Semantic Web 15 (2024) 353-388 353
DOI 10.3233/SW-233359
10S Press

Dynamic system models and their simulation
in the Semantic Web

Moritz Stiiber * and Georg Frey

Chair of Automation and Energy Systems, Saarland University, Germany
E-mails: moritz.stueber @aut.uni-saarland.de, georg.frey@aut.uni-saarland.de

Editors: Bahar Aameri, University of Toronto, Canada; Maria Poveda-Villalon, Universidad Politécnica de Madrid, Spain; Emilio M.
Sanfilippo, ISTC-CNR Laboratory for Applied Ontology, Italy; Walter Terkaj, STIIMA-CNR, Italy
Solicited reviews: Alessandro Umbrico, ISTC-CNR Laboratory for Applied Ontology, Italy; three anonymous reviewers

Abstract. Modelling and Simulation (M&S) are core tools for designing, analysing and operating today’s industrial systems.
They often also represent both a valuable asset and a significant investment. Typically, their use is constrained to a software envi-
ronment intended to be used by engineers on a single computer. However, the knowledge relevant to a task involving modelling
and simulation is in general distributed in nature, even across organizational boundaries, and may be large in volume. Therefore,
it is desirable to increase the FAIRness (Findability, Accessibility, Interoperability, and Reuse) of M&S capabilities; to enable
their use in loosely coupled systems of systems; and to support their composition and execution by intelligent software agents.
In this contribution, the suitability of Semantic Web technologies to achieve these goals is investigated and an open-source proof
of concept-implementation based on the Functional Mock-up Interface (FMI) standard is presented. Specifically, models, model
instances, and simulation results are exposed through a hypermedia API and an implementation of the Pragmatic Proof Algo-
rithm (PPA) is used to successfully demonstrate the API’s use by a generic software agent. The solution shows an increased
degree of FAIRness and fully supports its use in loosely coupled systems. The FAIRness could be further improved by providing
more “rich” (meta)data.

Keywords: Models and Simulation as a Service, FMI, hypermedia API, Pragmatic Proof Algorithm, FAIR principles

1. Introduction

Today’s industrial systems are complex mechatronic systems, integrating mechanical, electrical and computa-
tional elements. In this context, formal models are used that describe the dynamic behaviour of systems by means of
equations. From a mathematical point of view, a system of Differential-algebraic Equations (DAEs) is created that
implements the laws of physics, supported by empirical data such as look-up tables if a physics-based modelling
approach is infeasible. The approximation of this system of DAEs by means of numerical integration algorithms is
called simulation. For models of the dynamic system behaviour, the result of a simulation is a trajectory of values
over time.

In the context of the Semantic Web, formal models are ontologies. Ontologies encode concepts, roles, and their
interrelations; computational reasoning is the process by which satisfiability, classification, axiom entailment, in-
stance retrieval et cetera are computed.

*Corresponding author. E-mail: moritz.stueber @aut.uni-saarland.de.

1570-0844 © 2024 — The authors. Published by I10S Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:moritz.stueber@aut.uni-saarland.de
mailto:georg.frey@aut.uni-saarland.de
mailto:moritz.stueber@aut.uni-saarland.de
https://creativecommons.org/licenses/by/4.0/

354 M. Stiiber and G. Frey / Dynamic system models and their simulation in the Semantic Web

Table 1
Glossary

Term Explanation

CNA Cloud-native Application — applications that are specifically designed such that they exhibit the characteristics of cloud
computing, such as on-demand self-service, measured service, pay-as-you-go, horizontal scalability et cetera [20]

FAIR Findable, Accessible, Interoperable, Reusable — technology-independent guiding principles for data publishing with
the intent to maximize accessibility and reuse, both for humans and machines [49]

FMI Functional Mock-up Interface — open standard for the exchange and co-simulation of dynamic system models [4]

FMU Functional Mock-up Unit — model exported according to the FMI standard

generic software agent software that solves tasks that it has not been programmed for at a syntactic level [8]

HATEOAS Hypermedia As The Engine Of Application State — essential constraint of architectural style REST, roughly
summarized as “client selection of options provided by service in-band” [46, Section 3.3.4]

hypermedia API Application Programming Interfaces (APIs) for software clients that are accessible over the internet and fully
implement the Representational State Transfer (REST) constraints [45, p. 276]

MSaaS Modelling and Simulation as a Service — umbrella term for efforts attempting to make M&S capabilities available as a
service

PPA Pragmatic Proof Algorithm — algorithm that can compose and execute hypermedia APIs for which RESTdesc
descriptions exist [43]

RDF Resource Description Framework — distributed data model [23]

REST Representational State Transfer — architectural style underlying the web [46]

RESTdesc format for describing which transitions are possible in a given application state and what the effects of these transitions
in terms of changes to the shared state are [43, Section 4.3]

SOA Service-oriented Architecture — architectural style for creating manageable, large-scale distributed applications [29]

TPF Triple Pattern Fragment — query interface for Resource Description Framework (RDF) data [47]

Both types of models — ontologies and systems of DAEs — are a useful tool for the design, analysis and un-
derstanding of complex systems. Importantly, they are also abstractions of the domain of interest, meaning that a
distinction between relevant and irrelevant aspects with respect to the intended purpose of the model was necessarily
made by the humans who created the model. Moreover, the models have to be encoded in a formal language such as
the Web Ontology Language (OWL) for ontologies or Modelica for DAEs in order to enable algorithms to operate
on them.

As a consequence of the choice for a specific modelling language, a limit in scope and expressivity is imposed on
the modelling process. This means that the types of problems that can be solved using the chosen language, including
its ecosystem such as model libraries, Integrated Development Environments (IDEs) and expert communities, are
limited.

The limit that a modelling language imposes is not a problem if the modelling task at hand fits the capabilities of
the language well. However, it is an interesting question whether two modelling approaches with different purposes
and capabilities can be meaningfully combined in order to support the investigation of other types of problems,
drawing on the respective strengths of the individual approaches and alleviating their disadvantages.

This contribution explores the idea of using ontologies to describe and represent purpose and simulation results
of dynamic system models, as well as using the technology stack of the Semantic Web to expose Modelling and
Simulation (M&S) entities and functionality as a service. Through this, it is hoped to increase the FAIRness and
machine-actionability of the knowledge encoded in the system models. A proof-of-concept implementation and
applications are presented. In the following Sections 1.1-1.3, the idea is motivated in detail and the terms and
concepts necessary to enable its precise formulation in the form of research questions and hypotheses in Section 1.4
are introduced.

1.1. Models, simulation and FAIRness
In engineering, models and simulations are ubiquitous and used in many steps of a product’s lifecycle. Reasons

to use M&S [9, p. 10 £.] [31, p. 4] include that the feasibility of a design with respect to requirements, safe oper-
ating conditions, and the sizing of components can be evaluated. “What if?”-questions can be analysed faster and

M. Stiiber and G. Frey / Dynamic system models and their simulation in the Semantic Web 355

safer than if they were executed on real systems. Moreover, models allow access to internal states that could not be
measured easily in reality, and they also allow the computational search for optimal configurations. During develop-
ment, models facilitate the parallel development of different parts of a system by different people, such as different
physical components; the physical component and its control strategy; or training operators before the real system
becomes available. During operations, M&S can be used for fault detection, as a virtual sensor, or as an essential
building block for realizing the ideas for optimizing a system’s behaviour summarized under the term “digital twin”.

For coping with the multitude of questions to be answered by M&S, different approaches exist: Finite Element
Method (FEM) and Computational Fluid Dynamics (CFD) methods are used to analyse phenomena that vary both
over time and location, such as the distribution of mechanical stress inside a component or the flow of air around an
object. Event-based approaches are used for queueing situations or crowd simulations; agent-based approaches can
for example model economic questions and other interactions between distinct entities with different agendas.

In this paper, we focus on dynamic models for the time-varying behaviour of quantities in technical, multi-domain
systems that can be represented as a system of DAEs. This focus is consistent with clusters of competence in industry
and academia and caters to a large, relevant class of problems. Other uses of the terms Modelling and Simulation
are equally valid in their respective contexts, but out of scope for this work.

However, even within this scope, despite the similarity of the underlying mathematical problems to solve and as
a consequence of both different requirements for different applications and historical reasons, many formalisms and
corresponding ecosystems exist today. They range from the use of general-purpose programming languages (such as
Python) via modelling languages explicitly designed to support multi-domain models as well as to support language
features that facilitate the development of robust, well-structured models (such as Modelica) to highly specialized
languages and tools for specific applications.

Unfortunately, models encoded in different languages are generally not interoperable, which is problematic for
several reasons. From a practical perspective, the lack of interoperability hinders and slows down the development of
complex systems that use components by other manufacturers, such as cars. From an economic perspective, the lack
of reusability resulting from the limited interoperability is also problematic because models can represent valuable
assets: the creation and validation of models requires resources, time and expertise which can be a significant
investment. The value of this investment is maximized if the model is reused often, also outside the context for
which it was originally created.

To solve this problem, the Functional Mock-up Interface (FMI) standard [4] was developed. FMI is a tool-
independent, open standard for model exchange that defines the interface, capabilities and format of so-called Func-
tional Mock-up Units (FMUs), which is the name for models that are compliant with the FMI standard. There are
two variants: FMUs for model exchange only contain the model equations and require an external solver for simula-
tion. In contrast, FMUs for co-simulation contain a solver and can thus be used both as a standalone executable form
of a model as well as in conjunction with other FMUs for co-simulation. In this work, co-simulation is out of scope;
only the simulation of a single model/FMU with a single solver is considered. From a technical point of view, FMUs
are archives containing a descriptive .xml-file, platform-specific binaries, C-code and optional additional files stored
as a .fmu-file.

FMI is widely adopted and supported by more than 150 tools to varying extent.! Despite some inherent limita-
tions, it is in general seen as a solution to the interoperability problems outlined above. However, interoperability is
just one dimension of enabling reuse according to the Findable, Accessible, Interoperable, Reusable (FAIR) princi-
ples.

The FAIR principles [49] are a set of 15 guidelines intended to enable/facilitate the reuse of scholarly output such
as models. They are listed in Table 5 and 6 in the Appendix. The principles comprise technical and organizational
aspects as well as guidelines on which facets of data and metadata to expose. Organizational aspects are aspects that
require long-term commitment to the FAIRness of a data set, such as the use of persistent identifiers, the registration
of (meta)data in a searchable resource, the continued existence of metadata even if the data is no longer available, and
the use of FAIR vocabularies. The FAIR principles are formulated technology-independent and specifically target
both human and software agents as the intended consumers of FAIR data. This focus on machine-actionability and

1 https://fmi-standard.org/tools/

https://fmi-standard.org/tools/

356 M. Stiiber and G. Frey / Dynamic system models and their simulation in the Semantic Web

the principles themselves suggest the Semantic Web technology stack as a suitable candidate for realizing FAIR
digital assets; therefore, FAIRness is a relevant topic for the Semantic Web community.

Machine-actionability is seen as a varying degree of information provided to a software agent regarding an ob-
ject’s identity, applicability with respect to a goal, usability in terms of licensing and accessability, and usage in-
structions in a way that it enables the agent to take action [49, p. 3].

FAIR data is widely seen as desirable, and major research networks committed to supporting researchers in
making their data FAIR [34]. Note that the principles do not imply making data available for free; rather, they
emphasize the importance of enabling everyone to learn about the existence and content of digital assets, which
may well be protected from public access for many reasons, including economical ones [27, p. 51]. This means that
the FAIR principles can be as relevant for knowledge-driven academia as they can be for profit-oriented companies.

From our perspective, M&S suffers from a lack of FAIRness which limits the positive impact M&S could have.
For example, consider the findability aspect: Models written in Modelica are organized in libraries. There is a list
of libraries on the Modelica homepage” and a searchable index of libraries exists, but there is currently no way of
searching for models that can represent a certain system other than opening a library which potentially contains it;
searching for model names; and/or searching the documentation of the model library. Given a collection of FMUs,
searching would be limited to the file name of the FMU and the contents of the descriptive .xml-file contained in
the archive.

1.2. Coupling of distributed M&S capabilities

The knowledge required to solve complex engineering problems is distributed in nature: mechatronic systems are
multi-disciplinary by definition; systems are developed by different persons or teams, often in parallel; and if com-
ponents or machinery by other manufacturers are used, then the knowledge is also distributed across organizational
boundaries.

Because of the distribution of knowledge across organizational boundaries, it is impossible to enforce a com-
mon format for knowledge exchange and the resulting situation can be characterized as an open world of diverse
stakeholders. For connecting services in such situations, it is desirable to achieve loose coupling between the con-
nected services [30, p. 919]. Loose coupling is a multi-faceted metric for designing systems of systems that aim
to be robust, yet scalable by supporting the independent evolution of individual systems through minimizing the
assumptions made about them [30].

The FAIR principles demand that it should be possible to obtain (meta)data through its identifier (A1). This means
that models must become available as part of a distributed system of systems. For the reasons given in the previous
paragraph, they also should be made available in a way that supports loose coupling.

Just like the concepts and technology stack of the Semantic Web suggest themselves for making digital as-
sets FAIR, the architectural style of the Web (Representational State Transfer (REST)) and its technology stack
(Hypertext Transfer Protocol (HTTP), Uniform Resource Locators (URLs), hypermedia), suggest themselves for
realizing loosely coupled systems because REST can be implemented such that loose coupling is fully supported
[30, p. 919] and the Semantic Web was envisioned as an extension of the Web, suggesting that there should be no
conceptual incompatibilities.

From a practical perspective, REST can be roughly summarized as follows (see [46] for a detailed explanation):
a service exposes a set of conceptual resources. These resources are typically identified and located by URLs.
As a reaction to the application of HTTP? verbs (GET, POST, ...), a representation of the resource, for example
an Hypertext Markup Language (HTML) document rendered as a website by the browser that sent the request,
is returned. It is an essential constraint of REST that the interaction between user and service is driven by the
selection of choices provided in the resource representations [12], such as links and forms. This constraint is called
Hypermedia As The Engine Of Application State (HATEOAS), and humans make use of this principle successfully
every day when browsing the Web to achieve their goals without first reading documentation on how to navigate a
website.

2https://modelica.org/libraries
3Technically, REST can be realized using other protocols such as Constrained Application Protocol (CoAP).

https://modelica.org/libraries

M. Stiiber and G. Frey / Dynamic system models and their simulation in the Semantic Web 357

However, the audience for FAIR data includes software agents because the amount of data available becomes
increasingly overwhelming for humans, who cannot process the data at the same speed and volume as machines
[49, p. 3].

On today’s Web, software clients get access to functionality via Web Application Programming Interfaces (APIs).
These APIs are often based on REST such that they expose resources of which JavaScript Object Notation (JSON)-
representations are transferred as reaction to HTTP requests, but do not fully implement the REST constraints.
Specifically, instead of relying on HATEOAS, the possibilities to interact with a service are communicated through
a static service interface description such as the OpenAPI Specification (OAS). Programmers then construct requests
specific to a certain version of the API ar design-time. This is not RESTful (even though such APIs often denote
themselves as such) because HATEOAS is an essential constraint in the sense that if it is not realized, a system cannot
be RESTful [12] [46, p. 243 {.]. It also does not support loose coupling because horizontal interface orientation, a
shared data model, breaking evolution, static code generation and explicit conversation are promoted, which indicate
tight coupling [30].

The programming of clients against a static service interface description at design-time is especially problematic
when exposing M&S capabilities through an API: for every model, the parameters for instantiation and simulation
are different. Static service interface descriptions consequently either have to be kept so generic that they cannot
realize their usefulness, or be re-generated every time a model is added to an instance of the API [35, p. 395].
This would entail that programmers had to first add a model to the API instance they plan to use before they could
program the subsequent requests, which is inefficient and would make the use of the API for a large number of
different models prohibitively expensive.

To summarize, Modelling and Simulation exhibit a lack of FAIRness and, consequently, machine-actionability
that keep it from reaching its potential. For realizing software that exposes M&S capabilities, it is desirable to
support loose coupling. Because humans are incapable of processing large amounts of data at adequate speed,
software agents should be enabled to support them.

1.3. Semantic Web and intelligent agents

The core idea of the Semantic Web is to be explicit about the meaning of entities, including links, in order to
improve the accessibility of content on the Web to generic software agents [14].

The meaning of things is expressed using the Resource Description Framework (RDF) data model, which repre-
sents data as graphs of nodes connected by directed edges: a subject node is connected to the object node by a pred-
icate. Different serializations of the resulting subject—predicate—object triples (or subject—predicate—object—graph
quads) exist. Interfaces to RDF data range from the ultimate expressivity of SPARQL Protocol and RDF Query
Language (SPARQL) endpoints (which can be expensive for the server) to the simplicity of downloading data
dumps of an entire data set (which contradicts the idea of using data within the Semantic Web).

APIs for software clients that are accessible over the internet and fully implement the REST constraints are called
hypermedia APIs [45, p. 276]. Consequently, a hypermedia API that uses the RDF data model for its resource
representations is a REST-compliant service in the Semantic Web. The expressivity of its interface lies between
that of a SPARQL endpoint and a data dump; but, importantly, it is not restricted to read-only access as all HTTP
methods can theoretically be supported.

What are generic or intelligent software agents? Cardoso and Ferrando define intelligent agents as “a comput-
erised entity that: is able to reason (rational/cognitive), to make its own decisions independently (autonomous), to
collaborate with other agents when necessary (social), to perceive the context in which it operates and react to it
appropriately (reactive), and finally, to take action in order to achieve its goals (proactive)” [8]. Kirrane and Decker
[17] point out that even though intelligent agents always were part of the Semantic Web vision, there are still signifi-
cant open research challenges from a data management perspective, from an application perspective and from a best
practices perspective. Moreover, they call for basing the development of intelligent agents on the FAIR principles
since they also see a “strong connection between said principles and Semantic Web technologies and Linked Data
principles” [17, p. 3].

One task that needs to be solved by intelligent agents is to figure out which requests to send in which sequence
in order to reach a goal, given a set of hypermedia APIs. This is precisely the purpose of the Pragmatic Proof

358 M. Stiiber and G. Frey / Dynamic system models and their simulation in the Semantic Web

Algorithm (PPA) published by Verborgh et al. [43]; therefore, the PPA can be seen as an intelligent software agent.
It relies on so-called RESTdesc descriptions to determine whether the goal is achievable. The use of the PPA and
RESTdesc will be motivated in Section 3.2.

1.4. Research questions and -hypotheses

We see hypermedia APIs that use the RDF data model for their resource representations as a promising candidate
to improve the FAIRness of M&S capabilities in way that supports loose coupling. The PPA is seen as a suitable
way to demonstrate the improved machine-actionability. To our knowledge, this idea has not been investigated yet
(a list of research gaps is provided in Section 2.3). The idea and the research gaps raise three main questions:

QI. Can the FAIRness of M&S capabilities improve by providing them through a hypermedia API that exposes
RDF representations of its resources?

Q2. Does this hypermedia API enable the use of M&S capabilities by an implementation of the PPA as an
example of a generic software agent?

Q3. Does this hypermedia API support its use in loosely coupled systems?

From these research questions follow two hypotheses:

H1. In combination, the developed M&S hypermedia API and the implementation of the PPA allow both human
and software agents to solve tasks involving models and their simulation. Compared to a REST-based Mod-
elling and Simulation as a Service (MSaaS)-implementation, the solution is (H1.1) more flexible and more
robust against changes. Moreover, it (H1.2) allows a declarative problem formulation.

H2. Software agents can autonomously use the M&S hypermedia API to a) discover the exposed capabilities and
determine the achievability of their goal; as well as b) query a collection of models and model instances;
add, instantiate and simulate models; and retrieve the simulation results in a serialization of RDF. Compared
to a collection of FMUs and compared to a REST-based MSaaS-implementation, the M&S hypermedia API
(H2.1) increases the FAIRness and (H2.2) improves the machine-actionability of capabilities and also (H2.3)
supports its use in loosely coupled systems.

For the second hypothesis, machine-actionability will be demonstrated through the API’s use by the PPA-
implementation as a software that was not specifically programmed to use it. FAIRness and support for loose cou-
pling will be evaluated by comparing the developed hypermedia API to its non-RESTful predecessor (detailed in
[35]) for each of the 15 FAIR principles and for each of the coupling facets identified by Pautasso and Wilde [49],
respectively.

It is expected that two technical contributions can be made by openly publishing the developed software. These
technical contributions are stated below, formulated as hypotheses. However, no attempt to falsify them, for example
through surveys, is made as part of this work.

TC1. Researchers and software engineers can use the implementation of the PPA to achieve declaratively for-
mulated goals by using any RESTdesc-enabled hypermedia API, including those that rely on graphs with a
specific shape as input during interaction. Moreover, they can review the code and use it to build their own
applications.

TC2. Researchers and software engineers can use the developed ontologies, as well as the software developed
to extract information from FMUs using these ontologies, to express information about FMUs in RDF; to
describe essential M&S-concepts and their interrelations in RDF; and to reason about FMUs as well as
systems, models, and simulations. Compared to manually created, application-specific Knowledge Graphs
(KGs), the solution (TC2.1) speeds up KG creation given FMUs and (TC2.2) facilitates integration of models,
model instances, simulation specifications and -results with other linked data.

Nonetheless, the functionality of the software is verified if the hypotheses can be verified because the technical
contributions are necessary building blocks to enable the creation and use of the developed M&S hypermedia API.

M. Stiiber and G. Frey / Dynamic system models and their simulation in the Semantic Web 359
1.5. Outline

The remainder of this paper is structured as follows: first, related work on the combination of Semantic Web
concepts and -technologies with the domain of Modelling and Simulation is summarized in Section 2. Then, the
design concept of the software that is necessary to answer the research questions is described in Section 3. Details
on how this software is implemented such that the desired functionality and characteristics are realized are given in
Section 4, followed by outlining two exemplary applications in Section 5. Next, it is analysed whether the hypotheses
could be validated; and characteristics and limitations of the approach are discussed in Section 6. Last, Section 7
summarizes and draws conclusions from the presented work.

2. Related work

There have been attempts to combine ideas and tools resulting from research on the Semantic Web with those
of M&S for almost as long as the vision of the Semantic Web exists. Many authors have focused on the use of
ontologies for improving and supporting Model-based Systems Engineering (MBSE). Applications range from gen-
eral process support aimed at better integrating knowledge from different sources, over working on the question of
interoperability and composability of models, to model generation based on ontological system descriptions. Fewer
work has been published on the use of hypermedia APIs in conjunction with M&S.

2.1. Ontologies for Model-based Systems Engineering

Ontologies are consistent specifications of concepts relevant to a domain of interest and their interrelations in
a formal language. In addition to this conceptual representation of knowledge, in other words being a “model of”
some domain with the intent to facilitate its description, ontologies are also a “model for” systems to be built and
are thus of normative nature too [15].

With respect to what is modelled by an ontology, we follow the conceptualization of Hofmann et al. [15, p. 136]
and distinguish between methodological and referential ontologies. Methodological ontologies describe (“model
of””) methods or formalisms such as FMI, which are usually consistent and free of conflicting definitions of concepts.
This facilitates their modelling as an ontology and as a result, the ontology has a high potential for adoption in
implementing systems (normative aspect, “model for”) [15, pp. 136, 138 f.]. In contrast, referential ontologies
attempt to model what is and what is not important to describe a part of the real world, which generally represents
a more diverse, inconsistent and ambiguous domain than a human-made concept such as a modelling formalism.
Consequently, referential ontologies are less likely to be reused outside their original context [15, pp. 136, 143].

The value of ontologies in the domain of M&S is expected to manifest itself by facilitating knowledge exchange
and reuse; by helping with the resolution of compatibility questions; through their support for reasoning; and their
role in querying data sets with respect to their semantics [15, p. 138 f.]. Specific mechanisms by which these
are facilitated include the precise definition of terms; the resolution of ambiguity of terms through namespacing;
serving as a consistent and shared (mental) model used by researchers in a topic area; and the ontologies’ foundation
in formal logic [40, p. 68 f.].

Successful applications of ontologies in conjunction with M&S have been reported in three main categories:

Support for Model-based Systems Engineering There is data that is essential to the MBSE process, but not a
model or simulation per se, such as requirements, changes, and configurations. This data is the focus of the
OASIS Open Services for Lifecycle Collaboration (OSLC) specifications. OSLC aims to “enable integra-
tion of federated, shared information across tools that support different, but related domains” [1, Section 2].
Technically, OSLC is based on the World Wide Web Consortium (W3C) recommendation Linked Data Plat-
form (LDP) and consequently the exchange of RDF resource representations over HTTP. A core specification
defining features of compliant interfaces is complemented by application-specific specifications; currently,
the specifications for the query language used, requirements management and change management were

360

M. Stiiber and G. Frey / Dynamic system models and their simulation in the Semantic Web

published as OASIS standards.* There is no specification directly targeting M&S. In contrast to the work
presented in this paper, which emphasizes support for generic software agents, OSLC has a strong focus on
human end-users, as for example shown through the ‘resource preview’ [2] and ‘delegated dialogues’ [3]
features.

El-khoury reviews the adoption of OSLC in commercial software packages and summarizes the functionality
as well as the envisioned consequences of the chosen software architecture from a practical perspective [10].
The author concludes that the software architecture of OSLC allows for scalable, decentralized solutions in a
heterogeneous environment that changes with time by adhering to the REST constraints and using RDF as a
data model that relies on interlinking entities and communicates their semantics without requiring adherence
to a fixed schema of supported data fields [10, p. 25 f.]. Consequently, OSLC is seen as useful for tracing
lifecycle information such as requirements across applications. The creation of the links that encode this trace,
facilitated through delegated dialogues and resource preview, is identified as the most commonly implemented
functionality [10, tbl. 7, p. 25].

Konig et al. present a proof of concept-implementation that allows tracing virtual test results over simulation
results and models back to the requirements which are evaluated through the virtual tests [18]. The solution
is based on OSLC and traceability information is sent from the different applications used to an OSLC server
(denoted as daemon) via HTTP, but all applications including the daemon run locally only. The traceability
information is mostly created automatically and stored in RDF in a graph database against which queries
in the database-specific query language can be evaluated. Mechanisms for including traceability information
provided by others are provided during startup of an instance running locally. Furthermore, some information
can be extracted from git history for tools which store their state in textual form. It is concluded that the ap-
proach is well-suited for projects that require documentation of links between MBSE artefacts, as for example
in safety-critical applications [18, p. 176].

Interoperability and Composability Interoperability denotes the degree to which systems can work together; the

different “levels that need to be aligned in order to make systems meaningfully interoperate with each other”
can be expressed using the Levels of Conceptual Interoperability Model (LCIM) [38, p. 6]. For the combi-
nation of models, conceptual interoperability (the highest level of interoperability according to the LCIM) is
required. Through the term conceptual interoperability, it is expressed that the abstractions made in the cre-
ation of the models must align in order to get meaningful output from the combined models. In other words,
a “state ensuring the consistent representation of truth in all participating systems” is necessary, which is the
definition of composability suggested by Tolk [38, p. 7].

Hofmann et al. anticipate that “for many technical domains and artificial systems, ontologies will be able
to ensure the interoperability of simulation components developed for a similar purpose under a consensual
point of view of the world” [15, p. 142], but point out that difficulties are expected for non-technical systems.
Axelsson relates each of the LCIM levels to the Semantic Web technology stack with a special focus on the
RDF data model, gives specific examples and also concludes that RDF is suited to resolve interoperability
problems [5].

The use of ontologies to improve the MBSE process with a focus on enforcing consistent views on a product
among its developers is investigated in detail by Tudorache [40]. The work is based on the observation that the
different syntaxes involved; the different views on a product and its semantics; and the lack of formal model
transformations between different modelling formalisms lead to a risk for inconsistencies and misunderstand-
ings, and makes tracing changes as well as the algorithmic, combined use of models in several formalisms
difficult. Tudorache provides a formal definition of ‘consistency’; defines ontologies that enable encoding
different views on a system based on high-level patterns in system design (part-whole relations, connections,
constraints, . ..); and provides a framework for consolidating viewpoints as well as an algorithm that evalu-
ates their consistency. It is concluded that the use of ontologies can lead to higher quality models and a better
MBSE process. However, challenges are expected when introducing the use of ontologies at scale.

4https://open—services.net/speciﬁcations

https://open-services.net/specifications

M. Stiiber and G. Frey / Dynamic system models and their simulation in the Semantic Web 361

Ontology-driven Modelling denotes the idea of first using referential ontologies to describe the logical structure

and component functionality of a system and then inferring the simulation topology as a composition of
component models via reasoning. For this, domain concepts are mapped to their representation in a model,
which are described using methodological ontologies.
For example, Mitterhofer et al. create a system model from a system description that encodes project-specific
information using an appropriate ontology in the context of Building Performance Simulation (BPS) [25].
This is enabled by annotating the component models with model-specific and domain-specific information
and then using a reasoner to infer connections between models. Wiens et al. present similar work for cre-
ating digital twins of wind turbines as an example of large, modular multi-domain systems [48]. Both base
their implementations on FMI as the format for the component models and the System Structure and Param-
eterization (SSP) standard [26] for the specification of the topology, in other words the connections between
the FMUs. Neither details how the KGs used are populated and to which extent the triples are derived au-
tomatically; and both describe a local, non-distributed process. The approach is seen as promising in both
publications.

However, there are limitations to the usefulness of ontologies in general. First, Hofmann et al. point out that any
language is insufficient for representing reality, and that the meaning of relations cannot always be grounded in
logic [15, pp. 139-141]. Second, the descriptive and normative nature of ontologies need to be balanced, which is
expected to be especially difficult for non-technical systems [15, p. 144 f.]. Third, the value of using ontologies
depends in part on their adoption in the M&S community — the more ontologies are used, reused and interlinked,
the more useful they can become [39, p. 134].

2.2. Hypermedia APIs and M &S

As for the use of hypermedia APIs for exposing, querying and using M&S capabilities, only a few lines of work
were found.

First, Bell et al. [6] motivate the use of a methodological ontology combined with referential ontologies to dis-
cover and retrieve models from distributed sources for local aggregation and simulation in standard simulation
environments. They summarize their reasoning and implementation process using the discrete-event-based simula-
tion of a supply chain as an example. A KG is built — using the Discrete-event Modeling Ontology (DeMO) [33]
as the methodological ontology and an application-specific referential ontology — which is then used for answering
instance retrieval queries in a way that both exact matches and, through reasoning, possible alternatives are returned.
The results are links to models which can then be downloaded for inspection or use in a local simulation. The de-
veloped framework consists of several services, but is ultimately used by humans; generic software agents are only
mentioned in the ‘related work’-section.

Second, Tiller and Winkler outline the motivation for and use of a hypermedia API to build a framework acting as
a “content-management system for scientific and engineering content” [37]. However, details about the implemen-
tation, source code or insight into the observed benefits and/or drawbacks of using a hypermedia API over a plain
web API are not available publicly.

2.3. Research gaps

Based on our literature research, we identify the following research gaps in the area of providing M&S function-
ality in distributed systems:

To the best of our knowledge, there is no investigation of the FAIRness of M&S capabilities, despite the
distributed nature of tasks involving Modelling and Simulation.

No work on enabling generic software agents to use services exposing M&S functionality was found.

No work was found that explicitly makes loose coupling a design goal for providing MSaaS except [37].
Work on using Semantic Web concepts and -technologies in conjunction with M&S mostly focuses on using
ontologies to describe models, not on providing M&S in the Semantic Web.

362 M. Stiiber and G. Frey / Dynamic system models and their simulation in the Semantic Web

— Only two lines of work could be found that investigate the use of hypermedia APIs for providing M&S; there is
limited information on observed advantages or disadvantages and there is no open-source software published.
— For the reviewed approaches on ontology-driven modelling using FMUs, it is unclear to which extent the RDF-
representations of the FMUs are generated automatically. Moreover, only local, non-distributed processes were
described and no open-source software or ontologies to generate RDF-representations of FMUs are published.

Consequently, the research questions underlying this work attempt to address these research gaps.

3. System design

Attempting to answer the research questions requires the design and realization of several pieces of software.
Before elaborating on the details of the realization in Section 4, the high-level conceptual choices with respect to
the overall system design are discussed. For this, the aspect of system design for which a decision must be made
is stated. Then, the chosen concept is briefly explained, motivated, and contrasted against possible alternatives.
Moreover, the interplay of components for important use cases of the developed solution is visualized in order to
facilitate gaining an overall system overview independent of the technologies used for implementation.

3.1. Service concept

The goal of this work is to provide M&S capabilities in a way that the FAIRness and actionability by generic
software agents improve and that loose coupling is supported (Section 1.4). The FAIR-principle A1 demands that
“(Meta)data are retrievable by their identifier using a standardised communications protocol”. Therefore, the first
design choice made is to provide M&S capabilities as a service, meaning that the capabilities are intended to be
used within a Service-oriented Architecture (SOA).

Service-oriented Architecture is a “paradigm for organizing and utilizing distributed capabilities that may be un-
der the control of different ownership domains” [29, line 128 f.]. Services are seen as “the mechanism by which
needs and capabilities are brought together” [29, line 174]; in other words, a service describes the capability, the
specification and an offer to perform work for someone. SOAs are seen as a way of structuring and offering func-
tionality that promotes reuse, growth and interoperability [29, line 175] by focusing on tasks and business functions
and acknowledging the existence of ownership boundaries. Alternatives to a SOA, such as spawning local instances
of simulation environments for each user or exposing technical interfaces remotely (as opposed to more abstract
interfaces that directly provide business value), were disregarded because they contradict the ideas and goals of this
work.

The OASIS Reference Model for Service Oriented Architecture [29] is intended to provide a foundation for
analysing and developing specific SOAs by giving definitions, explanations and examples of relevant aspects in a
technology-independent manner. The reference model identifies six major concepts pertaining to services: visibility,
service description, interaction, contracts and policies, real-world effect and execution context. Achieving a real-
world effect, which can either be the retrieval of information or changes to the shared state (the knowledge that
service provider and service consumer share), is the reason for using a service. Using a service means interacting
with it through the service interface, typically by exchanging messages. The specifics of how to interact with a
service are detailed in the service description. Interaction is only possible if and only if (iff) the service is visible
to consumers. Visibility comprises awareness, willingness and reachability. Assuming that potential consumers are
aware of the service’s existence, reachability is defined by the execution context (the “set of infrastructure elements
[...] that forms a path between those with needs and those with capabilities” [29, line 720 ff.]). Willingness to interact
is governed by the contracts agreed upon by the service participants and/or the policies enforced by policy owners.

The second design choice made is to design the service for the Semantic Web as the intended execution context.
The reasons for this are that the FAIR-principle I1 demands the use of a “formal, accessible, shared, and broadly
applicable language for knowledge representation”, as well as the overall similarity of the FAIR-principles and Se-
mantic Web concepts and technologies [17, p. 3]. An alternative would have been to develop the service for use
within a custom platform/ecosystem that demands adherence to a centralized definition of interfaces and seman-
tics. However, this would have contradicted the goal of achieving loose coupling; might have prevented the reuse

M. Stiiber and G. Frey / Dynamic system models and their simulation in the Semantic Web 363

of concepts, technologies and software components developed in the Semantic Web community; and limited the
usefulness of the developed solution to said custom platform. The choice for the Semantic Web as the intended exe-
cution context entails the use of specific technologies to connect service instances and consumers: first, the access to
the service via the internet and the corresponding protocol stack; second, the use of HTTP, URLs and hypermedia
as core mechanisms of the Web; third, the use of a graph data model in conjunction with a corresponding schema
language and query language to represent all (meta)data, restrictions on and subsets of it; and fourth, the use of on-
tologies based on Description Logics (DL) to represent knowledge. The recommendations for specific technologies
by the W3C are followed, meaning that RDF, Resource Description Framework Schema (RDFS), Shapes Constraint
Language (SHACL) [19], SPARQL, and OWL are used.

The service interface is the only means through which consumers can interact with a service. Therefore, the
service interface defines the level of abstraction at which consumer and provider interact; it defines what interaction
means (for example, the exchange of RDF-serializations using HTTP); what requirements must be fulfilled by
consumers; and, importantly, the characteristics of the service with respect to coupling. For this work, loose coupling
and the service’s use by generic software agents are desired. Realizing the architectural style of the web, REST, can
result in loosely coupled systems [30, p. 919]. Therefore, it was decided that the service interface should be realized
as a hypermedia API, in other words an interface that fully realizes the REST constraints and uses serializations for
resources that are machine-actionable. Alternatives would have been to base the interface on REST, but not realize
the HATEOAS-constraint and rely on a static service interface description instead; or to realize a Simple Object
Access Protocol (SOAP) or Remote Procedure Call (RPC)-style interface. However, neither of these supports loose
coupling ([30, p. 919], also compare Fig. 7).

Having decided on realizing a hypermedia API intended to be used in the Semantic Web as the execution context,
the questions “which consequences do these choices entail for the representations of resources?” and “how to realize
the HATEOAS constraint?” arise. Both HATEOAS and the exchange of self-descriptive messages required by REST
imply that the service description must be included in the resource representations transferred as the reaction to
HTTP requests by consumers. This means that, in addition to the data itself, resource representations should also
contain metadata, context and controls [41]. Metadata can be about the triples that represent the resource exposed, as
well as about the resource representation. It contributes to answering the question ‘what is this resource?’. Context
is created by providing qualified references to the resource itself and to other resources; it answers the questions
‘where am [?” and ‘what else may be interesting?’. Controls provide answers to the questions ‘what can I do with
this resource?’ and ‘where can I go from here?’. They are actionable and provide specific information on how to
construct executable requests; thereby enabling the HATEOAS principle.

REST-based HTTP-APIs typically exclusively provide data in their resource representations, but software agents
need — and thus should have access to — metadata, context, and controls even more than humans browsing the Web
because they are far worse at interpreting contextual clues or rely on experience with similar websites, as humans do.
However, if triples that encode metadata about the resource representation, context or controls were included in the
same graph as the data triples, the use of the RDF graph by clients would be unnecessarily complicated since clients
likely would want to separate the different parts, for example for counting how many items there are in a collection
[41]. This problem is avoided if the data is put in the default graph and the other parts in dedicated separate graphs,
which mandates the use of a RDF serialization that supports quads. An example will be discussed in Section 4.2.2.

To summarize, the decisions to provide functionality as a service within the Semantic Web through a hypermedia
API mean that consumers interact with the service by exchanging resource representations in serializations of the
RDF data model that support named graphs via HTTP messages. These messages are independent of any possible
prior messages, in other words self-descriptive, and they contain metadata, context and controls in addition to the
actual data in order to support the HATEOAS principle and in order to facilitate the service’s composition and
execution by generic software agents. For this work, it is assumed that consumers are aware of the service’s existence
and that the service participants are willing to interact with each other without restrictions: in other words, service
discovery as well as the negotiation of contracts or the enforcement of policies are out of scope because they are
irrelevant to the research questions.

364 M. Stiiber and G. Frey / Dynamic system models and their simulation in the Semantic Web

POST (FMU) POST (spec) POST (spec)
| |
|
service model instance simulation result
ready exists exists defined calculated
GET GET GET GET
DELETE LRU cache TTL cache TTL cache

Fig. 1. New resources are created by sending their specifications to the service instance; except for the simulation result which is added as soon
as it becomes available. Its calculation is triggered when a new simulation is specified. Model instances, simulations and simulation results are
not stored indefinitely to keep storage requirements limited.

3.2. Functionality

So far, the functionality to be exposed has not been detailed yet, both with respect to the functionality that is
supported conceptually and the specific model type that is supported by the software realized. With respect to the
core functionality, it was decided to allow the registration of complete and valid system models with the service;
their instantiation by setting the model parameters; their simulation subject to initial conditions and inputs; and
the retrieval of simulation results. Figure 1 visualizes possible application states and transitions between them as a
Unified Modeling Language (UML) state machine diagram.

From a technical point of view, it was decided to support causal Multiple-Input/Multiple-Output (MIMO) blocks
for which the parameters can be set. Specifically, FMUs for co-simulation according to version 2.x of the FMI
standard are supported for registration with the developed hypermedia API. The exposed resources (models, model
instances, simulations and simulation results) are immutable in order to facilitate their integration in higher-level
applications. However, model instances, simulations and simulation results are not stored within a service instance
indefinitely (in contrast to models), but instead subject to Time To Live (TTL) and Least Recently Used (LRU)
caches to avoid indefinite growth of the storage allocated by an instance. Incomplete models or acausal models as
well as causal MIMO blocks in non-FMU form are not supported because FMI represents the de facto standard
for model exchange in the context of dynamic system simulation. This ensures widespread compatibility and allows
reusing tooling created for handling FMUs, which facilitates the implementation of the software necessary to answer
the research questions. Version 2.x of the FMI standard is used because FMI 3.0 had not been released at the time
that the software was implemented.

Since the FAIR principle F4 asks that “(meta)data are registered or indexed in a searchable resource”, it was
decided to make the service itself a searchable resource for the data that it holds. Without a dedicated interface
for this, there is no possibility to query the information held by an instance of the M&S hypermedia API other
than retrieving all available resource representations, combining the responses into a graph and querying this graph
locally. This is both inconvenient and inefficient.

Verborgh et al. developed Triple Pattern Fragments (TPFs) [47] as one specific interface that supports online
querying, but keeps the cost of providing the interface low. They base their work on the observation that KGs are
either not published in a queryable form (data dumps only) or subject to issues frequently observed on SPARQL
endpoints, such as low discoverability, inconsistent support for all SPARQL features, high variability in query
execution performance and low availability [7].

A TPF interface exposes all triples matching the pattern ?subject ?predicate ?object, where all, none,
or some of the terms can be specified. The representations transferred as the result of a TPF request contain a subset
of the matching triples as data (pagination is used to limit the size of the response); an approximation of the total
number of matching triples as metadata; as well as a hypermedia control explaining clients how to retrieve other
triple patterns of the same data set.

Clients can still use SPARQL to formulate their queries; however, a query engine needs to decompose the
SPARQL query into requests to the TPF endpoint and combine the results of these individual queries to obtain
the final result [47, p. 192 ff.]. This means that the load for computing the results of a query is distributed between
more intelligent clients and less powerful services compared to using a SPARQL endpoint directly.

M. Stiiber and G. Frey / Dynamic system models and their simulation in the Semantic Web 365

Several advantages of the TPF interface have been observed [47, p. 203]: a reduced load on the server; better
support for more clients sending requests simultaneously; and increased potential for benefiting from HTTP caches.
The time to resolve a query increased, but typically stayed below 1 s until the first results were retrieved, which
the authors used as the threshold for validating their hypothesis on “sufficiently fast” query execution [47, p. 186].
Moreover, TPFs are compliant with REST and thus well suited for integration into a hypermedia API. Consequently,
it was decided that the service exposes a TPF interface to support querying instead of a SPARQL interface.

In the hypotheses of this work, it is suggested that the service concept described above leads to increased machine-
actionability (H2.2) and FAIRness (H2.1) of the exposed M&S capabilities. The former of these hypotheses is
validated by example, meaning that (H2.2) is validated iff a generic software agent is able to achieve a goal by using
the developed service without being specifically programmed to the service interface. The algorithm implemented by
the generic software agent itself is not the focus of this work; it is just a means to demonstrate the validity of (H2.2).
The requirements on this algorithm are that it has been shown to successfully compose and execute hypermedia
APIs, and that it is described in enough detail that it can be implemented. The Pragmatic Proof Algorithm by
Verborgh et al. [43] fulfils these requirements and was thus chosen for this work without performing an in-depth
literature research on other possible algorithms first. However, there was no Free/Libre and Open-source Software
(FLOSS) implementation of the PPA available, which is why we implemented it based on the information given in
[43].

When navigating websites, humans rely on expectations based on experience and intuition to decide which con-
trols offered by the website will most likely lead them to their goal [42, p. 39]. In other words, humans establish a
plan based on implicit information, hoping and assuming that it will successfully resolve. Software agents require
a plan based on explicit information to determine if they can meet their goal [42, p. 40]. Therefore, a description is
needed that communicates which transitions are possible in a given application state and what the effects of these
transitions in terms of changes to the shared state are. The PPA relies on RESTdesc descriptions (see Section 4.2.3)
to communicate this information; therefore, the choice for RESTdesc is a direct result of the choice for using the
PPA and alternatives, such as ontologies for service description, were not regarded.

3.3. Overview

The design choices made to arrive at a service that provides both the desired functionality (access to system mod-
els and their simulation, semantic search; both accessible to generic software agents) and the desired characteristics
(FAIRness, loose coupling) are summarized in the first three columns of Table 2 (the last column listing the chosen
technologies will be discussed in Section 4).

To summarize how the design choices translate to the implemented software system, Fig. 2 visualizes three
exemplary interactions between consumer and provider as a UML sequence diagram. The objects and corresponding
swim lanes refer to high-level parts of the software and not to specific technologies, therefore the diagram is intended
to serve as a technology-neutral system overview. The first use case depicted (A) is the addition of a model to an
instance of the service: the agent interacts with the main service interface to add the model, for example a FMU;
in the background, a RDF representation of the model is generated and then integrated in the representation of the
newly generated resource. The translation of the supported model format to RDF is dependent on the model format
and therefore marked with an asterisk; the service interface is independent of the model format. The second use
case (B) is the simulation of a specific model instance with specific initial conditions and inputs. Again, the agent
sends the specification of the simulation to the main service interface. Specification and model are then passed on
to the simulation engine which calculates the result. Third, the agent runs a SPARQL query in use case C. Since the
service does not support SPARQL directly, the query is decomposed into a series of TPF requests by a query engine
(not part of the service), which are sent to the service’s TPF interface. The answers to these TPF requests are then
combined to form the result of the original SPARQL query, which is sent back to the agent.

4. Implementation

From a technical perspective, four main pieces of software must be realized: first, ontologies that allow the
description of FMUs and M&S entities and -capabilities in RDF are required. Second, these descriptions should

366

Table 2

M. Stiiber and G. Frey / Dynamic system models and their simulation in the Semantic Web

Summary of the design aspects, chosen concepts, alternatives and chosen technologies for implementation. Design choices are set in bold; the
em-dash — is used to denote that something is not applicable

Functionality, high-level
aspect

Concept for realization

Possible alternatives with
respect to choice

Resulting (or chosen)
technologies

Software as a Service;
Service-oriented
Architecture

intended execution context

knowledge representation

service interface concept

resource representations

service interface
functionality

semantic search

exposed resources

supported model type

contracts/policies;
awareness; willingness

microservices

Semantic Web

graph data model + schema
language; ontologies based on DL

hypermedia API — client-server
constraints, uniform interface
constraints: identification resources,
manipulation through resources,
self-descriptive messages,
HATEOAS

self-descriptive representations
containing data and explicitly
separated metadata, context,
controls

resource representations in
RDF-serializations transferred to
consumer as response to
HTTP-request

Triple Pattern Fragments

immutable models, instances,
simulations, results; models
persistent, others subject to
TTL/LRU caches

complete dynamic system models
as causal MIMO-block;
parameters can be set

out of scope

local instances simulation
environment for each user;
remote access technical
interface
custom/proprietary
platform

consequence of choice for
Semantic Web
REST-based HTTP-API +
OAS; SOAP; RPC

data, metadata, context,
controls in same graph

consequence of choice for
hypermedia API in
Semantic Web

SPARQL server; no query
interface at all

more technical interface
(FEMU, .. .); all resources
persistent

incomplete (component-)
models; acausal models

contract negotiation/policy
enforcement through
additional service(s) or
manual implementation

Node.js with Express.js for
API; Python with FMPy for
worker; Celery with
RabbitMQ, Redis for queue
HTTP(S), URLs,
hypermedia; explicit
semantics; graph data
model

RDF, RDFS, SPARQL,
SHACL, OWL

RDF-serializations
supporting named graphs,
e.g. TriG, JSON-LD, ...

Linked Data Fragments
Server.js

FMI 2.0 for co-simulation
as executable

service
composition/-execution by
generic software agent

enable planning

non-functional
characteristics

Pragmatic Proof Algorithm +
extension

rules communicate state transitions
and public changes to shared state
Cloud-native Application —
on-demand self-service, measured,
pay-as-you-go, horizontal scalability,

out of scope

consequence of choice for
PPA

disregard expected/proven
characteristics and
corresponding best
practices

own implementation of
PPA in Python using
requests, rdflib

RESTdesc descriptions
(N3 rules)

12factor-app;
containerization; clustered
elastic platform; separation
API/worker through queue;

M. Stiiber and G. Frey / Dynamic system models and their simulation in the Semantic Web 367

:main service :model format :simulation :query engine :TPF service
some agent interface to RDF * engine * interface

add (model) |

[
—L

|

|

|

(model) |
|

return |
é (representation) :
|

|

|

1

A. register model
with service
instance

return
é (link to model)

add (spec)

(model, spec)

B. execute
simulation of
model instance

return
(link to sim.)

return (repr. simulation result)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
run (query) |

(TPF request)
return (TPF)
(TPF request)
return (TPF)

C. run SPARQL
query against
service instance

return (query results)

Fig. 2. High-level sequence diagram for three main use cases of the service. Objects marked with an asterisk are specific to a certain model
format such as FMI 2.0 for co-simulation.

be generated automatically as far as possible, starting from the FMUs used. Third, a hypermedia API needs to be
implemented that exposes M&S capabilities in RDF using the developed ontologies in combination with established
ones, such as the Dublin Core™ Metadata Initiative (DCMI) Metadata Terms> (DCT). Last, an implementation of
the PPA as a means to demonstrate the machine-actionability of the hypermedia API is required.

From a non-functional perspective, the service should be designed as a Cloud-native Application (CNA) [20] and,
consequently, as a Cloud-native Simulation (CNS) system [21, p. 15] because not designing it as a CNA would mean
to disregard the expected and proven characteristics for Sof