1 and joined
with [[P3]]f5 . �∅ denotes the empty plan.

In the remainder of this section, we detail the compatibility graph and query planning steps from Fig. 5. Section 6
then details how the query execution plan is processed over a network.

5.1. Fragment and source selection

In order to prune fragments that do not contribute to the query result, as well as to determine subqueries that
can be processed in parallel, LOTHBROK builds a compatibility graph (Fig. 5), describing which of the relevant
fragments are compatible for the given query, i.e., which fragments produce join results with one another for each
join in the query. Specifically, two fragments are said to be compatible for a given query if the intersection of the
corresponding SPBF partitions is non-empty, i.e., if the sets of entities represented by these partitions could have
some common elements.

As an example, consider again the query Q and fragments from the running example in Fig. 4. In this case,
{f1, f2} are the relevant fragments for P1 and {f3, f4} are the relevant fragments for P2. Since P1 and P2 join on
the ?country variable, we can check the compatibility of each combination of fragments for those star patterns,
by checking the overlap of the partitioned bitvector on the object position for the dbo:nationality predicate
for P1 and the partitioned bitvector on the subject position for P2, since those are the positions of ?country in P1
and P2. Figure 7 visualizes this computation for two of the fragment combinations. For instance, in Fig. 7(a), we
see that {f1, f4} are compatible, since the intersection of the corresponding partitions is non-empty. On the other
hand, {f1, f3} (Fig. 7(b)) are not compatible, since the intersection of the corresponding SPBF partitions is empty.

In other words, a compatibility graph is an undirected graph where nodes are the relevant fragments and edges
describe the compatible ones. Structurally, a compatibility graph is thus defined as follows:

Definition 18 (Compatibility Graph). A compatibility graph GC tuple GC = (F,C) where:

– F is a set of fragments
– C : F × F is a set of compatible fragments, such that ∀(f1, f2) ∈ C, f1 ∈ F and f2 ∈ F

1138 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

Consider again the running example in Fig. 4, and the example compatibility graph in Fig. 8(g). As we saw in
Fig. 7, f1 and f3 are not compatible since they do not produce any join results for the example query, meaning the
compatibility graph in Fig. 8(g) has no edge between those two fragments.

In the following, we detail how Algorithm 1 computes the compatibility graph by going through the algorithm
showing a step-by-step example of how the compatibility graph is built in the running example in Fig. 4 (visualized
in Fig. 8). Recall the function BS(f) that returns the SPBF for a fragment f , and let vars(P) be a function that
returns all the variables in a star pattern P . Furthermore, given an SPBF BS , a star pattern P , and a variable v, let
B(BS, P, v) denote a function that returns (assuming v can only occur once in P) BS.Bs if v is the subject in P ,
BS.�(p) if v is the object with predicate p, i.e., (s, p, v) ∈ P , or Bp(BS) if v is a predicate in P . Algorithm 1
defines the GC(P, IS) function in lines 1–16 that computes a compatibility graph given a BGP P and SPBF index
IS .

Figure 8 shows how Algorithm 1 builds the compatibility graph for query Q in Fig. 4(a). In the following, we
go through each intermediate step of the algorithm, describing the intermediate compatibility graphs built in the
process. First, the GC function selects the star pattern in S(P) with the lowest estimated cardinality in line 2

Algorithm 1 Compute the compatibility graph of a BGP over an SPBF index

Input: A BGP P = P1 ∪ · · · ∪ Pn; an SPBF index IS = (υ, η)

Output: A compatibility graph GC

1: function GC(P ,IS)
2: P ′ ← Pk where Pk ∈ S(P) and cardB(Pk) � cardB(Pj)∀Pj ∈ S(P);
3: Pε ← P ′;
4: F,C ← ∅;
5: for all f ∈ IS.υ(P ′) do
6: GC

ε ← buildBranch(P − P ′, I S, f, P ′, Pε);
7: F ← F ∪ GC

ε .F ;
8: C ← C ∪ GC

ε .C;

9: if P − Pε �= ∅ then
10: GC

ε ← GC(P − Pε, I
S);

11: if GC
ε = GC

∅ then return GC
∅

12: for all f1 ∈ F, f2 ∈ GC
ε .F do

13: C ← C ∪ {(f1, f2)};
14: F ← F ∪ GC

ε .F ;
15: C ← C ∪ GC

ε .C;

16: return (F,C);
17: function BUILDBRANCH(P ,IS ,f ,P ′,Pε)
18: if P = ∅ or ∀P ′′ ∈ S(P) : vars(P ′) ∩ vars(P ′′) = ∅ then
19: return ({f },∅);

20: F,C ← ∅;
21: for all P ′′ ∈ S(P) s.t. vars(P ′) ∩ vars(P ′′) �= ∅ do
22: P ′

ε ← Pε ∪ P ′′;
23: V ← vars(P ′) ∩ vars(P ′′);
24: for all f ′ ∈ IS.υ(P ′′) s.t. ∀v ∈ V : B(BS(f), P ′, v) ∩ B(BS(f ′), P ′′, v) �= ∅ do
25: GC

ε ← buildBranch(P − P ′′, I S, f ′, P ′′, P ′
ε);

26: if GC
ε �= GC

∅ then
27: F ← F ∪ GC

ε .F ∪ {f };
28: C ← C ∪ GC

ε .C ∪ {(f, f ′)};
29: Pε ← Pε ∪ P ′

ε ;

30: return (F,C);

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1139

Fig. 8. Recursively building the compatibility graph for the query in Fig. 4(a) by applying Algorithm 1 resulting in GC(Q, IS
n1

). Yellow nodes
denote the fragments relevant for P2, blue nodes the fragments relevant for P1, and the green nodes the fragments relevant for P3.

(cardinality estimation is detailed in Section 5.2). Assume in the running example, that P2 is the star pattern with
the lowest estimated cardinality (Section 5.2), and that it is therefore selected in line 2 as the first star pattern.
Furthermore, assume that f4 is only compatible with f1 and f3 is only compatible with f2.

Then, the relevant fragments for the selected star pattern are found using the IS.υ function from the SPBF
index (Definition 15) and iterated over in the for loop in lines 5–8; for each of these fragments, the function calls
the buildBranch(P, IS, f, P ′, Pε) function in lines 17–30 that builds the (sub)graph starting from the current
fragment. In the example, the loop in lines 5–8 iterates over {f3, f4}, since these are the fragments relevant for P2.

The buildBranch(P, IS, f, P ′, Pε) function defines a recursive function that builds a sub-graph starting from
a specific fragment and star pattern. In the first iteration in the running example (i.e., for f3), buildBranch is
called with P = P1 ∪ P3, f = f3, and P ′ = P2 as parameters. First, if P does not contain any star patterns that
join with P ′, i.e., if P ′ is the outer-most star pattern in the join tree or for a Cartesian product, the function returns
the compatibility graph just containing f without any edges (lines 18–19). In the example, since P1 joins with P2,
the algorithm does not execute the statement in line 19.

Instead, the for loop in lines 21–29 iterates through the star patterns P ′′ ∈ P that join with P ′, i.e., star patterns
that have at least one variable in common. For each fragment f ′ relevant for P ′′ (again found using the SPBF index),
the function checks the compatibility of f and f ′ for each join variable v in line 24, i.e., whether or not f and f ′
may produce join results for each join variable, by intersecting the corresponding partitioned bitvectors in BS(f)

and BS(f ′). If the fragments may produce join results, a recursive call is made in line 25 with P = P −P ′′, f = f ′,
and P ′ = P ′′ as parameters. In the example, the for loop in line 21 has only one iteration for P ′′ = P1, i.e., the only
star pattern in S(P) that joins with P2. Hence, the for loop in line 24 checks the compatibility of each fragment
relevant for P1 (f1 and f2) with f3 (since f = f3 in this call to the function). Since f2 is compatible with f3 (cf.
the join cardinalities in Table 1), a recursive call is made in line 25 with P = P3, f = f2, and P ′ = P1.

Since P3 joins with P1, the for loop in line 24 checks the compatibility of f5 and f2 and makes another recursive
call to the function in line 25 with P = ∅, f = f5, and P ′ = P3. In this iteration of the function, P is empty, thus
the graph ({f5},∅) is returned in line 19. This graph is visualized in Fig. 8(a) and contains only f5 with no edges.
Since this compatibility graph is non-empty, it is added to the output graph in lines 26–28 together with f2 (since
f = f2 in this iteration of buildBranch) and the edge between f5 and f2. This graph is visualized in Fig. 8(b)
and returned by the current iteration of the buildBranch function. Upon receiving the graph in Fig. 8(b), the
function adds f3 (since f = f3 in the current iteration) and an edge between f2 and f3 in lines 26–28, resulting in
the compatibility graph shown on Fig. 8(c) that is returned in line 30.

In the next iteration of the for loop in line 5, the buildBranch is called with P = P1 ∪ P3, f = f4, and
P ′ = P2. Following the same procedure as described above for f3, we first build the subgraph containing only f5

shown in Fig. 8(d). Then, f1 is added to the graph along with an edge between f1 and f5 (since they produce join
results), resulting in the subgraph shown in Fig. 8(e). Next, f4 is added along with an edge between f4 and f1,
resulting in the compatibility graph for f4 shown in Fig. 8(f). After merging this in lines 7–8 with the compatibility
graph in Fig. 8(c), the resulting compatibility graph can be seen in Fig. 8(g).

The if statement in lines 9–15 ensures that subqueries with star patterns that do not join (i.e., in the case of
Cartesian products) are included in the compatibility graph. This is done by keeping track of the considered star

1140 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

Table 1

Estimated cardinalities for the SPBFs BS(f1), BS(f2), BS(f3), and BS(f4) for the running example in Fig. 2

Partitioned bitvector cardP Partitioned bitvector cardP

BS(f1).Bs 1000 BS(f3).Bs 100

BS(f1).�(dbo:author) 5000 BS(f3).�(dbo:capital) 100

BS(f1).�(dbo:nationality) 1000 BS(f3).�(dbo:currency) 150

BS(f1).�(dbo:deathDate) 1000 BS(f3).�(dbo:population) 100

BS(f2).Bs 2000 BS(f4).Bs 200

BS(f2).�(dbo:author) 3000 BS(f4).�(dbo:capital) 200

BS(f2).�(dbo:nationality) 2000 BS(f4).�(dbo:currency) 500

BS(f1).�(dbo:nationality) ∩ BS(f3).Bs 0 BS(f2).�(dbo:nationality) ∩ BS(f3).Bs 100

BS(f1).�(dbo:nationality) ∩ BS(f4).Bs 50 BS(f2).�(dbo:nationality) ∩ BS(f4).Bs 0

BS(f5).Bs 8000 BS(f1).�(dbo:author) ∩ BS(f5).Bs 500

BS(f5).�(dbo:publisher) 8000 BS(f2).�(dbo:author) ∩ BS(f5).Bs 1000

BS(f5).�(dbo:language) 9000

patterns in P using the accumulator Pε defined in line 3 and updated in line 29. The example query contains no
Cartesian products and so the compatibility graph on Fig. 8(g) is returned by the algorithm.

The output of Algorithm 1 in the example is the compatibility graph shown in Fig. 8(g), specifying that f1 is
compatible with {f4, f5} and f2 is compatible with {f3, f5}.

Algorithm 1 and the definition of SPBF indexes (Definition 15) ensure that pruned fragments do not contribute to
the query result, i.e., that our pruning method does not miss any potential results. This follows from the theorem:

Theorem 1. For any BGP P , SPBF index IS , and compatibility graph GC = GC(P, IS) (Algorithm 1), it is the
case that ∀P ′ ∈ S(P), if ∃f ∈ IS.υ(P ′) where f /∈ GC.F , then [[P ′]]f is incompatible with all the results of P

over the fragments in IS .

A high-level sketch of the proof of Theorem 1 follows. Algorithm 1 only prunes fragments when the condition in
line 24 is false. Furthermore, this condition is only false when the bitvectors for the two fragments do not overlap;
if there is any kind of overlap, even on a single bit, the condition is true. If the two fragments contain a common
value, then by definition this value is mapped to the same positions in the corresponding bitvectors, and they will
overlap at least on those bits. Hence, Theorem 1 holds, and we do not miss any potential results.

5.2. Cardinality estimation

In Section 4.2 we have described how LOTHBROK fragments knowledge graphs based on characteristic sets.
Furthermore, in Section 4.3 we described how SPBF indexes connect the objects in a fragment to the predicates
they occur in triples with. Since the SPBF of a fragment includes partitioned bitvectors describing the subjects
and objects (Definition 15), we can estimate the number of values within these partitioned bitvectors and use those
estimations to obtain cardinality estimations in a similar way as [52,55].

Note that the cardinality estimation technique presented in this section is used by the Dynamic Programming (DP)
algorithm (Section 5.3) to find the cheapest costing query execution plan including all the relevant fragments, and is
not used to rank relevant fragments according to the cardinalities. Recall the cardP (B) function from Equation (2).
Table 1 then shows the estimated cardinalities of each partitioned bitvector in the running example.

To estimate the cardinality of star-shaped subqueries, we utilize the fact that the subjects are described by a single
partitioned bitvector. For a star-shaped subquery asking for the set of unique subject values described by a given set
of predicates (i.e., queries with the DISTINCT keyword), the cardinality can be estimated as the sum of the number
of subjects in each fragment that includes all the predicates in the star-shaped subquery. For instance, the cardinality
of P1 in the query in Fig. 4(a) is the number of distinct subject values in f1 and f2.

Given a star pattern P and a fragment f , the cardinality of P over f , assuming that f is a relevant fragment for
P , is the number of values in the partitioned bitvector on the subject position in BS(f), and is formally defined as:

cardD(P, f) = cardP
(
BS(f).Bs

)
(4)

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1141

Fig. 9. Estimating the cardinality of P1 with the DISTINCT modifier as the number of subjects in f1 and f2 found using equation (4).

Fig. 10. Estimating the cardinality of P1 without the DISTINCT modifier. Outlines show which bitvector each value is computed from.

For queries not including the DISTINCT keyword, we need to account for duplicates by considering, on average,
the number of triples for each non-variable predicate value in P that each subject value is associated with. Given a
star pattern P and fragment f , let preds(P) denote the non-variable predicate values in P (in the case of a variable
on the predicate position in P , we consider the average number of predicate occurences in the characteristic set).
The cardinality of P is thus estimated as follows [52,55]:

cardS(P, f) = cardD(P, f) ·
∏

pi∈preds(P)

cardP (BS(f).�(pi))

cardP (BS(f).Bs)
(5)

Henceforth, we will refer to the more generalized function card rather than cardD and cardS to be equivalent
to cardD for queries with the DISTINCT modifier and cardS for queries without. Using Equations (4) or (5), the
cardinality of a star pattern P over a node n’s SPBF index is, for all queries (both with and without the DISTINCT
keyword), the aggregated cardinality over each relevant fragment to P , and is formally defined as follows:

cardn(P) =
∑

f ∈IS
n .η(P)

card(P, f) (6)

Consider, for instance, in the running example, the star-shaped BGP P1 in Fig. 4(a) and the estimated cardinalities
of the partitioned bitvectors for each fragment in Table 1. Assume in this case that the DISTINCT keyword is
given in the query. Then, cardn1(P1) is computed as the aggregated estimation of subject values in f1 and f2,
cardn1(P1) = 1000 + 2000 = 3000. This is visualized in Fig. 9.

If, instead, the DISTINCT keyword was not included in the query, the cardinality cardn1(P1) is, for each rel-
evant fragment (f1 and f2), the number of subject values within the fragment multiplied with the average num-
ber of triples with each predicate pi ∈ preds(P1) that each subject value is associated with, cardn1(P1) =
1000 ·(5000/1000) ·(1000/1000)+2000 ·(3000/2000) ·(2000/2000) = 5000+3000 = 8000. Figure 10 visualizes
the above computations and shows which bitvector each value is computed from.

Until now, the cardinality estimations presented in this section are useful for estimating the cardinality of in-
dividual star patterns in a query [52,55]. However, to estimate the cardinality of arbitrary BGPs, [28] introduced
characteristic pairs that describe the connections between IRIs described by different characteristic sets. In our case,

1142 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

however, we rely on the SPBFs of the relevant fragments to compute characteristic pairs without storing additional
information; by intersecting the partitioned bitvectors on the positions corresponding to the join variable, we can
estimate the selectivity of a given join and use that to estimate the cardinality of the join.

To achieve this, we first extend the framework for cardinality estimation described above to enable cardinality
estimation of an entire query execution plan. This is straightforward for Cartesian products, unions, and selections;
for Cartesian products it is the multiplication of the cardinality of the operands, for unions it is the sum of the
cardinality of the operands, and for selections it is the cardinality of the star pattern over a specific fragment defined
in Equations (4) and (5). Given the reasoning above, we define the cardinality of a query execution plan �, card(�),
covering all types of �, as follows:

card(�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

card(�1) · card(�2), if � = �1 ×n �2

card(�1) + card(�2), if � = �1 ∪ �2

card(P, f), if � = [[P]]nf
card��(�1 ��n �2), if � = �1 ��n �2

(7)

To compute the cardinality of any join � = �1 ��n �2 (e.g., including joins between a BGP with multiple star
patterns and a star pattern), we consider two cases: (1) where �2 is a union �2 = �′

2 ∪ �′′
2, and (2) where �2 is a

selection �2 = [[P]]n1
f . The cardinality of the join can thus be estimated using the following formula:

card��(�1 ��n �2
) =

{
card��(�1 ��n �′

2) + card��(�1 ��n �′′
2), if �2 = �′

2 ∪ �′′
2

card��(�1, P , f), if �2 = [[P]]n1
f

(8)

The function card��(�, P, f) in the second case of Equation (8) computes the cardinality of the join for a partic-
ular selection on the right side of the join, [[P]]f . To achieve this estimation, we consider the estimated cardinality
of � and the selectivity of the join variable, i.e., the chance on average that each value on the left side of the join
corresponds to a value in the join. Furthermore, to avoid a significant overestimation due to the possible correlation
between multiple join variables in the same join, we only consider the most selective join variable for any join.

Recall the B(BS, P, v) function that returns the partitioned bitvector in BS that corresponds to v’s position in
P , and let S(�,P) denote the set of star patterns in � that join with P and F(�, f) denote the set of fragments
in � that join with f . For instance, for the execution plan in Fig. 13(d) and the compatibility graph in Fig. 8(g),
S(�,P3) = {P1} and F(�, f5) = {f1, f2}. Furthermore, given two star patterns P1 and P2, let v(P1, P2) =
vars(P1) ∩ vars(P2), i.e., the set of join variables. The cardinality of the join between a plan � and a selection
[[P]]f is, given the DISTINCT keyword is defined as follows:

card��
D(�,P, f) = card(�)

× min
P ′∈S(�,P)∧v∈v(P,P ′)

(∑
f ′∈F(�,f) cardP (B(BS(f), P, v) ∩ B(BS(f ′), P ′, v))∑

f ′∈F(�,f) cardP (B(BS(f ′), P ′, v))

)
(9)

As an example, consider computing the cardinality card(�) of the plan � visualized in Fig. 13(d) using the
DISTINCT keyword. Since � is a union, we compute the cardinality of �1 = [[P2]]n2

f4
��n2 [[P1]]n2

f1
and �2 =

[[P2]]n3
f3

��n3 [[P1]]n3
f2

and let card(�) = card(�1) + card(�2). Using Equation (9) on �1 and �2, we get the
formula card(�) = 200 · (50/200) + 100 · (100/100) = 150 as visualized in Fig. 11 (the gray values are the
cardinalities of the left selections in each join obtained using Equation (4)).

For queries without the DISTINCT keyword, we once again consider the average predicate occurences. However,
since the predicate occurrences in � are already considered in card(�) in Equation (9), we only consider the average
number of occurrences in f for each triple pattern in P that does not join with � on the object. The cardinality of

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1143

Fig. 11. Estimating the cardinality of � = ([[P2]]n2
f4

��n2 [[P1]]n2
f1

) ∪ ([[P2]]n3
f3

��n3 [[P1]]n3
f2

) with the DISTINCT keyword using the
cardinalities from Table 1 and equation (9).

Fig. 12. Estimating the cardinality of � in Fig. 13(d) without the DISTINCT modifier for (a) �1 = [[P2]]n2
f4

��n2 [[P1]]n2
f1

and (b)

�2 = [[P2]]n3
f3

��n3 [[P1]]n3
f2

. The output of equation (7) is thus the sum of the two formulas (625 + 225 = 850).

the join between a plan � and selection [[P]]f , without the DISTINCT keyword, is computed as:

card��
S (�, P, f) = card��

D(�,P, f) ·
∏

p∈preds(P):(s,p,o)∈P∧o/∈v(P,P ′)∀P ′∈S(�,P)

(
cardP (BS(f).�(p))

cardP (BS(f).Bs)

)
(10)

Once again, computing the cardinality of � in Fig. 13(d) not including the DISTINCT keyword is card(�) =
card(�1) + card(�2). Using Equation (10) on each of these yields the equation card(�) = 500 · (50/200) ·
(5000/1000) + 150 · (100/100) · (3000/2000) = 625 + 225 = 850. Figure 12 visualizes this computation.

1144 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

Algorithm 2 Compute the transfer cost of a query execution plan
Input: A query execution plan �; a node n

Output: The estimated transfer cost cost
1: function TRANSFERCOST(�,n)
2: cost ← 0;
3: if � = [[P]]ni

f then
4: if n �= ni then cost ← card(P, f);
5: else if � = �1 ∪ �2 then
6: cost ← transferCost(�1, n) + transferCost(�2, n);
7: else if � = �1 ×ni �2 then
8: cost ← transferCost(�1, ni) + transferCost(�2, ni);
9: if ni �= n then cost ← cost + card(�);

10: else if � = �1 ��ni �2 then
11: if �2 = �′

2 ∪ �′′
2 then

12: cost ← transferCost(�1 ��ni �′
2, n) + transferCost(�1 ��ni �′′

2, n);
13: else if �2 = [[P]]nj

f then
14: cost ← transferCost(�1, ni);
15: if ni �= nj then cost ← cost + card��

S (�1, P , f);

16: if n �= ni then cost ← cost + card(�);

17: return cost;

5.3. Optimizing query execution plans

In the last step of the query optimizer (Fig. 5), LOTHBROK builds an annotated query execution plan using a
Dynamic Programming (DP) algorithm, that determines which parts of the query can be processed in parallel based
on the compatibility graph (as explained in Section 5.1). Furthermore, the DP algorithm is locality-aware, meaning
it finds the join delegations that minimize the number of intermediate results that have to be transferred between
nodes when executing the plan, called the transfer cost.

To do this, the DP algorithm incrementally builds the plan for each subquery, by checking the transfer cost of the
possible join combinations and delegations, and selects the cheapest one. In the remainder of this section, we will
first define the cost function used by the DP algorithm, after which we will detail the DP algorithm itself.

Using the cardinality estimation technique in Section 5.2, Algorithm 2 shows how the transfer cost of a query
execution plan � on a node n is computed taking into account the locality of the fragments. First, if � = [[P]]ni

f ,
i.e., � is a selection, the algorithm checks whether n �= ni (line 4); if they are different the transfer cost of � is
equal to the cardinality of the selection (Equation (5)), otherwise the transfer costs of � is 0 (since it incurs no
transfer cost). For instance, the transfer cost of the execution plan shown in Fig. 13(c) ([[P3]]n1

f5
) on n1 is 0 since f5

is available on n1.
If, instead, � = �1 ∪ �2, i.e., � is a union, the transfer cost is the sum of the transfer costs for �1 and �2

(line 6). For instance, the transfer cost of the execution plan shown in Fig. 13(a) ([[P1]]n2
f1

∪ [[P1]]n3
f2

) on n1 is
5000 + 3000 = 8000, since neither f1 or f2 is available on n1.

Otherwise, if � = �1 ×ni �2, i.e., � is a Cartesian product, the transfer cost is the sum of the transfer costs for
�1 and �2 (line 6), plus the cardinality of the Cartesian product if it is delegated to a different node than the one
processing the (sub)plan, i.e., if n �= ni (since they have to be transferred from ni to n).

Finally, if � = �1 ��ni �2, i.e., � is a join, we once again take advantage of the fact that the right side of a join is
always either a selection or a union of selections; in the latter case, we aggregate the transfer cost over each subplan
in the union (line 12). However, if the right side of the join is a selection �2 = [[P]]nj

f , we start by estimating the
transfer cost of the left side of the join (line 14); if ni �= nj , we further add in line 15 the cardinality of the join
(since these results should have to be sent back to ni). Furthermore, if n �= ni , we add in line 16 the cardinality of
the execution plan to the cost, since the results have to be transferred from ni to n.

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1145

Fig. 13. Best query execution plan for each subquery in the DP table (Table 2).

In addition to the transfer cost in Algorithm 2, we add the cardinality of the execution plan to the cost function
used by the DP algorithm, since these results also have to be transferred to the user. The cost of processing a query
execution plan � over a node n is formally defined as follows.

costn(�) = transferCost(�, n) + card(�) (11)

Using the cost function in Equation (11), the DP algorithm finds the lowest costing execution plan by incre-
mentally merging the cheapest (sub)plans for the smaller subqueries, and computing the cost of each possible join
combination and delegation. Furthermore, to merge the subplans, the DP algorithm uses the compatibility graph
computed in the second step (Fig. 5), to determine which parts of those plans can be joined in parallel.

Algorithm 3 shows how the DP table is appended with the lowest costing execution plan for a given (sub)BGP P ,
node n, and compatibility graph GC by defining the APPENDDPTABLE(P, n,GC, DPTable) function in lines 1–13.
Table 2 shows the output of the DP table after applying the algorithm over each subquery in Q (Fig. 4(a)), and
Fig. 13 visualizes each execution plan in Table 2. Notice, that each plan includes all the relevant fragments found in
the source selection step (Section 5.1); Table 2 then shows the cheapest costing plan for each subquery.

Consider, in the running example, the situation where the APPENDDPTABLE function is called with the parame-
ters P = P1 ∪ P2, n = n1, and where GC is the compatibility graph in Fig. 8(g). In this case, the DPTable already
contains entries for P1, P2, and P3, i.e., Figs 13(a)–13(c) and the first three rows in Table 2, which are used to
compute the execution plan for P1 �� P2.

Since |S(P)| �= 1, the for loop in lines 7–12 iterates through each join combination in P to find the lowest costing
join. In the first iteration of the for loop, where P ′ = P1, the MERGEPLANS(P,�, n,GC) function used in line 9
(defined in lines 14–31) merges the subplans for P ′ (i.e., P1) and P \{P ′} (i.e., P2) to assess the cost of this particular
join combination, and is called with the parameters P = P1, � is the execution plan in Fig. 13(b), n = n1, and GC

is the compatibility graph in Fig. 8(g). The GETDELEGATIONS(�, IS
n) function used in line 10 then appends the

resulting execution plan � with the delegations that result in the cheapest cost by trying each combination of possible
delegations according to the locality of the relevant fragments in the index IS

n . The if statement in lines 11–12 then
checks whether the resulting execution plan has a lower cost than the currently cheapest plan for P ; if the cost is
lower, the DP table is updated in line 12.

In the call to MERGEPLANS in the first iteration of the for loop in lines 7–12, the function finds in line 15 the
relevant fragments to P1, again using the IS

n .υ(P) function from Definition 15 and the compatibility graph GC .
In the example outlined above, this results in F = {f1, f2}. Since there is at least one relevant fragment that is
compatible with any of the fragments in the subplan �, it is not a cartesian product, so we enter the while loop in

1146 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

Table 2

Entries in the DP table for query Q (Fig. 4(a))

Subquery Execution plan Cardinality Cost

P1 [[P1]]n2
f1

∪ [[P1]]n3
f2

8,000 8,000

P2 [[P2]]n3
f3

∪ [[P2]]n2
f4

650 650

P3 [[P3]]n1
f5

9,000 9,000

P2 �� P1 ([[P2]]n2
f4

��n2 [[P1]]n2
f1

) ∪ ([[P2]]n3
f3

��n3 [[P1]]n3
f2

) 850 1,700

P2 �� P3 ([[P2]]n3
f3

∪ [[P2]]n2
f4

) ×n1 [[P3]]n1
f5

5,850,000 5,850,650

P1 �� P3 ([[P1]]n2
f1

∪ [[P1]]n3
f2

) ��n1 [[P3]]n1
f5

1,688 9,688

P2 �� P1 �� P3 (([[P2]]n2
f4

��n2 [[P1]]n2
f1

) ∪ ([[P2]]n3
f3

��n3 [[P1]]n3
f2

)) ��n1 [[P3]]n1
f5

154 1,004

lines 19–30, which iteratively builds each subplan that, according to the compatibility graph, can be processed in
parallel. The function GETONE(F) in line 20 returns one of the relevant fragments in F ; in the example, we end up
with f = f1, F = {f2}, and F ′ = {f1} after running line 20.

In the for loop in lines 21–22, the function determines, based on the edges in the compatibility graphs, which
fragments in F that should be processed together, i.e., which fragments depend on some common fragments for the
joining star patterns. In the above example, since f1 and f2 do not overlap on compatible fragments for P2, applying
lines 20–22, results in the F ′ = {f1}.

In line 23, we then determine the set of subplans in � that the fragments in F ′ are dependent on, according to
the compatibility graph. That is, the SUBPLAN(f,�) function returns, if � = �1 ∪ (· · · ∪ (�n)), the subplan �i in
� that f occurs in, called the corresponding branch of f , or � otherwise. For instance, SUBPLAN(f4,�2), where
�2 is the execution plan in Fig. 13(b), results in the plan [[P2]]f4 . As a result, applying line 23 to F ′ = {f1} in the
example results in Plans = {[[P2]]f4}.

Finally, the fragments in F ′ and the plans in Plans are combined in lines 24–28 and added to the accumulator in
lines 29–30, leading to the intermediate execution plan [[P2]]f4 �� [[P1]]f1 . The function GETUNION(P, F ′) used
in line 28 (and lines 4 and 17) finds the query execution plan describing the union of selections of the star pattern
P over each relevant fragment f ∈ F ′. Since F = {f2}, we once again run the while loop in lines 19–30, this time
with f = f2, leading to the execution plan ([[P2]]f4 �� [[P1]]f1) ∪ [[P2]]f3 �� [[P1]]f2 as visualized in Fig. 13(d),
which is returned in line 31.

Notice, that the function in lines 14–31 is called for each star pattern in the subquery, i.e., both P1 and P2 in this
example, in order to check the cost of each possible join combination; Table 2 and Fig. 13 only visualize the least
costing join combination.

6. Query execution

Until now, we have described in Section 5 how LOTHBROK obtains a query execution plan using compatibility
graphs and locality information provided by the SPBF indexes. In this section, we detail the last step from Fig. 5,
i.e., the Query Execution step, and thus how LOTHBROK evaluates a query given a query execution plan.

Given a BGP P , a compatibility graph GC = GC(P, IS), and a query execution plan � over P and GC , LOTH-
BROK processes P by processing the operations specified in � and, in doing so, delegating joins and Cartesian
products to the nodes specified in �. The intermediate results from previous steps are used as input to subqueries at
a later stage in the query execution plan. In case of a distributed join, the intermediate results are transferred along
with the partial query to use local bind joins similar to [3,32]. To formalize how star patterns in the query execution
plan are processed over the fragments, we define a so-called selector function in line with related work [3,6,32]. The
selector function returns the results of processing the star pattern over a fragment given a set of solution mappings,
i.e., the set of stars in the fragment that constitute the answer to the star pattern, as follows:

Definition 19 (Selector Function [3,6,32]). Given a node n, a star pattern P , and a finite set of distinct solution
mappings
, the star pattern-based selector function for P and
, denoted s(P,
) is for every fragment f in n’s

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1147

Algorithm 3 Append DP table for a specific subquery

Input: A BGP P ; a node n; a compatibility graph GC ; Current DPTable
Output: Updated DPTable

1: function APPENDDPTABLE(P ,n,GC ,DPTable)
2: if |S(P)| = 1 then
3: F ← GC.F ∩ IS

n .υ(P);
4: � ← GETUNION(P, F);
5: � ← GETDELEGATIONS(�, IS

n);
6: return DPTable.append(P,�, card(�), costn(�));

7: for all P ′ ∈ S(P) do
8: P ′′ ← P \ P ′;
9: � ←MERGEPLANS(P ′, DPTable.get(P ′′).plan(), n,GC);

10: � ←GETDELEGATIONS(�, IS
n);

11: if costn(�) � DPTable.get(P).cost() then
12: DPTable.append(P,�, card(�), costn(�));

13: return DPTable;
14: function MERGEPLANS(P ,�,n,GC)
15: F ← GC.F ∩ IS

n .υ(P);
16: if �f2 ∈ FRAGMENTS(�) : (f1, f2) ∈ GC.C for any f1 ∈ F then
17: return �× GETUNION(P, F);
18: �ε ← �∅;
19: while F �= ∅ do
20: f ← GETONE(F), F ← F \ {f }, F ′ ← {f };
21: for all f ′ ∈ F s.t.

⋂
fε∈{f,f ′}{f ′′ | (fε, f

′′) ∈ GC.C ∧ f ′′ ∈ FRAGMENTS(�)} �= ∅ do
22: F ← F \ {f ′}, F ′ ← F ′ ∪ {f ′};
23: Plans ← ⋃

f ′∈F ′ {SUBPLAN(f ′′,�) | (f ′, f ′′) ∈ GC.C ∧ f ′′ ∈ FRAGMENTS(�)};
24: �′ ← �∅;
25: for all �′′ ∈ Plans do
26: if �′ = �∅ then �′ ← �′′;
27: else �′ ← �′ ∪ �′′;
28: �′ ← �′ �� GETUNION(P, F ′);
29: if �ε = �∅ then �ε ← �′;
30: else �ε ← �ε ∪ �′;
31: return �ε ;

local datastore defined as follows.

s(P,
)(f) =
{

{t ∈ T | T ⊆ f ∧ Tf [P]} if
 = ∅
{t ∈ T | T ⊆ f ∧ ∃μ ∈ [[P]]f , μ′ ∈
 : μ[P] = T ∧ μ′ ⊆ μ} otherwise.

In line with [3,6,32], and to avoid long-running requests on each node, we apply pagination to the results of star
pattern requests, i.e., we group the results into reasonably sized pages to avoid excessive data transfer. The page size
used in our experimental evaluation (Section 7) is the page size recommended by related work [3,6,32], i.e., 100.
However, for ease of presentation, we assume that all results can fit into one page when presenting the approach
to query processing. Furthermore, to avoid underestimating costs caused by the selector function returning some
duplicate values (e.g., when the same subject has multiple object values for a specific predicate), our implementation
always uses cardS (Equation (5)) and card��

S (Equation (10)) for cardinality estimations, regardless of whether or not
the DISTINCT keyword is given. Last, given a star pattern P , a node n, a fragment fi , and a finite set of solution
mappings
, seln(fi, P,
) denotes the result of invoking s(P,
)(fi) on n.

1148 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

Algorithm 4 Evaluate a join plan
Input: A join plan �; a node n; a set of solution mappings

Output: A set of solution mappings

1: function EVALUATEPLAN(�,n,
 = {∅})
2: if � = �1 ×ni �2 then
3:
1 ← evaluatePlan(�1, ni,
);
4:
2 ← evaluatePlan(�2, ni,
);
5:
 ←
1 ×
2;
6: else if � = �1 ��ni �2 then
7:
 ← evaluatePlan(�1, ni,
);
8:
 ← evaluatePlan(�2, ni,
);
9: else if � = �1 ∪ �2 then

10:
1 ← evaluatePlan(�1, n,
);
11:
2 ← evaluatePlan(�2, n,
);
12:
 ←
1 ∪
2;
13: else if � = [[P]]f then
14: N ← IS

n .η(f);
15: if n ∈ N then ni ← n;
16: else ni ← takeOne(N);
17: φ ← selni

(f, P,
);
18:
 ←
 �� {μ | dom(μ) = vars(P) and μ[P] ∈ φ};
19: return
;

Let IS
n denote a node n’s SPBF index. The evaluatePlan function in Algorithm 4 defines a recursive func-

tion that processes a query execution plan on a node n by using the selector function defined in Definition 19 for
selections in the plan and making recursive calls to the nodes specified in the plan.

Consider, for instance, the query execution plan � shown in Fig. 13(g) for query Q in Fig. 4(a) processed by node
n1 in the running example. Fig. 14 shows an overview of which parts of the query are sent to which node during
query processing. Since � is of type join, the function enters the if statement in line 6. Here, the function first
makes a recursive call (since the join was delegated to node n1) with the left-most subplan, i.e., �1 = ([[P2]]f4 ��n2

[[P1]]f1) ∪ ([[P2]]f3 ��n3 [[P1]]f2) (visualized in Fig. 13(d)), in line 7. Notice that n1 does not need to wait for
completion of the left-most subplan before processing the join. In fact, the current implementation starts processing
joins as soon as partial results from the left side of the join have been returned.

Since �1 is of type union, Algorithm 4 in lines 10–11 makes two recursive calls for the two subplans �1 =
[[P2]]f4 ��n2 [[P1]]f1 and �2 = [[P2]]f3 ��n3 [[P1]]f2 . Note that these two recursive calls can be processed
concurrently and indeed is done so in the implementation of LOTHBROK. This step is shown in Fig. 14(a) where
�1 is sent to node n2 and �2 is sent to node n3. Since both subplans follow the same structure, and thus the same
evaluation process, we will only explain what happens when processing �1.

When processing the plan �1 from above, Algorithm 4 first calls the evaluatePlan on node n2 for the subplan
[[P2]]f4 , i.e., the selection for P2 over f4, in line 7. The takeOne function in line 16 selects a random node with
the fragment in its local datastore if the node that processes the subquery does not store the fragment locally. In this
case, since n2 stores f4, it calls the selector function for P2 over f4 locally in line 17. The 500 results of processing
P2 over f4 (cf. Table 1) are then joined with the singleton set of bindings
 that includes the empty mapping (i.e.,
a mapping compatible with any mapping) in line 18 and returned in line 19.

Upon receiving the 500 results in line 7, Algorithm 4 makes another recursive call in line 8 to evaluatePlan
on node n2 for the subplan [[P1]]f1 , i.e., the selection for P1 over f1 with the 500 intermediate results in
. Again, n2

calls the local selector for P1 over f1 using the intermediate results in
 as bindings. This results in 625 intermediate
results in
 that are the result of processing P1 �� P2 over f1 and f4, which are returned by the function in line 19.

While n2 found the 625 results from processing [[P2]]f4 ��n2 [[P1]]f1 in the recursive call in line 10, n3 found the
additional 225 results of processing [[P2]]f3 ��n3 [[P1]]f2 in the recursive call in line 11 following the same steps

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1149

Fig. 14. Processing � in Fig. 13(g) on n1 by (a) delegating [[P2]]f4 ��n2 [[P1]]f1 to n2 and [[P2]]f3 ��n3 [[P1]]f2 to n3 concurrently and (b)
processing the join between these 850 results and [[P3]]f5 locally on n1 to achieve the 154 results (solid arrows denote neighbors, dotted arrows
subquery delegation, and dashed arrows transferring of intermediate results). n1 can send intermediate results to n3 since it is within its horizon.

as described above for n2. In line 12 these results are combined and 850 bindings are returned in line 19, which is
visualized on Fig. 14(a) as n2 returning 625 results to n1 and n3 returning 225 results to n1.

The 850 intermediate results in
 found by processing ([[P2]]f4 ��n2 [[P1]]f1)∪ ([[P2]]f3 ��n3 [[P1]]f2) in line 7
are used as bindings for the recursive call made in line 8 for the subplan [[P3]]f5 . This is visualized in Fig. 14(b).
Since n1 stores f5 locally, it calls the local selector for P3 over f5 and
 in line 17. The 154 results of processing
P3 over f5 are joined with
 in line 18 and returned as the final results in line 19.

As mentioned above, our implementation uses pagination of the results meaning, for instance, when processing
the subplan [[P2]]f4 in line 7, the 500 results would be split into multiple pages. In the implementation of LOTH-
BROK, nodes at subsequent steps in the pipeline start processing joins as soon as they receive some intermediate
bindings. For instance, in the running example, n1 starts processing the join P2 �� P1 �� P3 locally as soon as it
receives results for P2 �� P1 from either n2 or n3.

7. Experimental evaluation

The experimental evaluation compares LOTHBROK with two state-of-the-art approaches building on P2P systems:
PIQNIC [4] and COLCHAIN [6] with the query optimization approach outlined in [5]. To do this, we implemented3

the fragmentation, indexing, and cardinality estimation approach as a separate package in Java 8 and modified
PIQNIC’s and COLCHAIN’s query processors to use it. Like COLCHAIN and PIQNIC, LOTHBROK’s query processor
is implemented as an extension to Apache Jena.4 Fragments in our implementation are stored as HDT files [23], al-
lowing for efficient processing of the star patterns. We provide all source code, experimental setup (queries, datasets,
etc.), and the full experimental results on our website.5

7.1. Experimental setup

In this section, we detail the experimental setup, including a characterization of the used datasets and queries, the
hardware and software setup, experimental configuration, as well as the evaluation metrics.

Datasets. We used two different benchmark suites for data in our experiments, LargeRDFBench [61] and Wat-
Div [9], with a total of four datasets, detailed in Table 3 along with some characteristics and statistics. LargeRDF-
Bench is a well-known benchmark suite for federated RDF engines that comprises 13 different, interlinked datasets

3Code is available on the following GitHub repository: https://github.com/dkw-aau/Lothbrok-Java.
4https://jena.apache.org
5https://relweb.cs.aau.dk/lothbrok.

https://github.com/dkw-aau/Lothbrok-Java
https://jena.apache.org
https://relweb.cs.aau.dk/lothbrok

1150 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

Table 3

Characteristics of the used datasets

Dataset #triples #subjects #predicates #objects #fragments Struct. [21]

LargeRDFBench 1,003,960,176 165,785,212 2,160 326,209,517 2,160 0.926

LinkedTCGA-M 415,030,327 83,006,609 6 166,106,744 8 1

LinkedTCGA-E 344,576,146 57,429,904 7 84,403,402 8 1

LinkedTCGA-A 35,329,868 5,782,962 383 8,329,393 209 0.98

ChEBI 4,772,706 50,477 28 772,138 21 0.34

DBPedia-Subset 42,849,609 9,495,865 1,063 13,620,028 1,774 0.196

DrugBank 517,023 19,693 119 276,142 11 0.726

GeoNames 107,950,085 7,479,714 26 35,799,392 23 0.518

Jamendo 1,049,647 335,925 26 440,686 7 0.961

KEGG 1,090,830 34,260 21 939,258 3 0.919

LinkedMDB 6,147,996 694,400 222 2,052,959 135 0.729

NYT 335,198 21,666 36 191,538 6 0.731

SWDF 103,595 11,974 118 37,547 12 0.426

Affymetrix 44,207,146 1,421,763 105 13,240,270 12 0.506

watdiv10M 10,916,457 521,585 86 1,005,832 86 0.42

watdiv100M 108,997,714 5,212,385 86 9,753,266 86 0.42

watdiv1000M 1,092,155,948 52,120,385 86 92,220,397 86 0.42

with over a billion triples in total, used to test LOTHBROK in a realistic setting where users would upload several
interlinked datasets to a network and ask queries with varying complexity. Notice that the total number of fragments
over the datasets in LargeRDFBench exceed the number of fragments for LargeRDFBench overall. This is due to
some fragments spanning multiple datasets, e.g., LinkedTCGA-M and LinkedTCGA-E span the exact same frag-
ments. WatDiv is a synthetic benchmark used to test the scalability of the approaches when the network is under
heavy load, and to assess the impact of the query pattern on performance and network usage. We generated three
differently sized WatDiv datasets, from 10 million triples to 1 billion triples.

Fragments. To provide a fair comparison between the systems with and without LOTHBROK, we created an equal
number of fragments for both fragmentation methods, characteristic sets (Section 4.2) and predicate-based, fol-
lowing the approach outlined in Section 4.2. Fig. 15 shows an overview of the following characteristics of each
fragment over each dataset: pairwise similarity SIM (Fig. 15(a)): given two fragments f1 and f2 with characteristic
sets CS1 and CS2, SIM(f1, f2) = |CS1 ∩ CS2|/|CS1 ∪ CS2|, i.e., Jaccard similarity, number of entities per frag-
ment (Fig. 15(b)), number of predicates per fragment (Fig. 15(c)), and number of triples per fragment (Fig. 15(d)).
Additionally, to assess the impact of reducing the number of characteristic sets on query completeness, we ran sim-
ilar experiments where we did not create an equal number of fragments for LOTHBROK, i.e., where we created one
fragment for each characteristic set that describes at least 50 subjects and provide the results on our website5; since
these results are quite similar to the ones presented in this section, we will not report on them further.

Queries. LargeRDFBench includes 40 queries [61] in five different categories of varying complexity: Simple (S),
Complex (C), Large Data (L), and Complex and High Data Sources (CH). For WatDiv, we used WatDiv star query
loads from [3] consisting of 1–3 star patterns, called the watdiv-1_star, watdiv-2_star, and watdiv-
3_star query loads, as well as a query load consisting of path queries, i.e., queries where each star pattern only
has one triple pattern, called the watdiv_path query load. Each of these query loads consists of 6,400 different
queries. Furthermore, we combine the aforementioned query loads into a single query load called watdiv-union.
Last, we created a query load with 19,968 queries from the WatDiv stress testing query templates (156 per node)
called watdiv-sts. The complete set of queries is available on our website5.

Fig. 16 shows an overview of the following characteristics of each load [3,10]: Triple pattern count #TP
(Fig. 16(a)), join vertex count #JV (Fig. 16(b)), join vertex degree DEG (Fig. 16(c)), result cardinality #Results
(Fig. 16(d)), mean triple pattern selectivity SELG(tp) (Fig. 16(e)), and join vertex type (Fig. 16(f)).

Experimental Configuration. We compare the following systems: (1) PIQNIC [4] using PPBF indexes [5]
(PIQNIC), (2) LOTHBROK on top of PIQNIC (LOTHBROKPIQNIC), (3) COLCHAIN [6] using PPBF indexes

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1151

Fig. 15. Characteristics of the computed fragments over all the included datasets.

(COLCHAIN), and (4) LOTHBROK on top of COLCHAIN (LOTHBROKCOLCHAIN). All configurations were run on
networks with 128 nodes. To assess the scalability of LOTHBROK under load, we ran 156 watdiv-sts queries
concurrently on each node over 8 different configurations where 2i nodes issue queries concurrently such that
0 � i � 7 (i.e., up to all 128 nodes). Furthermore, to analyze the impact of the query pattern on performance,
we ran the WatDiv star query loads over each WatDiv dataset size such that for each star query load, each node
issued 50 queries. Lastly, we tested the performance of LOTHBROK over each individual query in LargeRDFBench
by running the queries sequentially in random order on three randomly selected nodes and report the average result.

Hardware Configuration. For all configurations and P2P systems, we ran 128 nodes concurrently on a virtual
machine (VM) with 128 vCPU cores with a clock speed of 2.5 GHz, 64KB L1 cache, 512KB L2 cache, 8192KB
L3, and a total of 2TB main memory. To spread out resources evenly across nodes, all nodes were restricted to
use 1 vCPU core and 15GB memory, enforced using the -Xmx and -XX:ActiveProcessorCount options for
the JVM. Furthermore, to simulate a more realistic scenario, where nodes are not run on the same machine, we
simulated a connection speed of 20 MB/s.

Evaluation Metrics. We measured the following metrics:

– Workload Time (WT): The amount of time (in milliseconds) it takes to complete an entire workload including
queries that time out.

– Throughput (TP): The number of completed queries in the workload divided by the total workload time (i.e.,
number of queries per minute).

– Number of Timeouts (NTO): The number of queries that timed out (timeout being 1200 seconds).

1152 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

Fig. 16. Characteristics of all query loads (WatDiv query loads over watdiv100M; statistics over the watdiv10M and watdiv1000M datasets
can be found on our website5).

– Query Execution Time (QET): The amount of time (in milliseconds) elapsed between when a query is issued
and when its processing has finished.

– Query Response Time (QRT): The amount of time (in milliseconds) elapsed between when a query is issued
and when the first result is computed.

– Query Optimization Time (QOT): The amount of time (in miliseconds) elapsed between when a query is issued
and when the optimizer has finished (i.e., when query execution starts).

– Number of Requests (REQ): The number of requests made between nodes when processing a query (including
requests made from nodes that have been delegated subqueries).

– Number of Transferred Bytes (NTB): The amount of data (in bytes) transferred between nodes when processing
a query (including data transferred to and from nodes that have been delegated subqueries).

– Number of Relevant Nodes (NRN): The number of distinct nodes that replicate fragments containing relevant
data to a query.

– Number of Relevant Fragments (NRF): The number of distinct fragments containing relevant data to a query.

Software Configuration. Unless otherwise specified, we used the following parameters when running the systems.
For COLCHAIN, we used the following parameters recommended in [6]: Community Size: 20, Number of Commu-
nities: 200. For PIQNIC, we use the following parameters recommended in [4]: Time-to-Live (number of hops): 5,
Number of Neighbors: 5. The replication factor for PIQNIC (i.e., the percentage of nodes replicating each fragment)
was matched with the size of the communities in COLCHAIN to provide a better comparison. Nodes were randomly
assigned neighbors throughout the network. The page size (i.e., how many results can be returned with each request,
was set to 100. Furthermore, to limit the size of HTTP requests, the number of results that each system was allowed
to attach to each request (i.e., |
| in Section 6) was set to |
| = 30 The timeout for all systems and queries was set
to 20 minutes (1,200 seconds).

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1153

Fig. 17. Throughput (TP), number of timeouts (NTO), and workload time (WT) for watdiv-sts over the watdiv10M, watdiv100M, and
watdiv1000M datasets.

7.2. Scalability under load

In these experiments, we ran the watdiv-sts queries over each WatDiv dataset in configurations where 2i

nodes issued 156 queries from the watdiv-sts query load concurrently such that 0 � i � 7. Figures 17(a)–17(c)
show the throughput (TP) of the watdiv-sts query load over each configuration in the scalability tests for the
watdiv10M (Fig. 17(a)), watdiv100M (Fig. 17(b)), and watdiv1000M (Fig. 17(c)) datasets in logarithmic
scale. Clearly, LOTHBROK has a significantly higher throughput across all datasets and configurations compared
to the approaches that do not include LOTHBROK (i.e., PIQNIC and COLCHAIN). In fact, for watdiv10M, this

1154 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

increase in throughput is close to two orders of magnitude. While the increase in throughput that LOTHBROK

provides is smaller for both watdiv100M and watdiv1000M, LOTHBROK still increases the throughput by close
to an order of magnitude for these datasets. Furthermore, while some results show that COLCHAIN has a slightly
higher throughput than PIQNIC, both with and without LOTHBROK on top, this difference is relatively negligible.
Last, the results show that the throughput of LOTHBROK is relatively stable when increasing numbers of nodes issue
queries concurrently. In fact, even when every node in the network issues queries concurrently, the throughput is
relatively close to the highest throughput throughout the configurations.

Figures 17(d)–17(f) show the number of queries that timed out (TO) of the watdiv-sts query load over each
configuration for each WatDiv dataset. As expected, the number of timeouts increases relatively linearly with the
number of nodes issuing queries concurrently. This is due to the fact that when more nodes issue queries, more
queries in total are executed, meaning the total number of the queries that time out increases. Generally, the queries
that time out correspond to query templates that result in a large number of intermediate results, e.g., by using the
rdfs:label predicate. Furthermore, PIQNIC and COLCHAIN incur significantly more timeouts without LOTH-
BROK compared to with LOTHBROK. In fact, for both watdiv10M and watdiv100M, LOTHBROK experiences
no timeouts while PIQNIC and COLCHAIN experience 267 timeouts for watdiv10M and 1,148 timeouts for wat-
div1000M. Even for watdiv1000M, the number of timeouts experienced by LOTHBROK is just 1,151 while
PIQNIC and COLCHAIN both experience 4,036 timeouts. Furthermore, PIQNIC and COLCHAIN incur the exact
same number of timeouts.

While queries can time out for several different reason, the queries that timed out in our experiments have some
common characteristics. Specifically, they are typically the queries that result in a large number of intermediate
results. This is particularly the case for PIQNIC and COLCHAIN, since general predicates such as rdf:type result
in querying large fragments and many intermediate results. LOTHBROK is able to mitigate this effect by processing
those triple patterns as part of a larger star pattern, lowering the total number of intermediate results. On the other
hand, the few queries that timeout for LOTHBROK over watdiv1000M are the queries specifically with a large
number of star patterns with very common characteristic sets as we see in Section 7.3. A deeper analysis of what
causes systems like PIQNIC and COLCHAIN to timeout requires further research that is out of scope for this paper;
nevertheless, it is an interesting aspect to look into in the future.

Figures 17(g)–17(i) show the workload time (WT) for each configuration. In line with the throughput and number
of timeouts, LOTHBROK incurs a significantly lower average workload time than PIQNIC and COLCHAIN across all
experiments and datasets. The slight decrease in the workload time for fewer nodes can be attributed to the network
being able to process more queries concurrently when the overall load is relatively low. Nevertheless, the average
workload time only increases slightly even when all nodes issue queries concurrently.

Overall, our experimental results show that, even when the network is under heavy query processing load, LOTH-
BROK increases the query throughput and decreases the average workload time significantly compared to state-of-
the-art decentralized systems. In fact, the increase in performance is up to two orders of magnitude. As a result,
LOTHBROK is also able to finish more queries without timing out.

7.3. Impact of query pattern

To test the impact of the query pattern on the performance of LOTHBROK, we ran the watdiv-1_star,
watdiv-2_star, watdiv-3_star, watdiv-path, watdiv-union, and watdiv-sts query loads on
each system; the watdiv-sts queries consist of, on average, more selective star patterns compared to the other
WatDiv query loads (Fig. 16).

Figures 18(a)–18(c) show the execution time (QET) for each WatDiv query load over each WatDiv dataset, and
Figs 18(d)–18(f) show the response time (QRT) for each WatDiv query load in logarithmic scale. Our results show
that LOTHBROK has significantly better performance across all datasets for almost every query load. As expected,
the improvement in performance is more significant for the query loads with a lower number of star patterns. This
is due to the fact that since the star patterns within these queries represent a large part of the query, LOTHBROK

has to issue fewer requests overall, lowering the network overhead. For instance, the queries in the watdiv-

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1155

Fig. 18. Query execution time (QET) and query response time (QRT) for the WatDiv datasets.

1_star query load can by LOTHBROK be answered by issuing 0.89 requests per 90 results6, whereas PIQNIC and
COLCHAIN have to issue 9.27 requests per 90 results on average, for watdiv1000M in our experiments. In the
watdiv-3_star query load, the improvement in performance is more modest across the datasets since each star
pattern is a relatively small part of the query resulting in a higher number of requests; however, on average, we still
see a performance increase of up to an order of magnitude.

We notice that for the watdiv-path query load, LOTHBROK actually has a slightly worse performance both
in terms of QET and QRT compared to PIQNIC and COLCHAIN due to higher network usage. Fig. 19 shows the
number of relevant fragments (NRF) and the number of relevant nodes (NRN) for each query load over each dataset
after optimization (similar figures are provided for NRF and NRN before optimization on our website5). Analyzing
these results, we see that the decreased performance for watdiv-path is caused by LOTHBROK having a signifi-
cantly larger number of relevant fragments and by extension a larger number of relevant nodes compared to PIQNIC

and COLCHAIN. In fact, this is the case for all the WatDiv query loads (9 times larger for watdiv-path while
up to 5 times larger for the other query loads); however, for the other query loads, this is compensated by the in-
creased performance that the query optimization approach provides. This analysis is corroborated by the number of
fragments pruned during optimization for each query load (figures provided on our website5); the watdiv-path
query load has significantly less pruned fragments compared to the other query loads except watdiv-1_star.
For PIQNIC and COLCHAIN, the number of relevant fragments will always equal the number of unique predicates in
the query since one fragment is created per predicate; however, due to fragmenting the data based on characteristic
sets, LOTHBROK can encounter multiple fragments for each unique predicate in the query. Furthermore, the number
of relevant fragments is, on average, more than twice as high for LOTHBROK over the watdiv-path query load
than over the other query loads. This is because the queries in this query load include between 5 and 9 star-shaped

6Even though one request can fetch up to 90 results, the average number of requests is lower than 1 since the nodes store some data locally.

1156 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

Fig. 19. Number of relevant fragments (NRF) and number of relevant nodes (NRN) for the WatDiv datasets.

subqueries, each of which consists of a single triple pattern which is considerably less selective of characteristic set
fragments than subqueries with more triple patterns (Fig. 16).

Nevertheless, the slightly worse performance for LOTHBROK over watdiv-path is compensated by the signif-
icantly improved performance over the other query loads, so we still see a performance increase for the watdiv-
union query load. As such, our experimental results show that LOTHBROK is generally able to increase perfor-
mance over queries with star-shaped subqueries (i.e., all other queries than path queries) significantly and that the
increase in performance depends on the shape of the query; queries with fewer but larger star patterns (cf. Fig. 16(c))
show a bigger performance increase than queries with many but small star patterns.

7.4. Network usage

Fig. 20 shows the network usage when processing WatDiv queries over each WatDiv dataset in terms of the
number of requests (Figs 20(a)–20(c)) and the number of transferred bytes (Figs 20(d)–20(f)) in logarithmic scale.
LOTHBROK incurs a significant lower network overhead for all query loads except watdiv-path despite the
larger number of relevant fragments as discussed in Section 7.3. This is caused by LOTHBROK having to send
significantly fewer requests for each star pattern since a star pattern can be processed entirely over the relevant
fragments, even if there are more fragments (and thus nodes) to send the requests to. Again, the query loads with
a smaller number of star patterns see a larger decrease in network usage since larger parts of the queries can be
processed by individual nodes. Since the queries in the watdiv-path query load do not benefit from the star
pattern-based query processing, the network usage is slightly higher; however, even still, the watdiv-union
shows an improvement in the network usage for LOTHBROK. These results are in line with the experiments shown
in Sections 7.2 and 7.3 and support the hypothesis that LOTHBROK increases performance by lowering the network
overhead when processing queries, compared to state-of-the-art systems such as PIQNIC and COLCHAIN.

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1157

Fig. 20. Number of requests (REQ) and number of transferred bytes (NTB) for the WatDiv datasets.

7.5. Performance of individual queries

In these experiments, we ran the LargeRDFBench queries three times on each system sequentially to test the per-
formance of those individual queries and report the average results. Figure 21 shows the execution time (Fig. 21(a)),
response time (Fig. 21(b)), and optimization time (Fig. 21(c)) for the C query load over LargeRDFBench in loga-
rithmic scale. Similar figures for the other LargeRDFBench query loads are provided on our website5. The results
in Fig. 21 are similar to the remaining query loads; we show the C query load since this query load had the most
diversity in the performance across the queries.

While, in our experiments, LOTHBROK provides an improvement for the execution time (Fig. 21(a)) across all
the queries in LargeRDFBench, the improvement varies based on the query shape in line with the findings of [3,13]
and the query shape experiments shown in Section 7.3. For instance, query C4 consists of one highly selective star
pattern with 6 unique predicates. LOTHBROK is thus able to answer C4 with one request to the only fragment with
that predicate combination, while PIQNIC and COLCHAIN have to send at least one request per triple pattern. Hence,
LOTHBROK has around two orders of magnitude better performance for this particular query. On the other hand,
query C5 consists of four star patterns, two of which contain only one triple pattern with one of them being the very
common rdfs:label predicate. As a result, LOTHBROK has more than twice the number of relevant fragments
for C5 compared to both PIQNIC and COLCHAIN. Nevertheless, LOTHBROK still has slightly improved performance
for C5 compared to PIQNIC and COLCHAIN since the query still contains two star patterns with three triple patterns
each, meaning the increased optimization and communication overhead that the additional relevant fragments entail
is offset by the benefits of processing the star patterns over the individual fragments. The response times (Fig. 21(b))
show a similar comparison between the systems as the execution times (Fig. 21(a)) with the exception of query C4.
Again, the reason being that LOTHBROK can process this query with a single request, and therefore the first result
is obtained immediately after receiving the response to the request.

1158 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

Fig. 21. Query execution time (a), response time (b), and optimization time (c) for the C query load over LargeRDFBench.

However, the optimization times (Fig. 21(c)) differ quite significantly depending on the number of relevant frag-
ments to the query. For instance, queries like C5 and C6 (that contain a star pattern consisting of a single triple
pattern with a very common predicate) incur a significant number of relevant fragments for LOTHBROK (286 for C5
and 144 for C6) and thus a higher optimization time. This is the case, since a higher number of relevant fragments
means a higher number of SPBFs have to be intersected which represents an overhead. In all of these cases, however,
the benefits of processing entire star patterns over the fragments, in terms of decreased network overhead mean that
the overall execution time is still lower for LOTHBROK. This is especially the case for C6, which contains a star
pattern with 6 triple patterns that in PIQNIC and COLCHAIN have to be processed individually. On the other hand,
queries like C4 that contain few very selective star patterns have a low optimization time for LOTHBROK, since
each star pattern have very few relevant fragments. In the case of C4, PIQNIC and COLCHAIN have a relatively high
number of relevant fragments due to one of the predicates being the common owl:sameAs predicate that occurs
in multiple datasets. As a result, PIQNIC and COLCHAIN have a significantly higher optimization time for this query
compared to LOTHBROK.

Figure 22 shows the number of transferred bytes (Fig. 22(a)), the number of requests (Fig. 22(b)), the number of
relevant fragments (Fig. 22(c)), and the number of relevant nodes (Fig. 22(d)) for each LargeRDFBench query load

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1159

Fig. 22. Number of transferred bytes (NTB) (a), number of requests (REQ) (b), number of relevant fragments (NRF) (c), and number of relevant
nodes (NRN) (d) for each LargeRDFBench query load.

in logarithmic scale. We provide figures displaying each measure in Fig. 22 for each individual LargeRDFBench
query on our website5. As with the experiments shown in Section 7.4, LOTHBROK clearly incurs a lower network
usage than both PIQNIC and COLCHAIN, both in terms of data transfer (Fig. 22(a)) and the number of requests made
(Fig. 22(b)). This, together with the performance experiments, shows that LOTHBROK is able to reduce the network
overhead significantly across all query loads and, in doing so, increase the performance overall.

Interestingly, while for most query loads, LOTHBROK has a higher number of relevant fragments (Fig. 22(c))
in line with the experiments presented in Section 7.3, for the L query load, LOTHBROK has a lower number of
relevant fragments in most queries. The reason is that the queries in this query load mostly use data from the
quite structured linkedTCGA datasets which contain few similar characteristic sets, thus incurring a low number
of relevant fragments per star pattern. On the other hand, for PIQNIC and COLCHAIN, the fact that some star
patterns with a low number of triple patterns include common predicates like rdf:type increases the number
of relevant fragments. The number of relevant nodes (Fig. 22(d)) shows a similar trend to the number of relevant
fragments since each fragment is replicated across 20 nodes; in some cases, however, where two relevant fragments
are simultaneously replicated by some of the same nodes, the actual number of relevant nodes will be a bit lower
than when the relevant nodes replicate exactly one relevant fragment.

Our results are similar for all query loads (figures provided on our website5) and show that even for the complex
queries in query loads C and CH and the queries with a large number of intermediate results in query load L,
LOTHBROK presents a significant performance increase because it lowers the communication overhead. For some
queries, this is quite significant; for instance the queries C4 and S3 where LOTHBROK increases execution time
by up to two orders of magnitude. Furthermore, some queries in the L and CH groups that timed out for PIQNIC

and COLCHAIN, such as L3 and CH2, finished within the timeout of 1200 seconds for LOTHBROK. This is in line
with the results presented in Section 7.2 and suggests that LOTHBROK is able to complete more queries within the
timeout than the state-of-the-art systems.

1160 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

7.6. Discussion

Our experimental evaluations show that LOTHBROK significantly improves query performance while lowering
the communication overhead compared to PIQNIC and COLCHAIN. LOTHBROK does so by distributing subqueries
to other nodes such that the estimated network cost is limited as much as possible, and by processing entire star
patterns over the individual fragments. In doing so, LOTHBROK decreases the network usage both in terms of the
data transfer and number of requests, and increases performance by up to two orders of magnitude compared to the
state of the art. Moreover, LOTHBROK does so while providing scalable performance under load; in fact, even when
all nodes in the network issue queries concurrently, LOTHBROK maintains efficient query processing.

The only exception to the improved scalability and performance in our experiments is the slightly worse per-
formance for path queries in LOTHBROK compared to existing approaches. This is mainly caused by factors like
similarity and coplanarity of fragments having an effect on the performance of LOTHBROK that is not mitigated by
star-shaped query optimizations. Specifically, we see an increased number of relevant fragments and lower number
of pruned fragments per query incurred by LOTHBROK over the path queries caused by many of the fragments con-
taining very similar characteristic sets. Optimizing queries for such path queries is a difficult problem, corroborated
by several previous studies [3,13,28,52,55], and was out of scope of this paper. Nevertheless, looking into query
optimization for path queries is an interesting topic for future work. For instance, one possible solution to the path
query optimization problem could be co-location of fragments relevant for common paths on the same nodes, sim-
ilar to workload-aware fragmentation techniques [8,39], or storing and using statistics about commonly used paths
as part of the query optimization step.

We emphasize that our goal with this work was not to beat client-server systems like SPF [3] or WiseKG [13] in
terms of performance, rather we aimed at making query processing in the decentralized setup, where node failures
can be tolerated [4], more feasible with high scalability. While this paper specifically aims to optimize queries, the
nature of P2P networks means that processing queries comes at a performance cost due to queries having to be split
across multiple nodes that is impossible to remove completely. In any case, P2P systems also have the benefit that
the query processing effort is divided across several nodes. As such, even when the network incurs heavy load, the
performance should stay relatively stable in contrast to the centralized solutions. In fact, our scalability experiments
in Section 7.2 clearly support this since they show that the query throughput hardly decreases, even when all the
nodes in the network process queries at the same time (Fig. 17). On the other hand, the analysis provided by [4,13]
of SPF and WiseKG (both are client-server systems where all queries have to be evaluated on a single server holding
all the data) show a significant decrease in query throughput when the load increases.

8. Conclusions

In this paper, we proposed LOTHBROK, a novel query optimization approach for SPARQL queries over decen-
tralized knowledge graphs. LOTHBROK builds upon recent work on decentralized Peer-to-Peer (P2P) systems [4,6]
and introduces a novel fragmentation technique based on characteristic sets [55], i.e., predicate families, as well as
a novel indexing scheme that summarizes the sets of subjects and objects in a fragment using partitioned bitvec-
tors. Furthermore, LOTHBROK proposes a query optimization strategy based on cardinality estimation, fragment
compatibility, and data locality that is able to delegate the processing of (sub)queries to other, neighboring nodes
in the network that hold relevant data. We implemented our approach on top of two recent systems and evaluated
LOTHBROK’s capabilities over well-known benchmarking suites containing real-world data and queries, as well as
the performance of LOTHBROK under load using large-scale synthetic datasets and stress-testing query templates.
The experimental results show that LOTHBROK significantly reduces the network overhead when processing queries
in a P2P network and, in doing so, increases performance by up to two orders of magnitude.

While LOTHBROK generally improves performance, our experimental results showed that path queries have
slightly worse performance for LOTHBROK than existing approaches. As such, our future work includes looking
into the optimization problem for path queries, e.g., by co-locating relevant fragments for common path patterns
on the same nodes, similar to workload-aware partitioning techniques [8,39]. Furthermore, a complete analysis
of the effects of graph complexity metrics, like density and centrality, on the fragment skew, query performance,

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1161

and indexing strategy, as well as an analysis of different fragmentation techniques, e.g., based on SHACL/ShEx
shapes [59,60], is important future work. We also plan to expand the range of supported queries to include aggre-
gation and analytical queries [25,41], and add support for provenance both for data [11,29,31], so that the system
has information about the origin of the data it uses, as well as for queries [35] so that the system can explain how
query answers were computed. Finally, we plan to generalize our approach to other types of distributed graphs,
extend the query optimizer to support relevance scores or benefit-based source selection [38], extend our approach
with methods for handling inconsistent or conflicting data, analyze the benefits and tradeoffs of the merging proce-
dure presented in Section 4 and indexes presented in Section 4.3 using even more diverse real-world datasets, and
investigate the potential benefits of allowing execution plans of any shape (i.e., removing the assumption, given in
Section 5, that execution plans are always left-deep).

Acknowledgements

This research was partially funded by the Independent Research Fund Denmark (DFF) under grant agreement no.
DFF-8048-00051B and the Poul Due Jensen Foundation.

References

[1] M. Acosta and M. Vidal, Networks of linked data eddies: An adaptive web query processing engine for RDF data, in: The Semantic Web –
ISWC 2015 – 14th International Semantic Web Conference, Proceedings, Part I Bethlehem, PA, USA, October 11–15, 2015, M. Arenas,
Ó. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan and S. Staab, eds,
Lecture Notes in Computer Science, Vol. 9366, Springer, 2015, pp. 111–127. doi:10.1007/978-3-319-25007-6_7.

[2] M. Acosta, M. Vidal, T. Lampo, J. Castillo and E. Ruckhaus, ANAPSID: An adaptive query processing engine for SPARQL endpoints,
in: The Semantic Web – ISWC 2011 – 10th International Semantic Web Conference, Proceedings, Part I, Bonn, Germany, October 23–27,
2011, L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N.F. Noy and E. Blomqvist, eds, Lecture Notes in Computer Science,
Vol. 7031, Springer, 2011, pp. 18–34. doi:10.1007/978-3-642-25073-6_2.

[3] C. Aebeloe, I. Keles, G. Montoya and K. Hose, Star pattern fragments: Accessing knowledge graphs through star patterns, 2020, CoRR,
arXiv:2002.09172.

[4] C. Aebeloe, G. Montoya and K. Hose, A decentralized architecture for sharing and querying semantic data, in: The Semantic Web – 16th
International Conference, ESWC 2019, Portorož, Slovenia, Proceedings, June 2–6, 2019, P. Hitzler, M. Fernández, K. Janowicz, A. Zaveri,
A.J.G. Gray, V. López, A. Haller and K. Hammar, eds, Lecture Notes in Computer Science, Vol. 11503, Springer, 2019, pp. 3–18. doi:10.
1007/978-3-030-21348-0_1.

[5] C. Aebeloe, G. Montoya and K. Hose, Decentralized indexing over a network of RDF peers, in: The Semantic Web – ISWC 2019 –
18th International Semantic Web Conference, Proceedings, Part I, Auckland, New Zealand, October 26–30, 2019, C. Ghidini, O. Hartig,
M. Maleshkova, V. Svátek, I.F. Cruz, A. Hogan, J. Song, M. Lefrançois and F. Gandon, eds, Lecture Notes in Computer Science, Vol. 11778,
Springer, 2019, pp. 3–20. doi:10.1007/978-3-030-30793-6_1.

[6] C. Aebeloe, G. Montoya and K. Hose, ColChain: Collaborative linked data networks, in: WWW’21: The Web Conference 2021, Virtual
Event, Ljubljana, Slovenia, April 19–23, 2021, J. Leskovec, M. Grobelnik, M. Najork, J. Tang and L. Zia, eds, ACM/IW3C2, 2021,
pp. 1385–1396. doi:10.1145/3442381.3450037.

[7] A. Ailamaki, D.J. DeWitt, M.D. Hill and D.A. Wood, DBMSs on a modern processor: Where does time go?, in: VLDB’99, Proceedings of
25th International Conference on Very Large Data Bases, Edinburgh, Scotland, UK, September 7–10, 1999, M.P. Atkinson, M.E. Orlowska,
P. Valduriez, S.B. Zdonik and M.L. Brodie, eds, Morgan Kaufmann, 1999, pp. 266–277, http://www.vldb.org/conf/1999/P28.pdf.

[8] A. Akhter, M. Saleem, A. Bigerl and A.N. Ngomo, Efficient RDF knowledge graph partitioning using querying workload, in: K-CAP’21:
Knowledge Capture Conference, Virtual Event, USA, December 2–3, 2021, A.L. Gentile and R. Gonçalves, eds, ACM, 2021, pp. 169–176.
doi:10.1145/3460210.3493577.

[9] G. Aluç, O. Hartig, M.T. Özsu and K. Daudjee, Diversified stress testing of RDF data management systems, in: The Semantic Web – ISWC
2014–13th International Semantic Web Conference, Proceedings, Part I, Riva del Garda, Italy, October 19–23, 2014, P. Mika, T. Tudorache,
A. Bernstein, C. Welty, C.A. Knoblock, D. Vrandecic, P. Groth, N.F. Noy, K. Janowicz and C.A. Goble, eds, Lecture Notes in Computer
Science, Vol. 8796, Springer, 2014, pp. 197–212. doi:10.1007/978-3-319-11964-9_13.

[10] G. Aluç, O. Hartig, M.T. Özsu and K. Daudjee, Diversified stress testing of RDF data management systems, in: The Semantic Web – ISWC
2014–13th International Semantic Web Conference, Proceedings, Part I, Riva del Garda, Italy, October 19–23, 2014, P. Mika, T. Tudorache,
A. Bernstein, C. Welty, C.A. Knoblock, D. Vrandecic, P. Groth, N.F. Noy, K. Janowicz and C.A. Goble, eds, Lecture Notes in Computer
Science, Vol. 8796, Springer, 2014, pp. 197–212. doi:10.1007/978-3-319-11964-9_13.

https://doi.org/10.1007/978-3-319-25007-6_7
https://doi.org/10.1007/978-3-642-25073-6_2
http://arxiv.org/abs/arXiv:2002.09172
https://doi.org/10.1007/978-3-030-21348-0_1
https://doi.org/10.1007/978-3-030-21348-0_1
https://doi.org/10.1007/978-3-030-30793-6_1
https://doi.org/10.1145/3442381.3450037
http://www.vldb.org/conf/1999/P28.pdf
https://doi.org/10.1145/3460210.3493577
https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1007/978-3-319-11964-9_13

1162 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

[11] A.B. Andersen, N. Gür, K. Hose, K.A. Jakobsen and T.B. Pedersen, Publishing Danish agricultural government data as semantic web data,
in: Semantic Technology – 4th Joint International Conference, JIST 2014, Revised Selected Papers, Chiang Mai, Thailand, November 9–11,
2014, T. Supnithi, T. Yamaguchi, J.Z. Pan, V. Wuwongse and M. Buranarach, eds, Lecture Notes in Computer Science, Vol. 8943, Springer,
2014, pp. 178–186. doi:10.1007/978-3-319-15615-6_13.

[12] C.B. Aranda, A. Hogan, J. Umbrich and P. Vandenbussche, SPARQL web-querying infrastructure: Ready for action?, in: The Semantic
Web – ISWC 2013–12th International Semantic Web Conference, Proceedings, Part II, Sydney, NSW, Australia, October 21–25, 2013,
H. Alani, L. Kagal, A. Fokoue, P. Groth, C. Biemann, J.X. Parreira, L. Aroyo, N.F. Noy, C. Welty and K. Janowicz, eds, Lecture Notes in
Computer Science, Vol. 8219, Springer, 2013, pp. 277–293. doi:10.1007/978-3-642-41338-4_18.

[13] A. Azzam, C. Aebeloe, G. Montoya, I. Keles, A. Polleres and K. Hose, WiseKG: Balanced access to web knowledge graphs, in: WWW’21:
The Web Conference 2021, Virtual Event, Ljubljana, Slovenia, April 19–23, 2021, J. Leskovec, M. Grobelnik, M. Najork, J. Tang and
L. Zia, eds, ACM/IW3C2, 2021, pp. 1422–1434. doi:10.1145/3442381.3449911.

[14] A. Azzam, J.D. Fernández, M. Acosta, M. Beno and A. Polleres, SMART-KG: Hybrid shipping for SPARQL querying on the web, in:
WWW’20: The Web Conference 2020, Taipei, Taiwan, April 20–24, 2020, Y. Huang, I. King, T. Liu and M. van Steen, eds, ACM/IW3C2,
2020, pp. 984–994. doi:10.1145/3366423.3380177.

[15] B.H. Bloom, Space/time trade-offs in hash coding with allowable errors, Commun. ACM 13(7) (1970), 422–426. doi:10.1145/362686.
362692.

[16] D. Brickley, R.V. Guha and B. McBride, in: RDF Schema 1.1, W3C Recommendation, Vol. 25, 2014, pp. 2004–2014.
[17] M. Cai and M.R. Frank, RDFPeers: A scalable distributed RDF repository based on a structured peer-to-peer network, in: Proceedings of

the 13th International Conference on World Wide Web, WWW 2004, New York, NY, USA, May 17–20, 2004, S.I. Feldman, M. Uretsky,
M. Najork and C.E. Wills, eds, ACM, 2004, pp. 650–657. doi:10.1145/988672.988760.

[18] A. Charalambidis, A. Troumpoukis and S. Konstantopoulos, SemaGrow: Optimizing federated SPARQL queries, in: Proceedings of the
11th International Conference on Semantic Systems, SEMANTiCS 2015, Vienna, Austria, September 15–17, 2015, A. Polleres, T. Pellegrini,
S. Hellmann and J.X. Parreira, eds, ACM, 2015, pp. 121–128. doi:10.1145/2814864.2814886.

[19] W.W.W. Consortium et al., SPARQL 1.1 overview (2013).
[20] A. Crespo and H. Garcia-Molina, Routing indices for peer-to-peer systems, in: Proceedings of the 22nd International Conference on

Distributed Computing Systems (ICDCS’02), Vienna, Austria, July 2–5, 2002, IEEE Computer Society, 2002, pp. 23–32. doi:10.1109/
ICDCS.2002.1022239.

[21] S. Duan, A. Kementsietsidis, K. Srinivas and O. Udrea, Apples and oranges: A comparison of RDF benchmarks and real RDF datasets, in:
Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, Athens, Greece, June 12–16, 2011,
T.K. Sellis, R.J. Miller, A. Kementsietsidis and Y. Velegrakis, eds, ACM, 2011, pp. 145–156. doi:10.1145/1989323.1989340.

[22] M. Dumontier, A. Callahan, J. Cruz-Toledo, P. Ansell, V. Emonet, F. Belleau and A. Droit, Bio2RDF release 3: A larger, more connected
network of linked data for the life sciences, in: Proceedings of the ISWC 2014 Posters & Demonstrations Track a Track Within the 13th
International Semantic Web Conference, ISWC 2014, Riva del Garda, Italy, October 21, 2014, M. Horridge, M. Rospocher and J. van
Ossenbruggen, eds, CEUR Workshop Proceedings, Vol. 1272, CEUR-WS.org, 2014, pp. 401–404, https://ceur-ws.org/Vol-1272/paper_
121.pdf.

[23] J.D. Fernández, M.A. Martínez-Prieto, C. Gutierrez, A. Polleres and M. Arias, Binary RDF representation for publication and exchange
(HDT), J. Web Semant. 19 (2013), 22–41. doi:10.1016/j.websem.2013.01.002.

[24] L. Galárraga, K. Hose and R. Schenkel, Partout: A distributed engine for efficient RDF processing, in: 23rd International World Wide Web
Conference, WWW’14, Companion Volume, Seoul, Republic of Korea, C. Chung, A.Z. Broder, K. Shim and T. Suel, eds, ACM, 2014,
pp. 267–268. doi:10.1145/2567948.2577302.

[25] L. Galárraga, K.A. Jakobsen, K. Hose and T.B. Pedersen, Answering provenance-aware queries on RDF data cubes under memory budgets,
in: ISWC, 2018, pp. 547–565.

[26] O. Görlitz and S. Staab, SPLENDID: SPARQL endpoint federation exploiting VOID descriptions, in: Proceedings of the Second Interna-
tional Workshop on Consuming Linked Data (COLD2011), Bonn, Germany, October 23, 2011, O. Hartig, A. Harth and J.F. Sequeda, eds,
CEUR Workshop Proceedings, Vol. 782, CEUR-WS.org, 2011, https://ceur-ws.org/Vol-782/GoerlitzAndStaab_COLD2011.pdf.

[27] D. Graux, G. Sejdiu, H. Jabeen, J. Lehmann, D. Sui, D. Muhs and J. Pfeffer, Profiting from kitties on Ethereum: Leveraging blockchain
RDF with SANSA, in: Proceedings of the Posters and Demos Track of the 14th International Conference on Semantic Systems Co-Located
with the 14th International Conference on Semantic Systems (SEMANTiCS 2018), Vienna, Austria, September 10–13, 2018, A. Khalili and
M. Koutraki, eds, CEUR Workshop Proceedings, Vols 2198, CEUR-WS.org, 2018, https://ceur-ws.org/Vol-2198/paper_124.pdf.

[28] A. Gubichev and T. Neumann, Exploiting the query structure for efficient join ordering in SPARQL queries, in: Proceedings of the
17th International Conference on Extending Database Technology, EDBT 2014, Athens, Greece, March 24–28, 2014, S. Amer-Yahia,
V. Christophides, A. Kementsietsidis, M.N. Garofalakis, S. Idreos and V. Leroy, eds, OpenProceedings.org, 2014, pp. 439–450. doi:10.
5441/002/edbt.2014.40.

[29] E.R. Hansen, M. Lissandrini, A. Ghose, S. Løkke, C. Thomsen and K. Hose, Transparent integration and sharing of life cycle sustainability
data with provenance, in: The Semantic Web – ISWC 2020 – 19th International Semantic Web Conference, Proceedings, Part II, Athens,
Greece, November 2–6, 2020, J.Z. Pan, V.A.M. Tamma, C. d’Amato, K. Janowicz, B. Fu, A. Polleres, O. Seneviratne and L. Kagal, eds,
Lecture Notes in Computer Science, Vol. 12507, Springer, 2020, pp. 378–394. doi:10.1007/978-3-030-62466-8_24.

[30] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K. Sattler and J. Umbrich, Data summaries for on-demand queries over linked data, in:
Proceedings of the 19th International Conference on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26–30, 2010,
M. Rappa, P. Jones, J. Freire and S. Chakrabarti, eds, ACM, 2010, pp. 411–420. doi:10.1145/1772690.1772733.

https://doi.org/10.1007/978-3-319-15615-6_13
https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1145/3442381.3449911
https://doi.org/10.1145/3366423.3380177
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/988672.988760
https://doi.org/10.1145/2814864.2814886
https://doi.org/10.1109/ICDCS.2002.1022239
https://doi.org/10.1109/ICDCS.2002.1022239
https://doi.org/10.1145/1989323.1989340
https://ceur-ws.org/Vol-1272/paper_121.pdf
https://ceur-ws.org/Vol-1272/paper_121.pdf
https://doi.org/10.1016/j.websem.2013.01.002
https://doi.org/10.1145/2567948.2577302
https://ceur-ws.org/Vol-782/GoerlitzAndStaab_COLD2011.pdf
https://ceur-ws.org/Vol-2198/paper_124.pdf
https://doi.org/10.5441/002/edbt.2014.40
https://doi.org/10.5441/002/edbt.2014.40
https://doi.org/10.1007/978-3-030-62466-8_24
https://doi.org/10.1145/1772690.1772733

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1163

[31] O. Hartig et al., RDF-star and SPARQL-star. W3C Draft Community Group. Report, W3C Community (2021), https://w3c.github.io/rdf-
star/cg-spec/2021-12-17.html.

[32] O. Hartig and C.B. Aranda, Bindings-restricted triple pattern fragments, in: On the Move to Meaningful Internet Systems: OTM 2016
Conferences – Confederated International Conferences: CoopIS, C&TC, and ODBASE 2016, Proceedings, Rhodes, Greece, October 24–28,
2016, C. Debruyne, H. Panetto, R. Meersman, T.S. Dillon, E. Kühn, D. O’Sullivan and C.A. Ardagna, eds, Lecture Notes in Computer
Science, Vol. 10033, 2016, pp. 762–779. doi:10.1007/978-3-319-48472-3_48.

[33] L. Heling and M. Acosta, A framework for federated sparql query processing over heterogeneous linked data fragments, 2021, CoRR,
arXiv:2102.03269.

[34] L. Heling, M. Acosta, M. Maleshkova and Y. Sure-Vetter, Querying large knowledge graphs over triple pattern fragments: An empirical
study, in: Querying Large Knowledge Graphs over Triple Pattern Fragments: An Empirical Study, Proceedings, Part II, Monterey, CA,
USA, October 8–12, 2018, D. Vrandecic, K. Bontcheva, M.C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L. Kaffee and E. Simperl,
eds, Lecture Notes in Computer Science, Vol. 11137, Springer, 2018, pp. 86–102. doi:10.1007/978-3-030-00668-6_6.

[35] D. Hernández, L. Galárraga and K. Hose, Computing how-provenance for SPARQL queries via query rewriting, Proc. VLDB Endow. 14(13)
(2021), 3389–3401, http://www.vldb.org/pvldb/vol14/p3389-galarraga.pdf. doi:10.14778/3484224.3484235.

[36] J.V. Herwegen, R. Verborgh, E. Mannens and R.V. de Walle, Query execution optimization for clients of triple pattern fragments, in:
The Semantic Web. Latest Advances and New Domains – 12th European Semantic Web Conference, ESWC 2015, Proceedings, Portoroz,
Slovenia, May 31–June 4, 2015, F. Gandon, M. Sabou, H. Sack, C. d’Amato, P. Cudré-Mauroux and A. Zimmermann, eds, Lecture Notes
in Computer Science, Vol. 9088, Springer, 2015, pp. 302–318. doi:10.1007/978-3-319-18818-8_19.

[37] K. Hose, Knowledge graph (R)evolution and the web of data, in: Proceedings of the 7th Workshop on Managing the Evolution and Preser-
vation of the Data Web (MEPDaW) Co-Located with the 20th International Semantic Web Conference (ISWC 2021), Virtual Event, October
25th, 2021, CEUR Workshop Proceedings, Vol. 3225, CEUR-WS.org, 2021, pp. 1–7, https://ceur-ws.org/Vol-3225/paper1.pdf.

[38] K. Hose and R. Schenkel, Towards benefit-based RDF source selection for SPARQL queries, in: Proceedings of the 4th International
Workshop on Semantic Web Information Management, SWIM 2012, Scottsdale, AZ, USA, May 20, 2012, R.D. Virgilio, F. Giunchiglia and
L. Tanca, eds, ACM, 2012, p. 2. doi:10.1145/2237867.2237869.

[39] K. Hose and R. Schenkel, WARP: Workload-aware replication and partitioning for RDF, in: Workshops Proceedings of the 29th IEEE
International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8–12, 2013, C.Y. Chan, J. Lu, K. Nørvåg and
E. Tanin, eds, IEEE Computer Society, 2013, pp. 1–6. doi:10.1109/ICDEW.2013.6547414.

[40] D. Ibragimov, K. Hose, T.B. Pedersen and E. Zimányi, Processing aggregate queries in a federation of SPARQL endpoints, in: The Semantic
Web. Latest Advances and New Domains – 12th European Semantic Web Conference, ESWC 2015, Proceedings, Portoroz, Slovenia, May
31–June 4, 2015, F. Gandon, M. Sabou, H. Sack, C. d’Amato, P. Cudré-Mauroux and A. Zimmermann, eds, Lecture Notes in Computer
Science, Vol. 9088, Springer, 2015, pp. 269–285. doi:10.1007/978-3-319-18818-8_17.

[41] D. Ibragimov, K. Hose, T.B. Pedersen and E. Zimányi, Optimizing aggregate SPARQL queries using materialized RDF views, in: The
Semantic Web – ISWC 2016–15th International Semantic Web Conference, Proceedings, Part I, Kobe, Japan, October 17–21, 2016, P. Groth,
E. Simperl, A.J.G. Gray, M. Sabou, M. Krötzsch, F. Lécué, F. Flöck and Y. Gil, eds, Lecture Notes in Computer Science, Vol. 9981, 2016,
pp. 341–359. doi:10.1007/978-3-319-46523-4_21.

[42] S. Issa, O. Adekunle, F. Hamdi, S.S. Cherfi, M. Dumontier and A. Zaveri, Knowledge graph completeness: A systematic literature review,
IEEE Access 9 (2021), 31322–31339. doi:10.1109/ACCESS.2021.3056622.

[43] A.L. Jakobsen, G. Montoya and K. Hose, How diverse are federated query execution plans really?, in: The Semantic Web: ESWC 2019
Satellite Events – ESWC 2019 Satellite Events, Revised Selected Papers, Portorož, Slovenia, June 2–6, 2019, P. Hitzler, S. Kirrane, O. Hartig,
V. de Boer, M. Vidal, M. Maleshkova, S. Schlobach, K. Hammar, N. Lasierra, S. Stadtmüller, K. Hose and R. Verborgh, eds, Lecture Notes
in Computer Science, Vol. 11762, Springer, 2019, pp. 105–110. doi:10.1007/978-3-030-32327-1_21.

[44] Z. Kaoudi, M. Koubarakis, K. Kyzirakos, I. Miliaraki, M. Magiridou and A. Papadakis-Pesaresi, Atlas: Storing, updating and querying
RDF(s) data on top of DHTs, J. Web Semant. 8(4) (2010), 271–277. doi:10.1016/j.websem.2010.07.001.

[45] M. Karnstedt, K. Sattler, M. Richtarsky, J. Müller, M. Hauswirth, R. Schmidt and R. John, UniStore: Querying a DHT-based universal
storage, in: Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, the Marmara Hotel, Istanbul, Turkey,
April 15–20, 2007, R. Chirkova, A. Dogac, M.T. Özsu and T.K. Sellis, eds, IEEE Computer Society, 2007, pp. 1503–1504. doi:10.1109/
ICDE.2007.369054.

[46] P. Larson, Dynamic hash tables, Commun. ACM 31(4) (1988), 446–457. doi:10.1145/42404.42410.
[47] E. Mansour, A.V. Sambra, S. Hawke, M. Zereba, S. Capadisli, A. Ghanem, A. Aboulnaga and T. Berners-Lee, A demonstration of the

solid platform for social web applications, in: Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Com-
panion Volume, Montreal, Canada, April 11–15, 2016, J. Bourdeau, J. Hendler, R. Nkambou, I. Horrocks and B.Y. Zhao, eds, ACM, 2016,
pp. 223–226. doi:10.1145/2872518.2890529.

[48] T. Minier, H. Skaf-Molli and P. Molli, SaGe: Web preemption for public SPARQL query services, in: The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13–17, 2019, L. Liu, R.W. White, A. Mantrach, F. Silvestri, J.J. McAuley, R. Baeza-Yates and
L. Zia, eds, ACM, 2019, pp. 1268–1278. doi:10.1145/3308558.3313652.

[49] G. Montoya, C. Aebeloe and K. Hose, Towards efficient query processing over heterogeneous RDF interfaces, in: Proceedings of the 2nd
Workshop on Decentralizing the Semantic Web Co-Located with the 17th International Semantic Web Conference, DeSemWeb@ISWC 2018,
Monterey, California, USA, October 8, 2018, R. Verborgh, T. Kuhn and T. Berners-Lee, eds, CEUR Workshop Proceedings, Vols 2165,
CEUR-WS.org, 2018, https://ceur-ws.org/Vol-2165/paper4.pdf.

https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html
https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html
https://doi.org/10.1007/978-3-319-48472-3_48
http://arxiv.org/abs/arXiv:2102.03269
https://doi.org/10.1007/978-3-030-00668-6_6
http://www.vldb.org/pvldb/vol14/p3389-galarraga.pdf
https://doi.org/10.14778/3484224.3484235
https://doi.org/10.1007/978-3-319-18818-8_19
https://ceur-ws.org/Vol-3225/paper1.pdf
https://doi.org/10.1145/2237867.2237869
https://doi.org/10.1109/ICDEW.2013.6547414
https://doi.org/10.1007/978-3-319-18818-8_17
https://doi.org/10.1007/978-3-319-46523-4_21
https://doi.org/10.1109/ACCESS.2021.3056622
https://doi.org/10.1007/978-3-030-32327-1_21
https://doi.org/10.1016/j.websem.2010.07.001
https://doi.org/10.1109/ICDE.2007.369054
https://doi.org/10.1109/ICDE.2007.369054
https://doi.org/10.1145/42404.42410
https://doi.org/10.1145/2872518.2890529
https://doi.org/10.1145/3308558.3313652
https://ceur-ws.org/Vol-2165/paper4.pdf

1164 C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs

[50] G. Montoya, I. Keles and K. Hose, Analysis of the effect of query shapes on performance over LDF interfaces, in: Proceedings of the
QuWeDa 2019: 3rd Workshop on Querying and Benchmarking the Web of Data Co-Located with 18th International Semantic Web Confer-
ence (ISWC 2019), Auckland, New Zealand, October 26–30, 2019, M. Saleem, A. Hogan, R. Usbeck, A.N. Ngomo and R. Verborgh, eds,
CEUR Workshop Proceedings, Vol. 2496, CEUR-WS.org, 2019, pp. 51–66, https://ceur-ws.org/Vol-2496/paper4.pdf.

[51] G. Montoya, I. Keles and K. Hose, Querying linked data: An experimental evaluation of state-of-the-art interfaces, 2019, CoRR, arXiv:
1912.08010.

[52] G. Montoya, H. Skaf-Molli and K. Hose, The odyssey approach for optimizing federated SPARQL queries, in: The Semantic Web –
ISWC 2017 – 16th International Semantic Web Conference, Proceedings, Part I, Vienna, Austria, October 21–25, 2017, C. d’Amato,
M. Fernández, V.A.M. Tamma, F. Lécué, P. Cudré-Mauroux, J.F. Sequeda, C. Lange and J. Heflin, eds, Lecture Notes in Computer Science,
Vol. 10587, Springer, 2017, pp. 471–489. doi:10.1007/978-3-319-68288-4_28.

[53] G. Montoya, M. Vidal and M. Acosta, A heuristic-based approach for planning federated SPARQL queries, in: Proceedings of the Third
International Workshop on Consuming Linked Data, COLD 2012, Boston, MA, USA, November 12, 2012, J.F. Sequeda, A. Harth and
O. Hartig, eds, CEUR Workshop Proceedings, Vol. 905, CEUR-WS.org, 2012, https://ceur-ws.org/Vol-905/MontoyaEtAl_COLD2012.pdf.

[54] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2009, http://www.bitcoin.org/bitcoin.pdf.
[55] T. Neumann and G. Moerkotte, Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins, in: Proceedings

of the 27th International Conference on Data Engineering, ICDE 2011, Hannover, Germany, April 11–16, 2011, S. Abiteboul, K. Böhm,
C. Koch and K. Tan, eds, IEEE Computer Society, 2011, pp. 984–994. doi:10.1109/ICDE.2011.5767868.

[56] O. Papapetrou, W. Siberski and W. Nejdl, Cardinality estimation and dynamic length adaptation for bloom filters, Distributed Parallel
Databases 28 (2010), 119–156. doi:10.1007/s10619-010-7067-2.

[57] Y. Park, S. Ko, S.S. Bhowmick, K. Kim, K. Hong and W. Han, G-CARE: A framework for performance benchmarking of cardinality
estimation techniques for subgraph matching, in: Proceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, Online Conference, Portland, OR, USA, June 14–19, 2020, D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini and
H.Q. Ngo, eds, ACM, 2020, pp. 1099–1114. doi:10.1145/3318464.3389702.

[58] J. Pérez, M. Arenas and C. Gutierrez, Semantics and complexity of SPARQL, ACM Trans. Database Syst. 34(3) (2009), 16:1–16:45. doi:10.
1145/1567274.1567278.

[59] K. Rabbani, M. Lissandrini and K. Hose, Optimizing SPARQL queries using shape statistics, in: Proceedings of the 24th International
Conference on Extending Database Technology, EDBT 2021, Nicosia, Cyprus, March 23–26, 2021, Y. Velegrakis, D. Zeinalipour-Yazti,
P.K. Chrysanthis and F. Guerra, eds, OpenProceedings.org, 2021, pp. 505–510. doi:10.5441/002/edbt.2021.59.

[60] K. Rabbani, M. Lissandrini and K. Hose, SHACL and ShEx in the wild: A community survey on validating shapes generation and adoption,
in: Companion of the Web Conference 2022, Virtual Event, Lyon, France, April 25–29, 2022, F. Laforest, R. Troncy, E. Simperl, D. Agarwal,
A. Gionis, I. Herman and L. Médini, eds, ACM, 2022, pp. 260–263. doi:10.1145/3487553.3524253.

[61] M. Saleem, A. Hasnain and A.N. Ngomo, LargeRDFBench: A billion triples benchmark for SPARQL endpoint federation, 2018,
pp. 85–125. doi:10.1016/j.websem.2017.12.005.

[62] M. Saleem, A. Potocki, T. Soru, O. Hartig and A.N. Ngomo, CostFed: Cost-based query optimization for SPARQL endpoint federation,
in: Proceedings of the 14th International Conference on Semantic Systems, SEMANTiCS 2018, Vienna, Austria, September 10–13, 2018,
A. Fensel, V. de Boer, T. Pellegrini, E. Kiesling, B. Haslhofer, L. Hollink and A. Schindler, eds, Procedia Computer Science, Vol. 137,
Elsevier, 2018, pp. 163–174. doi:10.1016/j.procs.2018.09.016.

[63] M. Saleem, G. Szárnyas, F. Conrads, S.A.C. Bukhari, Q. Mehmood and A.N. Ngomo, How representative is a SPARQL benchmark? An
analysis of RDF triplestore benchmarks, in: The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13–17, 2019,
L. Liu, R.W. White, A. Mantrach, F. Silvestri, J.J. McAuley, R. Baeza-Yates and L. Zia, eds, ACM, 2019, pp. 1623–1633. doi:10.1145/
3308558.3313556.

[64] A. Schwarte, P. Haase, K. Hose, R. Schenkel and M. Schmidt, FedX: Optimization techniques for federated query processing on linked
data, in: The Semantic Web – ISWC 2011 – 10th International Semantic Web Conference, Proceedings, Part I, Bonn, Germany, October
23-27, 2011, L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N.F. Noy and E. Blomqvist, eds, Lecture Notes in Computer
Science, Vol. 7031, Springer, 2011, pp. 601–616. doi:10.1007/978-3-642-25073-6_38.

[65] M. Sopek, P. Gradzki, W. Kosowski, D. Kuzinski, R. Trójczak and R. Trypuz, GraphChain: A distributed database with explicit semantics
and chained RDF graphs, in: Companion of the the Web Conference 2018 on the Web Conference 2018, WWW 2018, Lyon, France, April
23–27, 2018, P. Champin, F. Gandon, M. Lalmas and P.G. Ipeirotis, eds, ACM, 2018, pp. 1171–1178. doi:10.1145/3184558.3191554.

[66] J. Umbrich, K. Hose, M. Karnstedt, A. Harth and A. Polleres, Comparing data summaries for processing live queries over linked data,
World Wide Web 14 (2011), 495–544. doi:10.1007/s11280-010-0107-z.

[67] P. Vandenbussche, J. Umbrich, L. Matteis, A. Hogan and C.B. Aranda, SPARQLES: Monitoring public SPARQL endpoints, Semantic Web
8(6) (2017), 1049–1065. doi:10.3233/SW-170254.

[68] R. Verborgh, M.V. Sande, O. Hartig, J.V. Herwegen, L.D. Vocht, B.D. Meester, G. Haesendonck and P. Colpaert, Triple pattern fragments:
A low-cost knowledge graph interface for the web, J. Web Semant. 37–38 (2016), 184–206. doi:10.1016/j.websem.2016.03.003.

[69] M. Vidal, E. Ruckhaus, T. Lampo, A. Martínez, J. Sierra and A. Polleres, Efficiently joining group patterns in SPARQL queries, in: The
Semantic Web: Research and Applications, 7th Extended Semantic Web Conference, ESWC 2010, Proceedings, Part I, Heraklion, Crete,
Greece, May 30–June 3, 2010, L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt, L. Cabral and T. Tudorache, eds,
Lecture Notes in Computer Science, Vol. 6088, Springer, 2010, pp. 228–242. doi:10.1007/978-3-642-13486-9_16.

[70] D. Vrandecic and M. Krötzsch, Wikidata: A free collaborative knowledgebase, Commun. ACM 57(10) (2014), 78–85. doi:10.1145/2629489.
[71] B. Xue and L. Zou, Knowledge graph quality management: A comprehensive survey, IEEE Transactions on Knowledge and Data Engi-

neering (2022), 1–1. doi:10.1109/tkde.2022.3150080.

https://ceur-ws.org/Vol-2496/paper4.pdf
http://arxiv.org/abs/arXiv:1912.08010
http://arxiv.org/abs/arXiv:1912.08010
https://doi.org/10.1007/978-3-319-68288-4_28
https://ceur-ws.org/Vol-905/MontoyaEtAl_COLD2012.pdf
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/ICDE.2011.5767868
https://doi.org/10.1007/s10619-010-7067-2
https://doi.org/10.1145/3318464.3389702
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.5441/002/edbt.2021.59
https://doi.org/10.1145/3487553.3524253
https://doi.org/10.1016/j.websem.2017.12.005
https://doi.org/10.1016/j.procs.2018.09.016
https://doi.org/10.1145/3308558.3313556
https://doi.org/10.1145/3308558.3313556
https://doi.org/10.1007/978-3-642-25073-6_38
https://doi.org/10.1145/3184558.3191554
https://doi.org/10.1007/s11280-010-0107-z
https://doi.org/10.3233/SW-170254
https://doi.org/10.1016/j.websem.2016.03.003
https://doi.org/10.1007/978-3-642-13486-9_16
https://doi.org/10.1145/2629489
https://doi.org/10.1109/tkde.2022.3150080

C. Aebeloe et al. / Optimizing SPARQL queries over decentralized knowledge graphs 1165

[72] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann and S. Auer, Quality assessment for linked data: A survey, Semantic Web 7(1)
(2016), 63–93. doi:10.3233/SW-150175.

[73] Z. Zheng, S. Xie, H. Dai, X. Chen and H. Wang, Blockchain challenges and opportunities: A survey, Int. J. Web Grid Serv. 14(4) (2018),
352–375. doi:10.1504/IJWGS.2018.095647.

https://doi.org/10.3233/SW-150175
https://doi.org/10.1504/IJWGS.2018.095647

	Introduction
	Related work
	Client-server architectures
	Federated systems
	Peer-to-peer systems

	Background
	Peer-to-peer
	Distributed indexes

	The Lothbrok approach
	Design and overview
	Data fragmentation
	Semantically partitioned bloom filter indexes

	Query optimization
	Fragment and source selection
	Cardinality estimation
	Optimizing query execution plans

	Query execution
	Experimental evaluation
	Experimental setup
	Scalability under load
	Impact of query pattern
	Network usage
	Performance of individual queries
	Discussion

	Conclusions
	Acknowledgements
	References

