
CORRECTED  P
ROOF

Semantic Web -1 (2023) 1–33 1
DOI 10.3233/SW-233355
IOS Press

Reason-able embeddings: Learning concept
embeddings with a transferable neural
reasoner
Dariusz Max Adamski and Jędrzej Potoniec *
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Abstract. We present a novel approach for learning embeddings of ALC knowledge base concepts. The embeddings reflect the
semantics of the concepts in such a way that it is possible to compute an embedding of a complex concept from the embeddings
of its parts by using appropriate neural constructors. Embeddings for different knowledge bases are vectors in a shared vector
space, shaped in such a way that approximate subsumption checking for arbitrarily complex concepts can be done by the same
neural network, called a reasoner head, for all the knowledge bases. To underline this unique property of enabling reasoning
directly on embeddings, we call them reason-able embeddings. We report the results of experimental evaluation showing that the
difference in reasoning performance between training a separate reasoner head for each ontology and using a shared reasoner
head, is negligible.
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1. Introduction

In this paper we design, implement and evaluate a novel method of learning concept embeddings in knowledge
bases for the ALC description logic, using a transferable neural reasoner. Our method of learning embeddings en-
sures that the resulting embeddings are entirely data-driven, which unlike manually-designed concept vectorization
schemes, captures as many useful properties of the given training data as possible. We call the resulting embeddings
reason-able embeddings, as they are explicitly constructed in such a way as to maintain the formal semantics of the
represented concepts and thus enable approximate reasoning with them.

The neural reasoner consists of two modules – a reasoner head, that is a neural network classifier, trained to
classify whether subsumption axioms hold for a given knowledge base, and capable of constructing an embedding
for arbitrarily complex ALC concepts, and an embedding layer responsible for mapping concept names to the vector
space. The reasoner head is transferable, because the embedding layers learn how to embed concepts in a space that
minimizes the classifier loss, and is shared between all knowledge bases. It must be pointed out that the reasoner
head does not explicitly use terminological axioms for entailment classification. Instead, the terminological axioms
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indirectly shape the learned concept embeddings, so even though it may look like the reasoner head is simply
memorizing answers, some form of deductive reasoning is actually performed.

In our work we hypothesize, and experimentally show support for the idea that concepts from different knowl-
edge bases can be represented in a shared embedding space, with a topology that lends itself for approximate
reasoning by entailment classifiers based on neural networks. This research is a curiosity-driven intellectual
endeavor: to the best of our knowledge, this is the first attempt to force a kind of shared semantics on seemingly
separate sets of embeddings, yet without defining the semantics explicitly. While we imagine that there may be
practical applications of the proposed idea, such as hot-swapping ontologies in a neural-symbolic system, we do not
make any claims about its immediate usefulness.

We purposefully limit ourselves to the taxonomical part of ALC knowledge bases, and assume the assertional part
to be empty. We believe that accounting for a fundamental difference between an individual, and a set of individuals,
is a separate difficulty in and of itself. At the same time, solving this difficulty is not necessary for the method to
be useful, as many ontologies employ a modeling style such that there are no individuals or they are used very
sparingly [27].

The main contributions of the work are as follows:

– A novel architecture consisting of two parts: a reasoner head, employing a recursive neural network, and a
collection of embedding layers. Together, they enable the construction of reason-able embeddings.

– A training procedure employing multiple knowledge bases at once to shape the topology of the embedding
space.

– Extensive experimental evaluation aimed at establishing the properties of the proposed approach. In the ex-
periments, we show that the proposed approach indeed forces embeddings to represent the formal semantics
in a shared way, that the resulting embeddings are of high quality, and that using this kind of shared, latent
semantics does not incur substantial penalty on them.

On top of that, we present three open-source technical contributions implemented in Python that may be useful
for the community:

– An implementation of the presented method
– A random axiom generator for the ALC description logic
– An extended interface for the FaCT++ reasoner

Our work is structured as follows. In Section 2, we briefly introduce deep learning (Section 2.1) and descrip-
tion logics (Section 2.2), along with the related notation that we use throughout this text. In Section 3, we give
an overview of the current state of the art, in particular of knowledge base embeddings (Section 3.1), and of deep
deductive reasoners (Section 3.2). Section 4 presents the details of the architecture for learning reason-able embed-
dings: in Section 4.1 we present the details of the reasoner head, and in Section 4.2 of the embedding layer. We then
introduce a relaxed variant of the architecture in Section 4.3, and describe the training procedure in Section 4.4.
The axiom generator for ALC is described in Section 5. We report the results of the experimental evaluation in Sec-
tion 6, where we begin by formulating the research questions guiding the experiments in Section 6.1. We describe
the setup in Section 6.2, the employed metrics in Section 6.3, and the used data sets in Section 6.4. Subsequently,
we summarize the results of four experiments in Sections 6.5–6.8. Lastly, in Section 7 we summarize the results
of our work and point out potential improvements, extensions, and applications of our neural reasoner and concept
embeddings.

2. Preliminaries

2.1. Deep learning

While machine learning is ubiquitous in research these days, we give a very brief introduction to ensure there is no
confusion in terms. In this, we follow [31], and the reader is welcome to the book for a more extended introduction.
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Classification is a task where a learning algorithm is supposed to produce a function, called a classifier, mapping
an object to a label from a discrete, finite set of labels. A special case, used in this paper, is binary classification,
where only two mutually-exclusive labels are considered: 0 (negative) and 1 (positive). Objects are usually repre-
sented by vectors of numerical features, albeit different representations are possible. By convention, features are
usually denoted by x, and predicted labels are denoted by ŷ.

Binary classification is frequently solved by constructing a function predicting the probability of an object to
belong to the positive class, and then thresholding on the probability to obtain the label. Throughout this work, we
employ this approach, writing P(x) to denote the probability that the object represented by x should be labeled with
the positive label.

A classifier usually contains a number of parameters, which are automatically adjusted during the training, a
process aiming to optimize the value of some metric on a training set. The training set consists of examples, each
example being an object assigned a true label that the classifier is supposed to predict. By convention, the true labels
are usually denoted as y. The details of the optimization process can vary wildly, but in the context of this work,
as the metric we use binary cross-entropy and employ a variant of gradient descent optimization algorithm called
AdamW [53] to minimize it.

For gradient descent algorithms, it is established to use a mini-batch training, where the training set is randomly
split into small, disjoint subsets called mini-batches, and each mini-batch is used to update the parameters of the
model separately. A complete pass over all the mini-batches from a training set is called an epoch. In some special
cases, only a subset of parameters is optimized at a given time, while the remaining are called frozen and kept
constant.

Due to the stochastic nature of training, too aggressively optimizing the metric can lead to overfitting, a phe-
nomenon in which the classifier labels the training examples very well, but fares poorly on new, unseen data. To
evaluate the performance of a classifier on unseen data, a separate set, called test set, is maintained. It is assumed
that both sets are independent and identically distributed (the i.i.d. assumption), i.e., the examples in them are drawn
independently of each other from the same probability distribution. Usually, for the evaluation, different metrics are
used than during training. The details of the metrics used in this paper are given in Section 6.3.

It is frequently the case that a learning algorithm has some configuration options that cannot be automatically
adjusted using the training set, e.g., because that would immediately lead to overfitting. These options are called
hyperparameters, and are adjusted by observing the value of a metric of choice on yet another set, the validation
set. It follows the same i.i.d. assumption as the two other sets.

A feed-forward neural network is a sequence of linear transformations and activation functions, where each
transformation is followed by an activation function. By convention, each pair: a linear transformation and an acti-
vation function is called a layer. The linear transformation is of form Ax +b, where A is a matrix of the type n×m,
b is a vector of the type n, and x is a vector of the type m. A and b are parameters, called weights, while x is an
input. By convention, m is called the number of neurons of the layer. Throughout the paper, we denote a single layer
with L

f
m, where m is the number of neurons and f is the activation function: L

f
m(x) = f (Ax + b). In a special

case where there is no activation function in a layer, we replace f with ·. In this convention, a feed-forward neural
network of two layers, the first consisting of 16 neurons and employing the activation function σ and the second
of 1 neuron and employing no activation function, can be represented as: L·

1(L
σ
16(x)). Traditionally the last layer is

called the output layer, and the remaining layers – hidden layers.
Over the years, many activation functions were considered. Throughout the paper we use two of them: the sigmoid

σ , given in Equation (1), and ELU in Equation (2) [15].

σ(x) = 1

1 + e−x
(1)

ELU(x) =
{

ex − 1 x < 0

x x � 0
(2)
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Finally, by an embedding we understand a real-valued vector representing some concept from a non-numeric set,
such that the size of the vector is much smaller than the cardinality of the set, and that the dimensions are not directly
interpretable, i.e., the vector comes from a latent space.

2.2. Description logics

Description logics (DLs) are a family of logics, that are widely used as a formal way to represent knowledge in the
form of knowledge bases (KBs). An advantageous property of DLs is that reasoning in most of them is decidable,
since they are fragments of first-order predicate logic [1]. The formalism of DLs has been used as a basis for the Web
Ontology Language (OWL) standard, which as part of the Semantic Web is responsible for describing the semantics,
or meaning, of data on the Internet [59]. DLs and the foundational technologies of the Semantic Web are considered
mature, and are used both in research and the industry [36]. An illustrative example of the potential applications
of DLs is SNOMED CT – a knowledge base that is considered to be the most comprehensive multilingual clinical
healthcare terminology in the world [5].

As mentioned, DLs are a family of logics, which means that there are many DLs of varying expressiveness. Since
in our work we focus on the ALC DL (abbreviated from attributive language with complements), we also introduce
DLs from the perspective of ALC. There exist DLs that are simpler than ALC, for example EL, and there are also
vastly more expressive DLs like SHOIN (D) and SROIQ(D), which are the basis of OWL DL and OWL 2 DL
respectively. We do not deal with EL or SROIQ(D), but we do discuss a procedure for transforming SHOIN (D)

knowledge bases to ALC knowledge bases in Section 6.4.2, by removing parts that ALC does not support.
For readers that are unfamiliar with DLs we begin with an intuitive overview. In later sections we describe the

notation we use, and define the syntax and semantics of the ALC DL. The introduction to DLs is based on [78].

2.2.1. Overview
At a high level, a KB divides knowledge into terminology (also called TBox) and assertions (also called ABox).

One may think that the terminology describes general knowledge (e.g. “Dogs are mammals”), and assertions state
facts (e.g. “Fido is a dog” or “Fido likes Alice”). Those elements of KB terminology and assertions are called
axioms. Axioms are formulated using a vocabulary, which consists of individuals (e.g. “Fido” or “Alice”), concept
names (e.g. “dog” or “mammal”), and role names (e.g. “likes”). A concept denotes a set of individuals, and besides
concept names in the vocabulary, there are complex concepts that can be constructed from other concepts using
concept constructors. The available constructors are different depending on the chosen DL. In particular, in the ALC
DL there are concept complement, intersection, union, universal restriction, and existential restriction constructors.

The TBox contains subsumption axioms, that allow one to state that one concept is subsumed by another concept.
There are two kinds of assertion axioms in ABox: a concept assertion axiom allows one to state that an individual
is an instance of a concept, and a role assertion axiom allows one to relate two individuals by a binary role.

Semantics of DLs are defined in a model-theoretic way, by providing an interpretation that represents the KB
vocabulary in terms of a set called the domain. In particular, an interpretation maps individuals to elements of
the domain, concepts to sets of individuals, and roles to binary relations between individuals. There are also special
concepts, called the bottom concept and top concept, which correspond to the empty set and the domain, respectively.

The semantics of DLs provide an entailment relation, so that given a set of axioms, logical consequences may be
inferred. In other words, KB entails a given axiom if that axiom follows from KB’s axioms.

2.2.2. Notation
Formally, a KB in the ALC DL is a pair K = (T ,A), where T is the set of terminological axioms and A is the

set of assertion axioms. The vocabulary of a KB is defined as a triple (NC,NR,NI ), where NC is the set of concept
names, NR is the set of role names, and NI is the set of individual names. Given an arbitrary ordering of the set of
concept names NC and an arbitrary ordering of the set of role names NR , we define Ai as the i-th concept name,
and Ri as the i-th role name, so that Ai ∈ NC and Ri ∈ NR . In text, we write individuals and concept names in
PascalCase, and role names in camelCase. In this work we do not deal with assertion axioms and henceforth
assume that A = ∅.
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Table 1

Syntax and semantics of ALC

Description Syntax Semantics

top � �I

bottom ⊥ ∅
intersection C � D CI ∩ DI

union C � D CI ∪ DI

complement ¬C �I \ CI

existential restriction ∃R.C {x ∈ �I |∃
y∈�I ((x, y) ∈ RI ∧ y ∈ CI )}

universal restriction ∀R.C {x ∈ �I |∀
y∈�I ((x, y) ∈ RI → y ∈ CI )}

2.2.3. Semantics
An interpretation is defined as a pair I = (�I , ·I), where �I is a set called the domain, and ·I is an interpretation

function. The interpretation function ·I maps each concept C to a subset of �I , each role R to a subset of �I ×�I ,
and each individual to an element of �I . The syntax and semantics in ALC is summarized in Table 1.

The set of terminological axioms T contains subsumption axioms C � D, that are read C is subsumed by D,
where C and D are concepts. If, for an interpretation I, CI ⊆ DI then we say that the axiom C � D holds in the
interpretation, denoted I |= C � D, and call the interpretation a model of the axiom. Sometimes T also contains
equivalence axioms C ≡ D, although such axioms can be expressed in terms of two subsumption axioms C � D

and D � C. If an interpretation is a model for all the axioms in K, we write I |= K.
The notion can be extended to arbitrary axioms α. We say that α is a logical consequence of K, denoted K |= α,

if for every model I of K, the entailment I |= α also holds.

2.2.4. Ontologies in the web ontology language
While the Web Ontology Language (OWL) is underpinned by a DL, it uses a different nomenclature. In particular,

knowledge bases are called ontologies in OWL. We also use the term ontology, but only when referring to a KB
described in OWL. Concept names and role names are called class names and object property names, respectively.
In general, concepts are referred to as classes or class expressions.

Terminological axioms are called class axioms, and a subsumption C � D is read “C is a subclass of D”.
Although we did not discuss role axioms as ALC does not support them, OWL ontologies do support object property
axioms, which are the same thing. In addition to class, object property, and individual axioms, OWL ontologies can
also contain annotation properties and annotation axioms, that allow one to provide additional information about
classes. For example, one very common annotation property is rdfs:label, which is used to provide human-
readable labels.

2.2.5. Semantic reasoners
The main benefit of using a knowledge representation paradigm with well-founded semantics is the ability to

perform automated reasoning. In this work, we use the entailment checking reasoning task, i.e., deciding whether
K |= α for a given axiom α.

Many semantic reasoners for DLs are available, providing reasoning services for KBs, among others, HermiT
[61], Pellet [83], and FaCT++ [89] capable of reasoning in very expressive DLs, or more specialized ones such as
ELK [44].

In this work, FaCT++ is the reasoner of choice, as it is capable enough to deal with ALC knowledge bases, yet it
is written in C++, which means that it is easy and efficient to interface with it from Python via a Cython extension.
That was not the case for the more popular reasoners implemented directly on the Java Virtual Machine, where the
cost of interaction was prohibitive.

3. Related work

The neural and symbolic paradigms of artificial intelligence are vastly different. On one hand, the currently
dominant neural paradigm shows how well neural networks perform on large-scale data sets, ranging from simple
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classification and regression, to language models so powerful, that their output is almost indistinguishable from
human-written text [9], and generative image models that can synthesize photorealistic images from text prompts
[74]. However, neural models often produce nonsensical results, for example paragraphs of text that contradict
themselves. Because neural models are not easily interpretable, it is difficult to find the cause of such problems. On
the other hand, the symbolic paradigm offers methods for explicitly describing knowledge, and reliably performing
reasoning over that knowledge. Symbolic methods can provide step-by-step explanations of their inferences, because
they use deductive reasoning. Unfortunately, symbolic methods are not well suited for learning from data, as real-
life knowledge is often seemingly contradictory. Symbolic methods also have trouble with processing large-scale
data sets, because of high time complexities of used algorithms. The research field of neuro-symbolic integration
aims to combine the large-scale learning ability of neural models, and the ability of symbolic methods to express
knowledge and perform reasoning, all while keeping interpretability, thus combining the benefits and avoiding the
pitfalls of both paradigms [23]. There seems to be two major avenues where the Semantic Web can benefit from the
neural paradigm: ontology and knowledge graphs embeddings and deep deductive reasoners [35].

3.1. Knowledge base embeddings

One way to bridge the neural and symbolic paradigms is to represent symbolic knowledge in terms of vectors
in a high-dimensional real vector space. Such vectors can then be used as additional inputs to machine learning
models based on neural networks, to improve their performance by allowing them to use an approximation of expert
knowledge [87]. A good method of learning embeddings from symbolic knowledge should ideally leverage the
structural information present in relations between abstract concepts, and should not try to learn embeddings for
abstract concepts with the aid of word embeddings, due to the ambiguity of language, its limited abstraction, and
other problems [11].

One of the first embeddings methods tailored to KBs to get traction were NTN proposed by Socher et al. [84],
TransE proposed by Bordes et al. [7,8], later unified into a single framework by Yang et al. [97], as both leverage
linear and bilinear mappings. The notion of modeling relations as operations in some vector space was further
extended by Wang et al. with TransH [94], Lin et al. with TransR [51] and PTransE [50], Sun et al. with RotatE
[85], Zhang et al. with HakE [98], Wang et al. with InterHT [90], or Zhou et al. with Path-RotatE [99].

A separate category of embeddings was established by ConvE, employing convolutional neural networks [20].
This line of research was continued by Nguyen et al. with ConvKB [62], Jiang et al. with ConvR [42], Demir et
al. with ConEx [19]. Over the time even more complex neural architectures were employed, e.g., capsule networks
in CapsE by Nguyen et al. [63], recurrent skipping networks by Guo et al. [33], graph convolutional networks in
GCN-Align by Wang et al. [93] or R-GCN by Schlichtkrull et al. [82], recurrent transformers by Werner et al. [95]

Yet another approach was taken in RESCAL by Nickel et al. where tensor-based techniques were used [65].
Similar approaches were taken in TOAST by Jachnik et al. [39], TATEC by García-Durán et al. [28], DistMult by
Yang et al. [97], HolE by Nickel et al. [64], ComplEx by Trouillon et al. [88], or ANALOGY by Liu et al. [52].

In the context of the Semantic Web technologies, notable examples of embeddings are RDF2Vec by Ristoski et
al. [75], OWL2Vec* by Chen et al. [12], and TRANSOWL by d’Amato et al. [17].

Embeddings are used in various downstream tasks, such as disambiguation [80], ontology learning [71], handling
concept drift in streams [13], question answering [54] or fact classification [43]. Over the years multiple survey
papers were published on the topic of KB embeddings [10,14,16,91,92].

To the best of our knowledge, none of the proposed methods aims to capture the semantics as a topology of the
embedding space, nor enables computing the embeddings of complex expressions from the embeddings of their
parts.

3.2. Deep deductive reasoners

Compared to the work on embeddings, much less attention has been devoted to the notion of approximating or
emulating the results of deductive reasoning with machine learning, and in particular deep learning [23].

Earlier works, employing traditional machine learning approaches, were mostly devoted to approximate a deduc-
tive reasoner in order to obtain the results faster than from a deductive reasoner. For example, Rizzo et al. [76,77]
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proposed terminological trees and forests to tackle this problem, while Paulheim and Stuckenschmidt concentrated
on the problem of approximate reasoning with ABox [70].

One of the first works leveraging deep learning for deductive reasoning over ontologies were those of Makni
and Hendler on using recurrent neural networks for RDFS reasoning [56], and of Hohenecker and Lukasiewicz on
using recursive reasoning networks [37]. Eberhart et al. employed long short-term memory networks (LSTMs) for
reasoning in the EL+ description logic [22,55]. Badreddine et al. introduced Logic Tensor Networks [2], which
were then employed by Bianchi and Hitzler to perform deductive reasoning [6]. Ebrahimi et al. investigated the
applicability of pointer networks to the task [24] and of memory networks [25]. Zhu et al. cast the problem of
reasoning as a graph-to-graph transformation problem and applied it in the context of RDF [100].

Ebrahimi et al. in [24] introduced a few dimensions along which a reasoner can be classified: logic – which
logical formalism is tackled; transfer – the capability of achieving good performance on a previously unknown
KB; generative – the capability of generating new inferences, not only answering yes/no queries; scale – the size
of considered KBs; performance – high if the system was able to cross the 70% threshold on the F1-score, low
otherwise. Following these dimensions, the reasoner presented in this work tackles the ALC logic, is transferable,
is not generative, is of low to moderate scale, and has high performance. To the best of our knowledge, this is the
first transferable reasoner capable of tackling such a complex logic, albeit we must underline that the embeddings
for a new KB must be trained under the supervision of the reasoner.

4. Neural reasoner

Our neural reasoner (hereafter, reasoner) is a classifier, which given a subsumption axiom, outputs the probability
that the axiom is entailed by a given knowledge base. The reasoner consists of the generic reasoner head, and
an interchangeable embedding layer specific to a given knowledge base. The generic reasoner head can classify
entailment, and construct embeddings for concept complements and intersection of concepts. While an embedding
layer contains embeddings for a given knowledge base – that is, it stores embedding vectors for concept names and
can construct embeddings for existential restrictions for a given role name. A diagram of the architecture of our
neural reasoner is shown in Fig. 1.

The main purpose of the classifier is to facilitate the computation of the gradient of the loss function with respect to
the weights of the embedding layer. In other words, when the reasoner is given an axiom, it builds its representation
bottom-up from the KB-specific embeddings in the embedding layer. That representation is then used by a neural

Fig. 1. A high-level overview of the neural reasoner architecture. An embedding layer for knowledge base K and a reasoner head are combined
to create a neural reasoner for K. The reasoner predicts whether K entails subsumption axioms, written K |= C � D, where C and D are ALC
concepts. We train the reasoner by contrasting the predicted probability of entailment with the answer provided by a semantic reasoner. The
reasoner head generalizes across all ALC knowledge bases, but for each K we have to train a separate embedding layer. The reasoner head may
be frozen while training an embedding layer for a new knowledge base K, to make learning faster.
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network in the reasoner head to classify whether the axiom is entailed by that KB. The classification output is
contrasted with the target output computed by a semantic reasoner, and the value of the loss function is used to
adjust weights of the embedding layer with backpropagation through structure [30].

4.1. Reasoner head

In our work we chose the reasoner to be an entailment classifier for subsumption axioms in ALC – that is, given
an axiom C � D, the reasoner head outputs the probability P(K |= C � D) that the axiom is entailed by a given
knowledge base K. Assume that hK is a function mapping ALC concepts in knowledge base K to embedding vectors
in real vector space R

Ne , where Ne is the embedding dimension. The details of how this function is constructed are
given in Section 4.2.

An interaction map for a pair of embeddings u, v, denoted IM(u, v), as defined by Equation (3), is a concatenation
of u, v, and their outer product1 u⊗ v. Before concatenation, the outer product is reshaped to a row vector. Our pre-
liminary experimentation indicated that including the outer product in the interaction map is of utmost importance,
as this helps the classifier to learn high-order correlations [3,34]. By extension, an interaction map for a pair of con-
cepts C, D in knowledge base K is the interaction map for their embeddings: IMK(C,D) = IM(hK(C), hK(D)).

IM(u, v) = [
u; v; flatten(u ⊗ v)

]
(3)

The classification output for an entailment query P(K |= C � D) ∈ (0, 1) (see Equation (4)) is defined as the
output of the feedforward neural network NN�, which accepts the interaction map of C and D, and has a single
output neuron with the sigmoid activation function σ and a single hidden layer with 16 neurons, which is followed
by the ELU activation function [15].

P(K |= C � D) = NN�
(
IMK(C,D)

) = Lσ
1

(
LELU

16

(
IMK(C,D)

))
(4)

4.2. Embedding layer

Recursive neural networks have been successfully used for encoding expression trees as fixed-size vectors, that
could be used as inputs to machine learning models [30]. The recursively defined DL concepts also have a tree
structure [49], so it is appropriate to use a recursive neural network as the embedding layer in our reasoner architec-
ture. The key hypothesis that defines our reasoner is that for each KB, we can train an embedding layer that embeds
concepts from that KB in an embedding space with a topology that makes it easy for the reasoner head to classify
entailment. An embedding topology that is beneficial to entailment classification is formed by jointly training the
reasoner head and embedding layers for multiple KBs, which forces the embedding head to generalize, and the
embedding layers to output embeddings in the shared embedding space.

We note in passing that we distinguish between a recursive and a recurrent neural network: in a recursive neural
network, different parts of the network are applied to the input multiple times, depending on a structured input,
as with recursive grammars, where the same production rule can be applied again and again; in a recurrent neural
network (e.g., GRU, LSTM) the output of the network is connected back to the network, as part of its input.

In general, concept embeddings are represented by vectors in real vector space R
Ne , where Ne is the embedding

dimension. In Equations (5)–(11) we define the recursive function hK : ALC → R
Ne that maps ALC concepts for

knowledge base K to embedding vectors in real vector space R
Ne . We begin with the embedding for each concept

name Ai : a vector WK,Ai
of dimension Ne, as given by Equation (5). The vector is optimized during training and it

is KB-specific, since different KBs have a different number named concepts with different meanings.

hK(Ai) = WK,Ai
(5)

1Each element of the outer product of two vectors (u ⊗ v)ij is defined as ui · vj .



CORRECTED  P
ROOF

D.M. Adamski and J. Potoniec / Reason-able embeddings 9

The embeddings of the bottom and top concepts are stored by the vectors W⊥ and W�, respectively, as specified
by Equation (6). Since the semantics of the top and bottom concepts are independent of any specific KB, the vectors
are shared between all KBs.

hK(�) = W� hK(⊥) = W⊥ (6)

To obtain the embedding for the complement of a given concept, one first recursively obtains the embedding of
that concept, and then passes it as an input to the complement constructor network NN¬, consisting of a single layer
of Ne neurons without the activation function, as defined in Equation (7).

hK(¬C) = NN¬
(
hK(C)

)
where NN¬ = L·

Ne
(7)

We also define in Equation (8) the embedding of a doubly negated concept as the embedding of that concept, by
the double negation elimination rule, which speeds the construction of embeddings.

hK(¬¬C) = hK(C) (8)

To obtain the embedding for an intersection of concepts, one first recursively obtains the embeddings of the
two concepts, computes their interaction map, and passes it as the input to the intersection constructor network
NN�. It is a single layer of Ne neurons without the activation function, as specified by Equation (9), that maps the
interaction map of two concept embeddings, to the embedding of their intersection. Its input is a vector of the size
of the interaction map 2Ne + N2

e , and the output is a vector of size Ne.

hK(C � D) = NN�
(
IMK(C,D)

)
where NN� = L·

Ne
(9)

To obtain the embedding for an existential restriction, one first obtains the embedding of the given concept, and
passes it to the existential restriction constructor network, defined as NNK,Ri

= L·
Ne

, i.e., consisting of a single layer
of Ne neurons without the activation function. To understand the intuition behind this choice, consider the following
example. On the left side of Fig. 2 we show an interpretation of a KB with a set of human individuals, and a set of
individuals that are instances of concept Animal. Some individuals own an animal, which is described with role
assertions owns(Alice,Fido), owns(Bob,Fido), owns(Charlie,Rocky) (shown as arrows). Alice, Bob
and Charlie may be described as instances of ∃owns.Animal. Notice that if we reversed all owns arrows, then
an owns arrow would always start in set Animal, and end in set ∃owns.Animal, as by definition (∃R.C)I =
{x ∈ �I |∃y∈�I ((x, y) ∈ RI ∧ y ∈ CI)}, all elements of (∃R.C)I are related to some element of CI . So in

Fig. 2. An example interpretation of a knowledge base with role assertions is shown on the left side. The individuals Fido, Salem, and
Rocky are elements of the set AnimalI . Individuals Alice, Bob, and Charlie are elements of set (∃owns.Animal)I . An illustration of
transformations from concept embeddings to existential restriction embeddings is shown on the right side. The embedding of ∃owns.C may be
obtained by applying NNK,owns to the embedding of concept C.
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general, if we visualize role assertions as arrows, for any interpretation I, if we reverse role Ri arrows, they always
begin in set CI and end in set (∃Ri.C)I . Now consider the right side of the figure. Our embedding layer represents
concepts as points in the embedding space R

Ne and does not support individuals at all, so we “squish” the sets
∃owns.Animal and Animal into points in R

Ne , but we keep the (reversed) arrows, since their start and end points
always occur inside the sets. Thus, we think that it is appropriate to model the existential restriction constructor as
a function mapping concept embeddings hK(C) to embeddings of the existential restriction hK(∃Ri.C). There is a
separate function NNK,Ri

for each role, and functions NNK,Ri
need to be learned per knowledge base K, because

different KBs have different numbers of roles, and roles may have different meanings, so there is no obvious way
of sharing existential restriction constructors between KBs. The formalization is given in Equation (10).

hK(∃Ri.C) = NNK,Ri

(
hK(C)

)
(10)

In deep learning, activation functions must be used after each hidden layer so that one does not compose multiple
linear transformations, which are equivalent to a single linear transformation. Note that even though our constructor
networks do not have an activation function, the result of the hK function is not simply a composition of multiple
linear transformations, because at every recursive step the constructor networks (i.e. linear transformations) are
given different inputs. If one would like to make the constructor networks deep, i.e., add more hidden layers, then
one must add an activation function like ELU after each layer, except the last one.

To extend hK to concept unions and universal restrictions, we use the de Morgan’s laws [78], arriving at the
formulas given in Equation (11).

hK(C � D) = hK
(¬(¬C � ¬D)

)
hK(∀Ri.C) = hK(¬∃Ri.¬C)

(11)

4.3. Relaxed architecture

An important property of the embedding layer, that we introduced in the previous section, is that the weights of
the neural networks NN¬ and NN� do not depend on a specific knowledge base. Since the semantics of concept
complement and intersection constructors do not change depending on a KB, we think that their neural equivalents
should also not change. We call a reasoner, where NN¬ and NN� network weights are stored in the reasoner head,
the restricted reasoner. Unless stated otherwise, we use restricted reasoners.

While sharing constructors mimics the logic, it may not be an appropriate assumption in a deep learning model
and thus a hindrance to learn good embeddings. To verify whether this is the case, we consider a variant of the
reasoner, that allows the embedding layer to learn KB-specific concept constructor networks NNK,¬ and NNK,�,
and a KB-specific embedding of the bottom concept WK,⊥ and the top concept WK,�. We call this variant the
relaxed reasoner. All changes to the function hK in the relaxed reasoner are marked (underlined) below.

hK(¬C) = NNK,¬
(
hK(C)

)
hK(C � D) = NNK,�

(
IMK(C,D)

)
hK(�) = WK,�
hK(⊥) = WK,⊥

(12)

In the relaxed architecture, the only weights shared between different KBs are the ones learned by the classifier
NN�, which we expected would allow the embedding layers to learn more fitting embeddings, at the cost of limiting
generalization and opportunities for transfer learning.

4.4. Training procedure

The training procedure for our reasoner consists of two steps. In the first step, we train both the reasoner head
and embedding layers for as many diverse KBs as possible. This results in a reasoner head that learned to classify
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whether subsumption axioms hold in any KB, given that an appropriate embedding layer is provided. By appropriate
embedding layer we mean a layer that learned to embed KB-specific concepts in a space that minimizes the classifier
loss. We simply call this step training the reasoner head, and we consider the data used in this step as the training
set. Note that, as a result of training the reasoner, we obtain trained embedding layers for KBs in the training set. If
obtaining the trained embedding layers was the goal, then the next step is not necessary.

In the second step, we freeze the reasoner head and train the embedding layers for KBs that were not seen in
the first step. This results in embedding layers that can embed concepts in a space in which the reasoner is good
at classification. We think that if our reasoner can accurately classify whether subsumption axioms are entailed by
a KB, then the embeddings used as inputs to the classifier NN� faithfully capture the semantics of the KB, even
though we did not train the reasoner head in the second step. We call this step training the embedding layers or
testing the reasoner head, and we consider the data set used in this step as the test set.

5. Axiom generator

Our reasoner learns embeddings by learning to classify entailment queries K |= C � D. A set of query axioms
could be created manually, but for learning to be successful a large number of subsumption axioms is needed. One
way of obtaining a large number of axioms would be to generate all possible axioms for a given KB, up to some
maximum expression tree depth. This approach would suffice for shallow expression trees and KBs with very small
vocabularies, but is impractical otherwise. A more practical method of obtaining a large set of axioms is to pseudo-
randomly generate them, an approach which is fast, reproducible by setting the initial state of the pseudo-random
number generator to a fixed value, yet offering a virtually unlimited number of axioms, at the small cost of possibly
generating duplicates.

One algorithm for pseudo-randomly generating ALC expressions and axioms was introduced by Eberhart et al.
[21]. Unfortunately, their implementation requires the Java Virtual Machine, which did not suit our purposes. We
thus decided to implement in Python our own custom generator inspired by their algorithm. It has four parameters:
the set of concept names NC , the set of role names NR , the probability pA of generating a concept name instead of
a top or bottom concept, and the maximum depth of recursion dmax. Expressions are generated recursively and the
current recursion depth d is tracked. At each step, the generator uses a grammar rule by replacing the symbol from
the left side of the rule with one of the symbols from the right side.

Axioms are generated by starting with the grammar rule A (Equation (13)), which returns a subsumption axiom
or a disjointness axiom with equal probability. The second alternative is intentionally redundant, to ensure that
disjointness axioms are generated frequently enough for the reasoner to benefit from them. Regardless of which
alternative was returned, two concepts are generated according to grammar rule C (Equation (14)). First, we select
at random the maximum recursion depth for the axiom d ′

max from the discrete uniform distribution U{1, dmax}.
Then, the maximum depth of recursion for the first concept dmax,1 is chosen from the uniform discrete distribution
U{1, d ′

max}, and the maximum depth of recursion for the second concept dmax,2 is chosen from U{1, max{1, d ′
max −

dmax,1}}. This technique of limiting the expression depth results in axioms where one of the concepts is deeper than
the other, or axioms where both concepts are relatively shallow, to ensure satisfactory performance of checking
entailment of the generated axioms.

A ::= C � C|C � C � ⊥ (13)

The grammar rule C returns one of the following alternatives with equal probability: a concept according to
the grammar rule T (Equation (15)), a concept complement, a concept intersection, a concept union, an existential
restriction, or a universal restriction. For existential and universal restrictions, the role name Ri is chosen uniformly
at random from NR . If the recursion depth d is equal to or greater than dmax, then a concept according to the grammar
rule T is always returned.

C ::= T|¬C|C � C|C � C|∃Ri.C|∀Ri.C (14)
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The grammar rule T returns one of the following alternatives: with probability pA, a concept name Ai chosen
uniformly at random from NC , the top concept with probability 1−pA

2 , or the bottom concept with probability 1−pA

2 .
To ensure proper exposure of the reasoner to the top and bottom concepts during training, we use the parameter pA

to make the probability of returning � or ⊥ independent of the number of concept names |NC |.

T ::= Ai |�|⊥ (15)

6. Experimental evaluation

6.1. Goals

Although the design of the proposed approach mimics the ALC logic and is well-grounded in research on deep
learning architectures, ultimately its usability and properties must be established experimentally. To this end, we
formulate four research questions and design appropriate experiments to answer them.

The main hypothesis of our research is that using a transferable reasoner head forces the embeddings to reflect the
semantics of the underlying KBs in a shared way. To address it, we pose the following research question RQ1: Can
the reasoner induce a useful topology that it can subsequently exploit, or are the embeddings simply overfitting the
KBs? We answer RQ1 in Experiment 1, described in Section 6.5, where we compare the classification metrics of a
trained reasoner and a random reasoner in previously unseen ontologies, and show that the trained reasoner indeed
brings something to the table.

In Section 4.3, we constructed a relaxed variant of the reasoner, hypothesising that the restricted variant may be
too restrictive and impede the learning process. From this, we formulate RQ2: Can concept constructors be shared
between KBs, or must they be KB-specific? To answer it, we designed Experiment 2, described in Section 6.6. In
there, we follow the same procedure as in Experiment 1, but using the relaxed reasoner. We then compare the results
obtained by the restricted reasoner in Experiment 1, and by the relaxed reasoner, and show that the difference is
negligible.

The overarching goal of this work is to present a method to train embeddings for ALC KBs including the seman-
tics of the concepts, and thus we pose RQ3: Can the presented approach learn good embeddings for concepts from
a real-world ontology? We propose Experiment 3, described in Section 6.7, where we use the pizza ontology as the
real-world ontology. We consider three different training schemes, measure the classification metrics, and visually
analyze the obtained embeddings, showing that the reasoner head from Experiment 1 fares only slightly worse than
a reasoner head overfitted to the ontology.

We extend RQ1 and RQ3 to a larger set of real-world ontologies, formulating RQ4: Is transfer learning with
the presented approach viable for a variety of real-world ontologies? In Experiment 4, described in Section 6.8, we
follow the methodology established in Experiment 3 with 6 different ontologies of varying sizes and complexity and
show that on average the results of using a pre-trained reasoner head are as good as training a reasoner head from
scratch on the considered ontologies.

Finally, we tackle the problem of identifying what is hard for the reasoner by posing RQ5 Are there types of
queries that are significantly harder for the reasoner than others?. We briefly address this question in Experiment 5,
however, without reaching a satisfactory answer.

6.2. Setup

We implemented the proposed approach in Python 3.9.7 and Cython [4] (a superset of Python that compiles
to C or C++), and used PyTorch 1.10.1 to implement the neural reasoner [68]. The source code is available at
https://github.com/maxadamski/reasonable-embeddings. We ran the experiments on a computer with an Intel Core
i5-4670K CPU, 32 GB of DDR3 RAM, and no dedicated GPU, running Void Linux with kernel 5.15.

We use pseudo-randomly generated numbers to create our data sets and in training. For data generation we use
the NumPy implementation of the Permuted Congruential Generator [66]. The internal PyTorch pseudo-random

https://github.com/maxadamski/reasonable-embeddings
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number generator is used during training. To ensure reproducibility of our experiments, we set the initial states of
the pseudo-random number generators to a known initial value.

During training, our reasoner uses inferences made by a semantic reasoner as the expected class in classification.
The Semantic Web community traditionally uses Java as the language of choice, a language which does not interface
well with Python. In particular, using either HermiT [61] or Pellet [83], state-of-the-art semantic reasoners, required
executing the reasoners as separate Java Virtual Machine (JVM) processes, a process for every inference. This intro-
duced unacceptable overhead, which we alleviated by employing FaCT++ [89], a semantic reasoner implemented
in C++, which makes the task of interfacing with Python much easier. We improved a Python interface for FaCT++
by wrobell,2 extending it with missing concept constructors, and addressing performance issues.

In the experiments dealing with OWL ontologies, initially we used Owlready2 [47] to parse OWL ontologies in
the RDF/XML format. Eventually, to improve performance and avoid some problems with the parser, we switched
to converting the ontologies to the OWL functional-style syntax [69] using the ROBOT command-line tool [40],
and parsing them using a custom, high-performance parser implemented in Cython.

Both our parser and the extended version of the Python interface for FaCT++ are available at https://github.com/
maxadamski/reasonable-embeddings/tree/main/src/simplefact, together with compilation instructions in the root of
the repository.

6.3. Evaluation metrics

As the quality of the learned embeddings cannot be measured directly, we perform so-called extrinsic evaluation
by computing classification metrics for a trained reasoner. We stipulate that if the classification metrics indicate
good performance, then the embeddings learned by the embedding layer must capture the semantics of a given KB
well. If that was not the case and the embeddings did not encode useful information for inference in the ALC DL,
then the classifier should not be able to reliably classify entailment of axioms.

For simplicity, in threshold-sensitive metrics we choose a threshold of 0.5, i.e, ŷ = 1 if P(K |= α) � 0.5, and
ŷ = 0 otherwise. Given that y is the expected class, TP is the number of true positives, i.e., the number of queries
where ŷ = y = 1; TN is the number of true negatives, i.e., the number of queries where ŷ = y = 0; FP is the
number of false positives, i.e., the number of queries where ŷ = 1 and y = 0; and FN is the number of false
negatives, i.e., the number of queries where ŷ = 0 and y = 1.

Our classifier learns binary classification, so we chose appropriate metrics [86]. Firstly, we include accuracy
(Equation (16)) in the set of evaluation metrics. Because the data set that we generated for the experiments is
slightly imbalanced we also compute precision (Equation (17)), recall (Equation (18)), and the F1-score (Equation
(19)).

Accuracy = TP + TN

TP + TN + FP + FN
(16)

Precision = TP

TP + FP
(17)

Recall = TPR = TP

TP + FN
(18)

F1 = 2 · Precision · Recall

Precision + Recall
(19)

We also compute the values of the area under the ROC curve (AUC-ROC) and the area under the PR curve (AUC-
PR), which are threshold-invariant metrics with a minimum value of 0 and a maximum value of 1. The ROC curve
shows the performance of a classification model at all classification thresholds, by plotting the true positive rate
(TPR; also called recall) against the false positive rate (FPR) (Equation (20)). Similarly, the PR curve shows the

2https://bitbucket.org/wrobell/factplusplus/src/factpp/factpp/

https://github.com/maxadamski/reasonable-embeddings/tree/main/src/simplefact
https://github.com/maxadamski/reasonable-embeddings/tree/main/src/simplefact
https://bitbucket.org/wrobell/factplusplus/src/factpp/factpp/
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performance of a model at all thresholds by plotting precision against recall [79]. For both ROC and PR curves, a
larger area under the curve suggests a better classifier [26,79].

FPR = FP

FP + TN
(20)

In experiments leveraging multiple KBs, we compute all metrics separately for each query set, and then compute
the average and standard deviation across KBs. We do this because the KBs in the test set may be unequally difficult
to classify, so it is beneficial to measure the variance of the reasoner performance across different KBs.

6.4. Data sets

6.4.1. Synthetic data set
Finding a large number of ALC KBs with a small number of concept and role names proved difficult, so for some

experiments we generated a synthetic data set, and the code to reproduce it is available in the repository. It consists of
60 randomly generated KBs, such that the number of concept names |NC | for each KB is chosen randomly from the
discrete uniform distribution U{80, 120}, and the number of role names |NR| is chosen randomly from the discrete
uniform distribution U{1, 5}. The number of role names is very small, because we observed that the number of role
names in real-world KBs is typically much smaller than the number of concept names. The actual concept and role
names are simply ordinal numbers and are not considered in any way during learning.

For each KB, we also randomly choose the number of terminological axioms |T | to generate, from the normal
distribution �N (200, 10)�. The axioms were generated according to the procedure that we described in Section 5,
and we set the maximum depth of axioms dmax to 3. The parameter pA is chosen randomly from the uniform
distribution U [0.9, 1] for each KB. We discard and generate anew the axioms that would make the KB inconsistent,
or make more than 10% of the named concepts unsatisfiable.

For each knowledge base K, we generate 2000 unique queries K |= α, where α is a random subsumption axiom.
The same parameters of the random axiom generator are used, as during generating terminological axioms for that
KB. For each query, we label it with y = 1 if the entailment holds according to FaCT++, and with y = 0 otherwise.

We assign the first 40 KBs as the training set and the remaining 20 KBs as the test set. We then create a validation
set from 20% of the queries from the training set. In total, there are 64,000 queries in the training set, 16,000 queries
in the validation set, and 40,000 queries in the test set. In every data set, approximately 21.5% of queries have
class y = 1 and the remaining queries have class y = 0. This class imbalance does not significantly affect our
experiments, so we do not use any methods for dealing with imbalanced data sets. We report detailed statistics of
the data set in Appendix B.

6.4.2. Data set of real-world ontologies
Preprocessing We do the following pre-processing steps to make OWL ontologies compatible with our reasoner.
Pre-processing is done automatically after parsing the ontology file, so one does not need to edit the ontology
manually.

– We ignore object property axioms, since role axioms are not expressible in ALC (including role hierarchies,
inverse roles, transitive roles, and (inverse) functional roles).

– We ignore axioms with number or value restrictions, since they are not expressible in ALC with KBs where
ABox is empty.

– We ignore individuals and ABox axioms, since our reasoner does not support ABox reasoning.
– We remove roles that do not appear in any TBox axiom kept after pre-processing. This is done because of a

limitation in FaCT++, which makes it raise an exception, when constructing a concept with an unused role
name.
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The pizza ontology We use the pizza ontology3 from the Manchester University OWL Tutorial [38] We chose the
pizza ontology, because it has a similar number of axioms, concept and role names to the randomly generated KBs
from the synthetic data set.

The ontology contains 99 classes and 8 object properties, which are equivalent to concept names and role names,
respectively. There are 15 equivalence axioms and 15 class disjointness axioms. Two of the classes are unsatisfiable.

The preprocessing is not without some influence on the ontology: InterestingPizza is equivalent to the
top concept, because the axiom defining it as a pizza with at least 3 toppings contained a number restriction, so it
was removed. The equivalence axiom that defines RealItalianPizza as a pizza with Italy as its country of
origin was removed because it contained a value restriction. Since RealItalianPizza was also defined as a
subclass of ∃hasBase.ThinAndCrispyBase, any pizza with a thin and crispy base is inferred to be a subclass
of RealItalianPizza. Value restrictions for American, AmericanHot, Napoletana, Veneziana, and
MozzarellaTopping were removed, but that did not have a significant effect on reasoning.

CQ2SPARQLOWL To further test the capabilities of our architecture, we use the set of ontologies accompanying
the CQ2SPARQLOWL data set4 [73,96]. It consists of five ontologies:

– Software Ontology5 (SWO) with 4068 classes, 52 object properties and 7683 axioms [57]
– Stuff ontology6 (Stuff) with 193 classes, 57 object properties and 717 axioms [45]
– African Wildlife Ontology7 (AWO) with 31 classes, 5 object properties and 56 axioms [46]
– Dementia Ambient Care ontology8 (Dem@Care) with 261 classes, 72 object properties and 695 axioms [18]
– Ontology of Datatypes9 (OntoDT) with 406 classes, 16 object properties and 947 axioms [67]

The ontologies were preprocessed according to the procedure described earlier.

6.5. Experiment 1 – topology induction on the synthetic data set

In this experiment, we consider RQ1: Can the reasoner induce a useful topology that it can subsequently exploit,
or are the embeddings simply overfitting the KBs? To answer it, we designed a simple test to check whether a trained
reasoner head actually learns to reason in the ALC description logic, and high classification metric values are not
just the effect of embedding layers overfitting to KBs.

We test our architecture by first training the reasoner head and embedding layers on the training set (as usual),
which results in a skillful reasoner. Then we create a no-skill reasoner head, that is not trained, but only randomly
initialized. For each of the two reasoner heads, we train embedding layers on the test set, but keep the reasoner head
weights frozen. After training the embedding layers on the test set for a fixed number of epochs, if the classification
metrics for the reasoner with the trained head are significantly greater than for the reasoner with the random head,
then the trained reasoner head learned useful relations in the ALC embedding space that generalize to new KBs. In
short, the reasoner head is transferable.

Conversely, if the differences between classification metrics of both reasoner heads are not significant, then the
trained reasoner actually has little or no skill and the only skill in classification comes from the embedding layer,
which would mean that the reasoner head is not transferable.

6.5.1. Training details
The embedding dimension is set to Ne = 10, which is a much smaller number than |NC |. This forces the embed-

dings for different concept names to share embedding dimensions. As the loss for our classifier we use binary cross
entropy. We create one AdamW optimizer [53] per reasoner head with learning rate set to ηr = 0.0001, and one

3The pizza ontology in the RDF/XML format is available at http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/.
4https://github.com/CQ2SPARQLOWL/Dataset
5Path in the repository: Ontologies/swo_merged.owl.
6Path in the repository: Ontologies/stuff.owl.
7Path in the repository: Ontologies/AfricanWildlifeOntology1.owl.
8Path in the repository: Ontologies/exchangemodel.owl.
9Path in the repository: Ontologies/OntoDT.owl.

http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/
https://github.com/CQ2SPARQLOWL/Dataset
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AdamW optimizer per embedding layer with learning rate set to ηe = 0.0002. In total, for each reasoner variant, we
create 1 optimizer for the reasoner head, and 60 optimizers for the embedding layers.

We train both reasoner variants with mini-batch gradient descent for 15 epochs, which was enough for the vali-
dation loss to stop decreasing. During testing, we train the embedding layers (while the reasoner head weights are
frozen) for 10 epochs, as the test loss stabilized after that. We set the batch size to 32, as small batch sizes have
been shown to improve generalization [58]. Unless stated otherwise, all weights are randomly initialized using the
Xavier initialization [29].

6.5.2. Evaluation of reasoning ability
We evaluate the reasoning ability of the restricted variant of our reasoner by monitoring the training and vali-

dation loss and AUC-ROC values during training. The only goal of this assessment is to verify that the reasoner
can effectively learn to classify entailment in the training set, and does not suffer from underfitting. Training and
validation losses steadily decreasing, and validation AUC-ROC increasing with each training epoch, suggests that
the reasoner architecture is sufficient for learning to classify entailment in a given data set.

As shown in Fig. 3, the training loss decreases and validation AUC-ROC increases for the entirety of the training,
with smaller gains after epoch 10. Furthermore, the validation loss does not start increasing in later epochs, which
suggests that the restricted reasoner variant is not prone to overfitting.

6.5.3. Evaluation of knowledge transfer
After training the restricted reasoner, we froze the reasoner head, and trained embedding layers on the test set.

We also trained separate embedding layers in conjunction with a randomly initialized, frozen reasoner head. The
test loss decreased quickly for the reasoner with the trained head, while the loss for the random head decreased so
slowly, that the test loss curve seems stationary on the plot. For the reasoner with the trained head, the test AUC-ROC
quickly increased to almost 0.8 after epoch 2, and approached 1 after the last epoch.

Overall, training embedding layers for the reasoner with the trained head was much faster, than for the reasoner
with the randomly initialized head, as the reasoner with the trained head achieved average AUC-ROC greater than
0.8 after epoch 2, while it took the reasoner with the random head 10 epochs to do the same. Furthermore, the
trained head allowed the reasoner to achieve an average AUC-ROC close to 1 on the test set after 10 epochs, while
the reasoner with the random head only achieved an average AUC-ROC of around 0.8.

The metrics after the last training epoch on the test data are reported in Table 2. The extremely high recall of the
reasoner with the randomly initialized head is an artifact of it classifying most queries as class 1. Given the very
low precision of the reasoner with the random head, its high recall should be ignored. The restricted reasoner with
the trained head has lower variance of AUC-ROC and accuracy, than the reasoner with the random head. However,
the restricted reasoner with the random head has lower variance for the F1-score, precision and recall. The trained
reasoner outperforms the random reasoner on all measures except recall.

Fig. 3. Training and test progress of the restricted reasoner. The reported training loss for each epoch is the average mini-batch loss in that epoch.
We also show the standard deviation of the mini-batch loss for each epoch. In test progress, the trained reasoner is shown in red, while the random
reasoner is shown in blue. The reasoner was not trained during epoch 0 of training and testing – during epoch 0 we only compute the initial
loss and metric values. Dashed curves show the AUC-ROC for each KB in the test set, while the thicker blue and red curves are the averaged
AUC-ROC across KBs in the test set. Note that the random reasoner loss actually decreases, but at a very slow rate.
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Table 2

Test set metrics for the restricted reasoner. Metric values were averaged across different KBs in the test set. In addition to averages, we standard
deviation values are shown

Model Accuracy Precision Recall F1 AUC-ROC AUC-PR

Trained head 0.9610 ± 0.0148 0.9690 ± 0.0249 0.8469 ± 0.0446 0.9036 ± 0.0346 0.9838 ± 0.0086 0.9642 ± 0.0184

Random head 0.2873 ± 0.0275 0.2318 ± 0.0305 0.9870 ± 0.0120 0.3746 ± 0.0399 0.7656 ± 0.0242 0.5588 ± 0.0522

Table 3

Test set metrics for the restricted reasoners with varying embedding size (Ne), and the number of neurons in the reasoner head (k). Metric values
were averaged across different KBs in the test set

k Ne Accuracy Precision Recall F1 AUC-ROC AUC-PR

1 1 0.8168 ± 0.0220 0.9145 ± 0.0680 0.1661 ± 0.0666 0.2762 ± 0.1008 0.7372 ± 0.0298 0.5863 ± 0.0662

16 1 0.8731 ± 0.0255 0.8000 ± 0.0922 0.5514 ± 0.0848 0.6496 ± 0.0809 0.8751 ± 0.0303 0.7541 ± 0.0802

1 10 0.9559 ± 0.0133 0.9694 ± 0.0242 0.8212 ± 0.0447 0.8888 ± 0.0341 0.9788 ± 0.0095 0.9567 ± 0.0193

16 10 0.9611 ± 0.0149 0.9691 ± 0.0249 0.8470 ± 0.0447 0.9036 ± 0.0347 0.9838 ± 0.0086 0.9643 ± 0.0184

6.5.4. Measuring the effect of embedding size and reasoner head width on performance
To determine the effect of the embedding size and the number of neurons in the reasoner head we set the em-

bedding size to 1 and/or the number of neurons to 1, and repeated the training procedure we described earlier.
A reasoner with 1 neuron is a linear classifier and thus must rely on the embeddings to convey almost all the nec-
essary information. Conversely, an embedding of size 1 is sufficient if all the necessary information is stored in the
reasoner.

We report the results in Table 3. Following [41], we used repeated measures ANOVA on the AUC-ROC and
obtained a p-value below 0.001, i.e., for at least one pair (k,Ne) there is a significant difference in the mean at
the significance level α = 0.01. We then performed pairwise comparisons using the paired t-test and obtained all
p-values below 0.001, indicating the differences in AUC-ROC between every pair of rows in Table 3 are statistically
significant at the family-wise error rate 0.01 with the Bonferroni correction.

The variant with k = 1, Ne = 1 barely works, with accuracy on par with always predicting the positive class
(recall the datasets are not balanced, with on average 21.5% of examples in the positive class). The second-worst
variant with k = 16, Ne = 1 is slightly better but is still characterized by low recall value. Both variants with
Ne = 10 perform much better than any of the variants for Ne = 1. Albeit there is still a difference in performance
between them, it is, on average, rather small.

Answering RQ1, the presented results indicate that the reasoner indeed shapes the embedding space and gener-
alizes well to previously unseen KBs, not storing any substantial amount of knowledge.

6.6. Experiment 2 – comparing restricted and relaxed reasoners

In this experiment we answer RQ2: Can concept constructors be shared between KBs, or must they be KB-
specific? We followed the same protocol as in Experiment 1, but used the relaxed reasoner instead of the restricted
reasoner.

6.6.1. Evaluation of reasoning ability
First, we trained the relaxed reasoner on the training set. The training progress for this variant is shown in Fig. 4.

The training loss decreases and the validation AUC-ROC increases for the entirety of the training, with smaller gains
after epoch 10. The validation loss decreases until epoch 10, and then starts increasing, which indicates overfitting.

When comparing Fig. 4 with Fig. 3, we observe that the AUC-ROC metric for the validation set increases slower
for the relaxed reasoner than for the restricted reasoner. We attribute the faster convergence to the shared concept
constructor networks NN¬, NN�, which effectively have n times more training samples, where n is the number of
training KBs, because they are trained on every sample from every KB, compared to the relaxed architecture, in
which KB-specific concept constructor networks are trained on samples from one KB. As mentioned, the validation
loss starts increasing in later epochs, suggesting that the relaxed reasoner is more prone to overfitting than the
restricted reasoner.
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Fig. 4. Training and test progress of the relaxed reasoner. The reported training loss for each epoch is the average mini-batch loss in that epoch.
We also show the standard deviation of the mini-batch loss for each epoch. In test progress, the trained reasoner is shown in red, while the
random reasoner is shown in blue. The reasoner was not trained during epoch 0 of training and testing – during epoch 0 we only compute the
initial loss and metric values. Dashed lines show the AUC-ROC for each KB in the test set, while the thicker blue and red curves are the averaged
AUC-ROC across KBs in the test set.

Table 4

Test set metrics for the relaxed reasoner. Metric values were averaged across different KBs in the test set. In addition to averages, the standard
deviation values are shown

Model Accuracy Precision Recall F1 AUC-ROC AUC-PR

Trained head 0.9585 ± 0.0138 0.9713 ± 0.0196 0.8332 ± 0.0488 0.8964 ± 0.0340 0.9836 ± 0.0086 0.9636 ± 0.0176

Random head 0.7755 ± 0.0463 0.4901 ± 0.1006 0.5494 ± 0.1363 0.5107 ± 0.0965 0.7898 ± 0.0583 0.6352 ± 0.1167

6.6.2. Evaluation of knowledge transfer
After training the relaxed reasoner, we froze the reasoner head, and trained embedding layers on the test set. We

also trained embedding layers in conjunction with a randomly initialized reasoner head. The test progress is shown
on the right side of Fig. 4. At the beginning, the test loss for the trained reasoner head was higher than the test loss
for the randomly initialized reasoner head. The test loss decreased quickly for the reasoner with the trained head,
while the loss for the random head decreased very slowly. For the reasoner with the trained head, the test AUC-ROC
quickly increased to about 0.7 after epoch 2, and approached 1 after the last epoch. The average test AUC-ROC for
the random head slowly increased from around 0.5 in the beginning to around 0.8 after the last epoch.

Overall, training embedding layers for the relaxed reasoner with the trained head was much faster, than for the
reasoner with the randomly initialized head. Moreover, the trained head allowed the reasoner to achieve an average
AUC-ROC close to 1 on the test set after 10 epochs, while the reasoner with the random head only achieved an
average AUC-ROC of around 0.8.

We report the final metrics of training on the test data in Table 4. For the relaxed architecture, the trained model is
strictly better than the randomly initialized one, as all metric values are higher for the former. Moreover, the trained
model has lower variance of metrics across KBs in the test set, than the random model. Similarly as for the restricted
reasoner, the reasoner with trained head outperforms the reasoner with random head by a fair margin.

6.6.3. Comparative results
Comparing the metrics for the restricted reasoner in Table 2 and for the relaxed reasoner in Table 4, we ob-

serve that as expected, for both relaxed and restricted reasoners, the reasoners with trained heads achieved superior
performance on the test set, which shows that both variants are indeed transferable.

Between the two random reasoners, the relaxed variant achieves better metric values, except recall, due to the
very high recall of the restricted random reasoner. This was expected, since in the relaxed variant, the complement
and intersection constructor networks can adjust to the randomly classifier to minimize the classification error, while
in the restricted variant this is not possible.

When comparing the trained reasoners, the relaxed variant achieves slightly higher values with lower variance for
all metrics (except precision, for which the restricted variant has slightly lower variance). However, the differences
are not statistically significant. For each metric, we conducted a paired t-test, and checked whether the metric values
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Table 5

p-Values of the t statistic in a paired t-test for the test set metrics of a trained restricted reasoner and trained relaxed reasoner

Accuracy Precision Recall F1 AUC-ROC AUC-PR

p 0.1798 0.4431 0.0801 0.1529 0.9236 0.8399

for KBs from the test set, do not significantly differ between the relaxed and restricted reasoners. The resulting
p-values, shown in Table 5, indicate that the null hypothesis cannot be rejected for any metric, even on a relatively
high significance level α = 0.05 and not including corrections for the family-wise error rate.

Disregarding the performance metrics, the restricted reasoner has an advantage over the restricted reasoner – it
has fewer learnable parameters. Since one of the main goals of our reasoner is transfer learning, a lower number of
parameters in the embedding layer is preferable, as it speeds up training for new KBs. The average embedding layer
training time per epoch was approximately 21.72 seconds for the restricted variant, and 26.84 seconds per epoch for
the relaxed variant, which is 23% slower.

Answering RQ2, introducing restrictions does not significantly change the reasoning performance, as measured
by the classification metrics, but increases training efficiency.

6.7. Experiment 3 – visualizing concept embeddings from a real-world ontology

The previous experiments showed that our reasoner is capable of learning good concept embeddings for synthetic
KBs, so the next step is to answer RQ3: Can the presented approach learn good embeddings for concepts from
a real-world ontology? In this experiment we do that by training the neural reasoner to classify entailment, given
randomly generated queries about the pizza ontology as the data set. We repeat this experiment three times. In the
first run, we let the reasoner learn without any pre-training. In the second run, we initialize the reasoner head with
weights of the restricted reasoner, that we trained in Experiment 1, then freeze it, and only allow the embedding layer
to learn. In the third run, we randomly initialize the reasoner head, and also freeze it to only allow the embedding
layer to learn KB-specific embedding.

6.7.1. Training set
The data set for this experiment consists of 32,000 unique random queries that we generate using the algorithm

described in Section 5. We set the maximum axiom depth to dmax = 4, and the probability of concept names to
pA = 0.95. The answer to each query is obtained using FaCT++. We do not split the data set because we want the
learned embeddings to fit the data set as well as possible. The data set is slightly imbalanced, with 41.11% of queries
belonging to class 1, and the rest to class 0, although the class imbalance did not significantly affect classification
performance.

6.7.2. Training procedure
As mentioned, we repeat learning three times, which results in three reasoners:

– Reasoner with unfrozen head – Both the reasoner head and embedding layers were trained.
– Reasoner with frozen pre-trained head – Only embedding layers were trained. The reasoner head was initialized

with the weights of the restricted reasoner, that we obtained in Experiment 1.
– Reasoner with frozen random head – Only embedding layers were trained. The reasoner head was initialized

randomly and its weights were immediately frozen.

In every run of the experiment we trained the model for 30 epochs, with learning rate set to ηr = ηe = 0.001 both
for the optimizer of the reasoner head and the embedding layers. Similarly to the previous experiments, we use the
AdamW optimizer and train the reasoners with batch size of 32. Because we initialize the frozen pre-trained reasoner
head with weights of the restricted reasoner head, that we trained in Experiment 1, the embedding dimension Ne and
the layers of the neural network NN� needed to be exactly the same as in that experiment. Thus, for all reasoners in
this experiment we set Ne = 10 and defined NN� to be a neural network with one hidden layer with 16 neurons and
the ELU activation function. The embedding dimension is adequate, since the pizza ontology has a similar number
of concepts to the ontologies in the synthetic data set that we used in Experiment 1.
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Table 6

Classification metrics for reasoners in Experiment 3 after training for 30 epochs

Reasoner head Accuracy Precision Recall F1 AUC-ROC AUC-PR Training time

Unfrozen 0.9929 0.9897 0.9930 0.9914 0.9996 0.9995 411.16 s

Frozen pre-trained 0.9527 0.9508 0.9331 0.9419 0.9859 0.9823 354.99 s

Frozen random 0.7733 0.6593 0.9283 0.7710 0.8932 0.8390 328.49 s

We expected the reasoner with the unfrozen head to achieve the best metric values and learn the best embeddings
out of the three reasoners in the embedding analysis, because no weights are frozen, which means that the reasoner
with the unfrozen head can fit to the data set more than the reasoners with frozen heads. The only obstacle to
learning good embeddings for the reasoner with unfrozen head are the randomly generated queries, that may not
contain useful entailments for the pizza ontology, although the other two reasoners learn with the same data set, so
the comparison is at least fair.

Based on the results of Experiment 1, we expected the reasoner with transfer to achieve higher classification
metrics than the reasoner with randomly initialized frozen head. In Experiment 1, the trained reasoner head was
better at classifying queries for the unseen KBs from the test set, than the randomly initialized reasoner head, so we
expected the same to be true for the pizza ontology.

6.7.3. Evaluation of reasoning ability
The classification metrics of the three reasoners are shown in Table 6. As expected, the unfrozen reasoner achieves

strictly better classification performance than the reasoners with frozen heads, as the values of all metrics are higher
than for other reasoners. The reasoner with the frozen pre-trained head is the second-best reasoner after the unfrozen
reasoner, and is strictly better than the reasoner with the randomly initialized head.

The reasoner with the randomly initialized frozen head was the worst of the three reasoners, although it is better
than a random guesser, with AUC-ROC of around 0.90. This reasoner has very high recall, but relatively low
precision, which is reflected in the significantly lower F1-score and AUC-PR, when compared to the better reasoners.
Even though the reasoner with the randomly initialized head was the worst of the three, it still achieved relatively
high metric values, which shows that good embeddings can compensate for a bad reasoner head.

6.7.4. Evaluation of knowledge transfer
In the last section, we discussed the differences between the three reasoners that we trained in Experiment 3.

Taking into account the differences between the reasoners with frozen heads, we conclude that the transfer of
knowledge from the randomly generated KBs in Experiment 1 to the pizza ontology was a success. The reasoner
with the pre-trained head achieved results similar to the unfrozen reasoner, which is very promising, given that the
pizza ontology is certainly different from the randomly generated KBs used as the training set in Experiment 1.

It should be mentioned that the total training time of the reasoners with frozen heads is shorter than the training
time of the unfrozen reasoner, which is the case because there is no time spent on updating the reasoner head
weights.

6.7.5. Embedding analysis
In addition to evaluating the reasoning and transfer ability of our reasoner, which showed that it can successfully

learn to classify entailment in a real-world KB, we visualize the learned embeddings. A 2D visualization that tries
to preserve the distances between concepts in the high-dimensional embedding space enables visual assessment of
the quality of the learned embeddings. We think that if semantically similar concepts are placed closer to each other
than to dissimilar concepts, then the learned embeddings capture the semantics of a given KB.

We set the concept embedding dimension to Ne = 10, so to visualize the embeddings we first needed to re-
duce their dimensionality. We used Uniform Manifold Approximation and Projection for Dimension Reduction
(UMAP),10 because it is a nonlinear dimensionality reduction algorithm with high performance and interpretable

10https://github.com/lmcinnes/umap

https://github.com/lmcinnes/umap
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hyperparameters [60], that we set as follows: n_neighbors to 50 to emphasize the global structure of the data, and
set min_dist by starting at a large value and decreasing it until clusters started to separate and the visualization
became readable, which occurred when min_dist was set to 0.3.

The UMAP visualizations of the embeddings learned in this experiment, are shown in Fig. 5. The visualiza-
tion of embeddings learned by the unfrozen reasoner suggests, that the embeddings capture the semantics of the
pizza ontology well. As expected, the unsatisfiable CheesyVegetableTopping is close to ⊥, and the general
DomainThing and Food concepts are close to �. Spiciness and pizza bases form their own clusters. Pizzas and
toppings are separated, with vegetarian pizzas forming one cluster, and non-vegetarian pizzas forming another clus-
ter together with spicy pizzas. Cheesy toppings, vegetable toppings, spicy toppings, and pepper toppings are also
close to related concepts.

The embeddings learned by the reasoner with the pre-trained head look a bit worse than those of the unfrozen
reasoner. The pizzas and the toppings are separated, but inside of the topping and pizza clusters the embeddings are
not as well organized.

The embeddings learned by the reasoner with the randomly initialized head do not look good when visualized.
A few concept names form clusters that make sense, but most look like they are randomly scattered. General con-
cepts are close to the top concept, which is good, but the unsatisfiable CheesyVegetableTopping is far away
from the bottom concept.

In general, we think that the embeddings for the unfrozen reasoner are the best, the embeddings for the reasoner
with the frozen pre-trained head are good, and the embeddings for the reasoner with the frozen randomly initialized
head are not good at all. Again, the results of the visual assessment of the learned embeddings are consistent with
the classification metrics of the reasoners.

Overall, the presented results indicate that the answer to RQ3 is affirmative, and that the presented approach can
learn embeddings of good quality.

6.8. Experiment 4 – learning concept embeddings in different real-world ontologies

In Experiment 3 we found that a reasoner with a frozen pre-trained head achieves similar classification metrics to
a reasoner trained from scratch. To see whether this result holds for a more diverse set of ontologies we posed RQ4:
Is transfer learning with the presented approach viable for a variety of real-world ontologies?

6.8.1. Training set
In this experiment we use six real-world ontologies: five ontologies from the CQ2SPARQLOWL data set, and the

pizza ontology. For each ontology, we generate 32,000 unique random queries according to the algorithm described
in Section 5. We set the maximum axiom depth to dmax = 4, and the probability of concept names to pA = 0.95.
The answer to each query is obtained using FaCT++. Similarly to Experiment 3, we do not split the data set because
we want the learned embeddings to fit the data set as well as possible. Class imbalance depends on the ontology,
ranging from only 4.24% of the Dem@Care ontology queries belonging to class 1, to 41.11% of the pizza ontology
queries in class 1. We reused queries for the pizza ontology from Experiment 3.

6.8.2. Training procedure
Similarly to the Experiment 3, we repeat learning three times, which results in three reasoner heads, each with

six embedding layers.

– Reasoner with unfrozen head – Both the reasoner head and embedding layers were trained.
– Reasoner with frozen pre-trained head – Only embedding layers were trained. The reasoner head was initialized

with the weights of the restricted reasoner, that we obtained in Experiment 1.
– Reasoner with frozen random head – Only embedding layers were trained. The reasoner head was initialized

randomly.

We use the exact reasoner architecture and training setup as in Experiment 3, but in this experiment each mini-
batch could contain queries for any of the six ontologies, as the embedding layers were trained in parallel.
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Fig. 5. UMAP visualization of the learned concept embeddings. We replaced “Topping” in concept names with “T” to improve readability. We
use different shapes, sizes, and colors of markers as follows: by default concepts are square and gray; the top concept, bottom concept and
concept expressions are cyan; toppings diamond-shaped, and pizzas are round; vegetarian pizzas and toppings are light green, except vegetable
toppings, which are dark green; seafood toppings are pink; non-vegetarian pizzas and meat toppings are dark red; cheesy pizzas, and cheese
toppings are respectively marked with a yellow disk or yellow diamond inside; pepper toppings are marked with an orange diamond inside; spicy
things are marked with a red “x” inside; spiciness levels are light red.



CORRECTED  P
ROOF

D.M. Adamski and J. Potoniec / Reason-able embeddings 23

Table 7

Classification metrics for reasoners for the AWO, Dem@Care, Stuff, SWO, OntoDT, and Pizza ontologies. Values were averaged over all
ontologies

Reasoner head Accuracy Precision Recall F1 AUC-ROC AUC-PR Train time

Unfrozen 0.9766 ± 0.0135 0.9425 ± 0.0489 0.9017 ± 0.0772 0.9207 ± 0.0574 0.9907 ± 0.0076 0.9637 ± 0.0343 27 min 18 s

Frozen pre-trained 0.9600 ± 0.0219 0.9121 ± 0.0605 0.8449 ± 0.1122 0.8755 ± 0.0838 0.9776 ± 0.0156 0.9284 ± 0.0566 24 min 6 s

Frozen random 0.7789 ± 0.0468 0.3672 ± 0.2526 0.4371 ± 0.1679 0.3879 ± 0.2198 0.7230 ± 0.0819 0.3460 ± 0.2497 24 min 5 s

Table 8

p-Values of the t statistic in a paired t-test for the test set metrics of a reasoner with an unfrozen head and a frozen pre-trained head. Adjusted
p-values p̃ were obtained using the Holm–Bonferroni method

Accuracy Precision Recall F1 AUC-ROC AUC-PR

p 0.0338 0.0432 0.0319 0.0277 0.0208 0.0335

p̃ 0.1383 0.1383 0.1383 0.1383 0.1244 0.1383

Table 9

The Pearson correlation coefficient between each feature and the classification error of the reasoner

n⊥ n¬ n� n∃ nC nR d

−0.0106 −0.0051 −0.0062 −0.0015 0.0282 0.0004 −0.0065

6.8.3. Results
The metric values for the pizza ontology are slightly different from the ones in Experiment 3, as this time, the

reasoner head was trained on six ontologies at once, in contrast to exclusively training on the pizza ontology. We
report the classification metrics for each reasoner head, averaged over all ontologies, in Table 7, and we give the
values for each ontology separately in Appendix A.

In Table 8 we report the p-values obtained from a paired t-test between the unfrozen head, and the frozen pre-
trained head. As some of the p-values hint on the possibility of statistical significance, we also report the adjusted
p-values p̃, obtained using the Holm-Bonferroni method. After adjustment, on the significance level α = 0.05, no
difference is statistically significant.

The results indicate that using a pre-trained head is a viable choice for real-world ontologies, as the performance
drop is negligible, and thus the answer for RQ4 is positive.

6.9. Experiment 5 – what is difficult for the reasoner?

One can wonder what types of axioms are particularly hard for the reasoner. To answer this, we started with
the reasoner and the test set from Experiment 1. Then, for each query in the test set, we computed the following
features:

– n⊥ – the number of occurrences of the bottom concept in the query;
– nC – the number of different concept names in the query;
– nR – the number of different role names in the query;
– n¬ – the number of negations ¬ in the query;
– n� – the number of conjunctions � in the query;
– n∃ – the number of existential restrictions ∃ in the query;
– d – the depth of the syntax tree of the query (i.e., the recursion depth d as defined in Section 5);

Next, we computed the Pearson correlation coefficient between each feature and the classification error of the
reasoner (before thresholding). The absolute values of the obtained coefficients (Table 9) were all below 0.05,
indicating that none of the features have a significant impact on the performance of the reasoner.

Currently, we do not have a decisive answer to RQ5. There do not seem to be any obvious indicators of hardness
for a query. We stipulate it might be possible to detect more complex patterns by using, e.g., an adversarial attack
[32], or frequent pattern mining [48,72]. However, we deem this to be out of the scope of this work.
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7. Conclusions

In this work, we introduced a novel method of learning data-driven concept embeddings, called reason-able
embeddings, in ALC knowledge bases. To our best knowledge, our method of learning concept embeddings is the
first one using an entailment classifier based on neural networks. Thanks to of our unique approach, after learning
embeddings, one can use the resulting classifier to perform fast approximate reasoning.

We also show that using recursive neural networks for constructing embeddings of arbitrarily complex concepts
obviates the need for manually designing concept vectorization schemes, and avoids the pitfalls of recurrent neural
networks operating on a textual representations of concepts. Instead, concept embeddings can be learned in a data-
driven way, by simply asking entailment queries for a given knowledge base.

Finally, we show that a significant part of our reasoner is transferable across knowledge bases in the ALC de-
scription logic, including real-world knowledge bases like the pizza ontology, or the ontologies accompanying the
CQ2SPARQLOWL data set. The advantage of a transferable reasoner is that learning concept embeddings takes less
time, and thus is less expensive, when using a pre-trained reasoner head, compared to training an entire reasoner
from scratch. Promising results in the transferability of neural reasoners suggest that it is indeed feasible to embed
concepts from multiple domains in a single shared embedding space.

We hope that our neural reasoner architecture will allow for greater use of knowledge in models based on neural
networks, both by providing an effective way of learning concept embeddings, and learning an accurate entailment
classifier for knowledge bases in description logics, thus, making a small step towards the integration of the neural
and symbolic paradigms in artificial intelligence.

We identified many opportunities to improve, extend and apply our neural reasoner, that were out-of-scope for
this work, but look like promising avenues for future research. In our work we used small neural networks, but
deeper and wider concept constructor networks, and subsumption entailment classifier networks could be examined.
The number of parameters in the reasoner could also be reduced, while preserving the quality of embeddings and
accuracy of entailment classification. Currently, the number of parameters scales quadratically with the embedding
dimension, because the reasoner uses the outer product of embeddings as an input to neural networks NN� and
NN�. Instead of passing the entire interaction map as input, convolutional neural networks could be used, in turn
greatly reducing the number of parameters. The number of parameters used by existential restriction constructor
networks could possibly be reduced by representing weights as sparse matrices.

Finally, it would be interesting to see if recursive neural networks could be applied in reverse to how we use them
– to generate concepts, given learned concept embeddings. That would make it possible to not only learn concept
embeddings by classifying entailment, but also to induce new concepts by sampling the embedding space, e.g., to
construct a scalable algorithm for explainable artificial intelligence [81].
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Appendix A. Detailed results of Experiment 4

In Table 10 we report the values of classification metrics separately for each of the six ontologies considered in
Experiment 4, and for each of the three runs.
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Table 10

The values of the classification metrics separately for each ontology and run from Experiment 4

Model Ontology Accuracy Precision Recall F1 AUC-ROC AUC-PR

Unfrozen AWO 0.9639 0.8697 0.8247 0.8466 0.9803 0.9214

Dem@Care 0.9956 0.9984 0.8969 0.9449 0.9979 0.9772

Stuff 0.9903 0.9853 0.9725 0.9789 0.9970 0.9921

SWO 0.9635 0.9175 0.9588 0.9377 0.9929 0.9808

OntoDT 0.9752 0.9187 0.7934 0.8515 0.9821 0.9187

Pizza 0.9710 0.9654 0.9640 0.9647 0.9940 0.9920

Frozen pre-trained AWO 0.9428 0.8105 0.6877 0.7441 0.9518 0.8363

Dem@Care 0.9956 0.9984 0.8976 0.9453 0.9977 0.9762

Stuff 0.9658 0.9258 0.9261 0.9260 0.9831 0.9410

SWO 0.9558 0.9179 0.9290 0.9234 0.9861 0.9640

OntoDT 0.9672 0.8981 0.7148 0.7960 0.9704 0.8828

Pizza 0.9328 0.9218 0.9143 0.9180 0.9768 0.9700

Frozen random AWO 0.7564 0.1638 0.2474 0.1971 0.6615 0.1644

Dem@Care 0.8618 0.1090 0.3144 0.1619 0.6245 0.0851

Stuff 0.7618 0.4870 0.5988 0.5371 0.7809 0.4905

SWO 0.7482 0.5619 0.5529 0.5574 0.7977 0.5087

OntoDT 0.8064 0.1687 0.2967 0.2151 0.6636 0.1361

Pizza 0.7391 0.7126 0.6122 0.6586 0.8100 0.6912

Appendix B. Detailed statistics of the synthetic dataset

In Tables 11–13, we report detailed statistics about the queries of the synthetic dataset, introduced in Section 6.4.1.
We computed them separately for subsumption queries and for disjointness queries (see Equation (13)). Moreover,
for subsumption queries, we also computed them for only the left-hand sides (LHS) and only for the right-hand
sides (RHS), since subsumptions are not commutative.

We computed the following statistics:

count number of queries;
depth depth of the syntax tree;
distinc concepts number of different concepts in a single query;
distinct roles number of different roles in a single query;
distinct constructors number of different constructors (i.e., �, �, ¬, ∀, ∃) in a single query;
concepts total number of concepts in a single query;
roles total number of roles in a single query;
constructors total number of constructors in a single query;
complement number of complement constructors ¬ in a single query;
with complement number of queries with at least one complement constructor;
intersection number of intersection constructors � in a single query;
with intersection number of queries with at least one intersection constructor;
union number of union constructors � in a single query;
with union number of queries with at least one union constructor;
universal restriction number of universal restrictions ∀ in a single query;
with universal restriction number of queries with at least one universal restriction;
existential restriction number of existential restrictions ∀ in a single query;
with existential restriction number of queries with at least one existential restriction;
top number of occurrences of the top concept in a single query;
with top number of queries with a top concept;
bottom number of occurrences of the bottom concept in a single query;
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Table 11

Detailed statistics of the training set of the synthetic data set

Subsumption Disjointness

LHS RHS Total

count 31955 31955 31955 32045

depth 1.413 ± 0.639 [1, 3] 1.046 ± 0.210 [1, 2] 2.459 ± 0.643 [2, 4] 2.462 ± 0.647 [2, 4]
distinct concepts 1.175 ± 0.448 [1, 4] 1.019 ± 0.138 [1, 2] 2.182 ± 0.469 [1, 5] 2.180 ± 0.470 [1, 5]
distinct roles 0.166 ± 0.394 [0, 2] 0.018 ± 0.132 [0, 1] 0.183 ± 0.408 [0, 2] 0.188 ± 0.414 [0, 2]
distinct constructors 0.414 ± 0.660 [0, 3] 0.046 ± 0.210 [0, 1] 1.460 ± 0.664 [1, 4] 1.462 ± 0.668 [1, 4]
concepts 1.177 ± 0.452 [1, 4] 1.019 ± 0.138 [1, 2] 2.196 ± 0.465 [2, 5] 2.196 ± 0.466 [2, 5]
roles 0.173 ± 0.419 [0, 2] 0.018 ± 0.132 [0, 1] 0.191 ± 0.432 [0, 2] 0.197 ± 0.440 [0, 2]
constructors 0.439 ± 0.718 [0, 3] 0.046 ± 0.210 [0, 1] 1.485 ± 0.720 [1, 4] 1.489 ± 0.726 [1, 4]
complement 0.089 ± 0.300 [0, 2] 0.009 ± 0.095 [0, 1] 0.098 ± 0.312 [0, 2] 0.096 ± 0.312 [0, 2]
with complement 2701 292 2993 2903

intersection 0.087 ± 0.304 [0, 3] 0.009 ± 0.097 [0, 1] 0.096 ± 0.316 [0, 3] 0.098 ± 0.320 [0, 3]
with intersection 2570 303 2873 2953

union 0.090 ± 0.311 [0, 3] 0.010 ± 0.099 [0, 1] 0.100 ± 0.324 [0, 3] 0.097 ± 0.321 [0, 3]
with union 2658 319 2977 2893

universal restriction 0.086 ± 0.294 [0, 2] 0.009 ± 0.092 [0, 1] 0.095 ± 0.306 [0, 2] 0.099 ± 0.312 [0, 2]
with universal restriction 2627 272 2899 3028

existential restriction 0.087 ± 0.294 [0, 2] 0.009 ± 0.095 [0, 1] 0.096 ± 0.306 [0, 2] 0.098 ± 0.312 [0, 2]
with existential restriction 2673 291 2964 3014

top 0.027 ± 0.161 [0, 2] 0.023 ± 0.152 [0, 2] 0.050 ± 0.222 [0, 2] 0.051 ± 0.225 [0, 2]
with top 847 748 1574 1618

bottom 0.026 ± 0.160 [0, 2] 0.023 ± 0.150 [0, 2] 0.049 ± 0.219 [0, 2] 0.048 ± 0.217 [0, 2]
with bottom 831 737 1549 1510

queries per concept 8.913 ± 3.123 [1, 22] 7.720 ± 2.836 [1, 22] 16.538 ± 4.397 [3, 35] 16.574 ± 4.514 [4, 39]
queries per role 44.847 ± 27.843 [15, 143] 4.896 ± 3.881 [1, 19] 49.619 ± 31.202 [19, 157] 51.169 ± 33.033 [18, 174]

with bottom number of queries with a bottom concept;
queries per concept number of queries containing a concept;
queries per role number of roles containing a concept;

We report statistics requiring aggregation in the following format: mean ± standard deviation[minimum,

maximum].
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Table 12

Detailed statistics of the validation set of the synthetic data set

Subsumption Disjointness

LHS RHS Total

count 7989 7989 7989 8011

depth 1.421 ± 0.649 [1, 3] 1.049 ± 0.216 [1, 2] 2.470 ± 0.653 [2, 4] 2.459 ± 0.645 [2, 4]
distinct concepts 1.179 ± 0.462 [1, 4] 1.021 ± 0.142 [1, 2] 2.188 ± 0.488 [1, 5] 2.182 ± 0.469 [1, 5]
distinct roles 0.168 ± 0.403 [0, 2] 0.020 ± 0.140 [0, 1] 0.188 ± 0.418 [0, 2] 0.184 ± 0.407 [0, 2]
distinct constructors 0.420 ± 0.664 [0, 3] 0.049 ± 0.216 [0, 1] 1.469 ± 0.668 [1, 4] 1.461 ± 0.669 [1, 4]
concepts 1.182 ± 0.465 [1, 4] 1.021 ± 0.143 [1, 2] 2.203 ± 0.479 [2, 5] 2.197 ± 0.465 [2, 5]
roles 0.175 ± 0.424 [0, 2] 0.020 ± 0.140 [0, 1] 0.195 ± 0.438 [0, 2] 0.193 ± 0.434 [0, 2]
constructors 0.450 ± 0.733 [0, 3] 0.049 ± 0.216 [0, 1] 1.499 ± 0.735 [1, 4] 1.486 ± 0.726 [1, 4]
complement 0.093 ± 0.307 [0, 2] 0.008 ± 0.090 [0, 1] 0.101 ± 0.318 [0, 2] 0.095 ± 0.306 [0, 2]
with complement 701 65 766 732

intersection 0.089 ± 0.316 [0, 3] 0.012 ± 0.108 [0, 1] 0.101 ± 0.331 [0, 3] 0.095 ± 0.318 [0, 3]
with intersection 640 94 734 704

union 0.093 ± 0.318 [0, 3] 0.009 ± 0.095 [0, 1] 0.102 ± 0.330 [0, 3] 0.102 ± 0.324 [0, 3]
with union 683 73 756 773

universal restriction 0.090 ± 0.301 [0, 2] 0.011 ± 0.102 [0, 1] 0.100 ± 0.315 [0, 2] 0.098 ± 0.310 [0, 2]
with universal restriction 680 84 764 754

existential restriction 0.085 ± 0.294 [0, 2] 0.009 ± 0.096 [0, 1] 0.095 ± 0.307 [0, 2] 0.095 ± 0.308 [0, 2]
with existential restriction 648 75 723 729

top 0.025 ± 0.156 [0, 2] 0.023 ± 0.150 [0, 1] 0.048 ± 0.217 [0, 2] 0.047 ± 0.214 [0, 2]
with top 195 184 373 370

bottom 0.027 ± 0.164 [0, 2] 0.024 ± 0.154 [0, 1] 0.052 ± 0.228 [0, 2] 0.053 ± 0.227 [0, 2]
with bottom 217 195 402 415

queries per concept 2.496 ± 1.359 [1, 10] 2.263 ± 1.235 [1, 8] 4.200 ± 2.032 [1, 12] 4.200 ± 2.023 [1, 13]
queries per role 11.398 ± 7.449 [1, 36] 2.149 ± 1.449 [1, 8] 12.746 ± 8.571 [1, 44] 12.517 ± 9.058 [2, 52]
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Table 13

Detailed statistics of the test set of the synthetic data set

Subsumption Disjointness

count 19874 19874 19874 20126

depth 1.419 ± 0.647 [1, 3] 1.049 ± 0.215 [1, 2] 2.468 ± 0.651 [2, 4] 2.464 ± 0.644 [2, 4]
distinct concepts 1.174 ± 0.444 [1, 4] 1.018 ± 0.133 [1, 2] 2.179 ± 0.469 [1, 5] 2.180 ± 0.470 [1, 5]
distinct roles 0.173 ± 0.402 [0, 2] 0.021 ± 0.144 [0, 1] 0.195 ± 0.419 [0, 2] 0.189 ± 0.413 [0, 2]
distinct constructors 0.420 ± 0.670 [0, 3] 0.049 ± 0.215 [0, 1] 1.469 ± 0.674 [1, 4] 1.464 ± 0.664 [1, 4]
concepts 1.176 ± 0.448 [1, 4] 1.018 ± 0.134 [1, 2] 2.194 ± 0.461 [2, 5] 2.195 ± 0.464 [2, 5]
roles 0.181 ± 0.427 [0, 2] 0.021 ± 0.144 [0, 1] 0.202 ± 0.442 [0, 2] 0.197 ± 0.436 [0, 2]
constructors 0.448 ± 0.733 [0, 3] 0.049 ± 0.215 [0, 1] 1.496 ± 0.734 [1, 4] 1.490 ± 0.721 [1, 4]
complement 0.090 ± 0.304 [0, 2] 0.009 ± 0.095 [0, 1] 0.100 ± 0.316 [0, 2] 0.098 ± 0.311 [0, 2]
with complement 1695 180 1875 1875

intersection 0.088 ± 0.307 [0, 3] 0.009 ± 0.095 [0, 1] 0.098 ± 0.319 [0, 3] 0.095 ± 0.317 [0, 3]
with intersection 1632 181 1813 1781

union 0.088 ± 0.307 [0, 3] 0.009 ± 0.096 [0, 1] 0.097 ± 0.319 [0, 3] 0.100 ± 0.324 [0, 3]
with union 1606 183 1789 1883

universal restriction 0.088 ± 0.299 [0, 2] 0.010 ± 0.099 [0, 1] 0.098 ± 0.313 [0, 2] 0.099 ± 0.311 [0, 2]
with universal restriction 1667 198 1865 1909

existential restriction 0.093 ± 0.306 [0, 2] 0.011 ± 0.106 [0, 1] 0.104 ± 0.321 [0, 2] 0.098 ± 0.311 [0, 2]
with existential restriction 1750 225 1975 1890

top 0.031 ± 0.174 [0, 2] 0.027 ± 0.162 [0, 1] 0.058 ± 0.239 [0, 2] 0.057 ± 0.236 [0, 2]
with top 612 537 1126 1121

bottom 0.032 ± 0.178 [0, 2] 0.025 ± 0.157 [0, 1] 0.057 ± 0.237 [0, 2] 0.057 ± 0.237 [0, 2]
with bottom 635 500 1120 1123

queries per concept 10.789 ± 3.653 [1, 25] 9.374 ± 3.275 [2, 23] 20.048 ± 5.336 [6, 41] 20.329 ± 5.163 [8, 41]
queries per role 55.565 ± 33.345 [28, 174] 6.934 ± 5.958 [1, 30] 62.387 ± 38.611 [32, 204] 61.452 ± 37.867 [26, 194]
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