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Abstract. Occupant feedback enables building managers to improve occupants’ health, comfort, and satisfaction. However,
acquiring continuous occupant feedback and integrating this feedback with other building information is challenging. This paper
presents a scalable method to acquire continuous occupant feedback and directly integrate this with other building information.
Semantic web technologies were applied to solve data interoperability issues. The Occupant Feedback Ontology was developed
to describe feedback semantically. Next to this, a smartwatch app – Mintal – was developed to acquire continuous feedback on
indoor environmental quality. The app gathers location, medical information, and answers on short micro surveys. Mintal applied
the Occupant Feedback Ontology to directly integrate the feedback with linked building data. A case study was performed
to evaluate this method. A semantic digital twin was created by integrating linked building data, sensor data, and occupant
feedback. Results from SPARQL queries gave more insight into an occupant’s perceived comfort levels in the Open Flat. The
case study shows how integrating feedback with building information allows for more occupant-centric decision support tools.
The approach presented in this paper can be used in a wide range of use cases, both within and without the architecture, building,
and construction domain.
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1. Introduction

Whether at the office or at home, many people face indoor environmental discomfort. Opening the shading system
to reach better brightness levels, resulting in too hot temperatures. Opening the door to let in some fresh air, causing
noise distraction from your talking colleagues. Researchers admitted these challenges and found that the discomfort
might lead to poor satisfaction rates [5,50,51], health issues [20,27,29], and reduced productivity [6,54]. This led to
the development of models to assess the indoor environmental quality (IEQ), such as the predicted mean vote (PMV)
method for thermal comfort [5] and the Spatial Daylight Autonomy for visual comfort [44]. Various standards
[7,8,44] set objective values for these models, promising high-quality indoor environments.
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However, practice shows different results. Even though advanced IEQ models were developed, occupants still
face discomfort. Current IEQ models do not necessarily reflect the perceived environmental quality [16], and high
scores on building codes and certificates do not undoubtedly lead to higher user satisfaction. Altomonte et al. [7,8]
found that LEED-certified (Leadership in Energy and Environmental Design) buildings do not score significantly
higher on user satisfaction, while non-BREEAM (Building Research Establishment Environmental Assessment
Method) buildings even outperformed BREEAM-certified buildings on user satisfaction for certain parameters.
Cheung et al. [16] found that the PMV model inaccurately predicts thermal sensation two out of three times. Build-
ing managers lack time, skills, and equipment to monitor IEQ parameters accurately [66], while monitoring de-
vices face problems with accuracy and calibration [47]. Jayathissa et al. [47] argue that system control in buildings
further simplifies those IEQ models, resulting in an even more significant gap between perceived and measured
comfort.

Willems et al. [87] argued that IEQ models are too passive and deterministic and proposed the Healing Environ-
ment approach to improve the perceived comfort modeling practice. This approach combines physical measurements
with actions, emotions, and the cognitive systems of occupants. Jayathissa et al. [47] listed various physiological,
psychological, and environmental variables influencing the perceived IEQ. Scherer [76] recorded various affective
phenomena, such as preferences, attitudes, mood, affect dispositions, and interpersonal stances, which influence
emotions and thus one’s perception of space. However, standards to operate buildings according to occupancy and
occupant behavior are still lacking [65].

Current facility management systems fail to perform such post-occupancy evaluations (POE) and use their results
in decision-making processes in the operational phase of a building [24]. Li et al. [57] mentioned various issues
in the current practice of POE. First, POE results are hardly integrated into the broader practice of building man-
agement. Secondly, most POE studies fail to perform continuous measurements, resulting in problems not being
fully understood or even identified. Integrating continuous occupant feedback with building management data could
improve building automation control systems [57] and occupant satisfaction [14].

A promising solution to integrate occupant feedback with building information is the development of semantic
digital twins. Digital twins integrate data to represent a virtual counterpart of real-world situations and consist of
three components: a real-world physical component, a virtual representation, and the data that connects them [12].
Various research initiatives applied semantic web technologies to create digital twins by linking different domain
knowledge silos in an integrated way using ontologies. Nolich et al. [64] developed a semantic digital twin of a
cruise ship cabin to optimize comfort levels and reduce energy consumption. Frešer et al. [30] created a decision
support system by anticipating IEQ parameters using a semantic digital twin. Donkers et al. [22], Esnaola-Gonzalez
et al. [25], Corry et al. [17], and Ploennigs et al. [69] used semantic digital twins to monitor thermal comfort in
buildings.

However, state-of-the-art ontology development mainly focused on integrating the traditional IEQ parameters,
while less attention has been paid to integrating softer, personal data related to occupants. Current semantic digital
twins can integrate sensor data to monitor IEQ parameters but fail to evaluate the perceived comfort levels of an
individual. Integrating individual comfort preferences and feedback with linked building data is expected to close
the gap between measured and perceived comfort. Next to this, facility managers spend half of their on-site time
matching problems with a location or an element [24], which could be significantly improved by semantically
linking feedback to linked building data.

This paper introduces a novel method to continuously capture occupant feedback and integrate this feedback
with other building information, creating so-called occupant-centric digital twins [65]. The first part of this paper
reviews state-of-the-art occupant feedback systems and semantic web ontologies related to occupants and their
feedback. Based on this review, this paper presents the Occupant Feedback Ontology (OFO) to describe passive and
active occupant feedback. The second part of this paper introduces Mintal, a smartwatch application for longitudinal
occupant feedback collection. Mintal uses the Occupant Feedback Ontology to link the obtained feedback with other
building information using semantic web technologies. Finally, this paper presents a case study of an apartment
building in the Netherlands, in which the functionality of our proposed system is validated.
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2. Related work

2.1. Occupant feedback systems

There is a growing interest in occupant-centric buildings [65]. Occupants’ building performance assessments are
considered vital input data for occupant-centric decision support systems. However, various researchers argue that
there is a lack of scalable data collection tools [57,65]. This section reviews current methods to acquire occupant
feedback and emphasizes the challenges to creating continuous occupant feedback systems.

Literature generally distinguishes two methods for post-occupancy evaluation: subjective methods and objec-
tive methods [36,38,57]. Most studies rely on subjective methods, often being occupant surveys, interviews, and
walkthroughs [57]. While these methods hardly require equipment, the manual handling of verbally or textually
transmitted feedback is a costly and time-consuming task causing a delay in decision-making processes. Next, cur-
rent methods often capture people’s retrospective feedback [38], causing concerns about recall bias and ecological
validity [45].

2.1.1. Ecological momentary assessments
The development of the Internet of Things is an opportunity to reconsider current methods to acquire occupant

feedback [65]. The Ecological Momentary Assessment (EMA) method [79] is rooted in clinical psychologists’ need
to acquire in-situ data on subjects’ states in the real world and samples a participant’s state in real-time. The real-
time survey ensures ecological validity and reduces recall bias. Sampling a participant’s state over a longer period
reveals behavioral variation over time, place, and situation. Since the EMA method originates from the psychology
domain, it gathers information about moods, activities, satisfaction, behavior, stress, and health status [49,79]. EMA
is, therefore, suitable to discover individual behavioral patterns, contextual associations, and temporal sequences in
participants’ states [79,87].

The technologies to acquire data using the EMA method differ and range from traditional diaries to smartphones
applications [79]. Sampling could either be event-based, time-based, or a combination. The chosen strategy affects
the coverage of the sampling. An event-based complaint log can lead to a long list of complaints, even though
occupants might feel comfortable between those assessments. Random time-based strategies reduce this bias. Some
observations, e.g., performed by sensors, could result in continuous measurement of the subject.

Due to the high frequency of samplings, annoyance may occur if the assessment is not designed well enough [79].
Screens have limited display space [79]. While smartphones are cost-effective devices to perform EMA studies,
both the length of the interruption (interface usage time) and the burden of unlocking the phone and opening an app
(device access time) might feel like a burden for studies with a high temporal density [45]. Reactivity – the subject
changing its behavior because it is assessed – may occur in longitudinal EMA studies [79], although some research
states that the effect is small [45].

Following the EMA principles, Sheikh Khan et al. [78] defined occupant voting systems (OVS) as a “technology
which occupants can use at any given time to provide continuous and real-time feedback on their perception of
IEQ.” They distinguished OVS from various digital tools that were only available at specific times. Based on the
drivers-needs-actions-systems framework [38], Sheikh Khan et al. [78] concluded that systems that only collect data
on occupants’ actions (such as smart thermostats that measure manual changes from users [15]) are not considered
as OVS since they do not measure perception (or drivers and needs [38]). Sheikh Khan et al. [78] defined feedback
as any act of using OVS, while voting is limited to quantitative feedback. This section reviews occupant feedback
systems (OFS), a term also mentioned by Lassen et al. [48], to cover both qualitative and quantitative feedback
methods. Lassen [53] listed various data categories that should be collected for occupant-centric data collections:
physical and spatial (building) information, physiological reactions of occupants, occupant control actions, and
positive and negative evaluations.

Over the past years, a wide range of digital tools arose that partially collected the data categories mentioned
by Lassen [53]. Both Lassen [53] and Sheikh Khan et al. [78] recently categorized those tools by interface type.
They listed 23 [53] and 46 [78] applications, out of which most applications were smartphone apps, web apps, or
dedicated devices (Fig. 1).
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Fig. 1. Interface types of OFS applications in Sheik et al. and Lassen.

2.1.2. Micro ecological momentary assessments
O’Brien et al. [65] argue that the interface of occupant feedback systems needs more attention. Smartphone apps

and digital surveys still do not fully solve problems regarding survey fatigue. The micro ecological momentary
assessment (μEMA) method aims to reduce this limitation by using short interactions that hardly disrupt one’s on-
going activity. Smartwatch apps can mitigate both the device access time and the interface usage time and therefore
fit the approach [45,47].

Literature [45,77] suggests that, compared to EMA, μEMA led to higher response rates, completion rates, and first
prompt response rates while being perceived as less distracting. Occupants’ states could be assessed by prompting
questions on the screen (time-based) [45] or by designing a home screen application where subjects could give
feedback whenever they want (event-based) [47].

While EMA is hardware agnostic, μEMA is not. The use of high-tech wearables may burden the elderly or non-
tech-savvy occupants. Kim et al. [49] found multiple studies that examined a higher dropout rate of older people
due to technical issues or discomfort while using technological devices. They argue that standardized data protocols
for mixed-method sampling studies will lead to better monitoring. While the smartwatch market is booming, the
saturation rate is still relatively low, meaning that currently, extra costs are involved in μEMA studies.

Various research initiatives followed the μEMA method to monitor occupant feedback. Feldmeier and Paradiso
[28] developed a wearable sensor with three buttons that allow users to input their thermal comfort. Intille et al. [45]
created a smartwatch survey to monitor mood. Questions were scheduled and prompted using vibrations. Textual
questions with three answers were shown on the screen, as Intille et al. [45] argued that more answers would
introduce scrolling, small fonts, or small buttons. Jayathissa et al. [47,48] developed a more graphical interface for
indoor environmental quality feedback. Their app – cozie – merely shows possible answers to a question. Removing
the question leaves more space for the answer buttons. Unlike the app created by Intille et al. [45], cozie prompts
a multi-question survey with questions related to a user’s location, clothing, activity level, and various comfort
assessments. Those surveys were prompted using vibrations but could also be opened by the user at any time.

The development of embedded sensors in smartphones and smartwatches further increases methods to monitor
occupants. Majumder and Jamal Deen [61] reviewed how those sensors are used to monitor mental health, cardio-
vascular health, activity, and sleep. Liu et al. [59] used wearable sensors to measure skin temperature, heart rate,
and wrist accelerometry to create personal thermal comfort models. Sensors of commercial wearables were used to
assess thermal comfort in multiple research initiatives [35,43,75]. Li et al. [56], Abdallah et al. [1] and Barrios and
Kleiminger [11] combined sensors of wearables with thermal votes using a smartphone application.

Localization of occupant feedback is an essential step to enable the integration with other building information
[62]. According to the review of Sheikh Khan et al. [78], most feedback systems use manual localization or do
not have localization functionalities. In the latter case, manual localization was not always necessary, as some
researchers used methods that were fixed to a specific location or object. The systems that did include manual
localization functionalities used various techniques, such as RFID and QR tags, or manual location selection during
the feedback process. Some automatic localization techniques were found, including trilateration using Received
Signal Strength Indicators, Bluetooth beacons, and Wi-Fi signals. Jayathissa et al. [47,48] developed a smartwatch
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app that combined different localization techniques. The smartwatch’s GPS sensor is used for outdoor localization,
while Bluetooth beacons are used for indoor localization. A tool created by Gray et al. [33] could be opened by
scanning a QR code and automatically adds the location of the QR tag to the feedback metadata. Miller et al. [62]
applied the clock face app of Jayathissa et al. [47,48] to integrate feedback with building information models using
Bluetooth localization. Abdelrahman et al. [2] extended this research to create personal thermal comfort models.

2.2. Occupant feedback in the semantic web

The lack of integration of occupants and their feedback with other building information is a significant barrier
for occupant-centric decision support tools [52,57]. This lack of integration is often caused by data interoperability
issues [81]. Building information is typically produced by multiple stakeholders, using different software tools at
different moments in the building lifecycle. During the operational phase, different users might produce different
types of feedback, that in its turn could be used by multiple other stakeholders – all speaking their own domain
language [74]. Semantic web technologies promise to accomplish higher interoperability levels in the architecture,
engineering, and construction (AEC) domain [67]. Multiple researchers applied semantic web technologies to create
rich digital representations of buildings [12], some of whom for research related to occupants’ comfort [17,22,25,
30,64,69]. To better understand the existing promises and challenges of semantic web technologies to solve the
interoperability issues, the following subsections give an overview of state-of-the-art semantic web developments
related to occupants, their feedback, and their building performance assessments.

2.2.1. Semantic web technologies for occupants
Ontologies describing humans have been widely developed across multiple domains. FOAF [32] was created to

describe people and their relations with other people and documents. FOAF, being a domain agnostic ontology, is
widely used in a variety of use cases.

A disadvantage of domain agnostic ontologies is that they might lack classes and object properties for specific use
cases. Various researchers, therefore, built upon FOAF to create occupant ontologies related to the built environment.
Spoladore et al. [64,80,81] created various extensions of FOAF to represent occupants and their health and comfort
information. They used this information to improve comfort in the hospitality sector. SEAS [55] reused FOAF in
their comfort ontology module to describe the comfort levels of agents. Curry et al. [18] extended FOAF with
information about the devices that people are using.

Hong et al. [38] identified four occupant-related components that influence occupants’ energy behavior in build-
ings: attributes, attitude, location, and state. Attributes (also referred to as properties in other works [86]) typically
describe sociodemographic characteristics such as age, gender, and health information. Attitude describes how an
occupant behaves towards and interacts with building systems. The occupants’ state relates to dynamic properties
such as their metabolic rate or clothing level. Spoladore et al. [64,80,81] extended this by including the occupant’s
activity.

Li et al. [58] further developed the work of Hong et al. [38] by creating an occupancy module as part of their
EM-KPI ontology (prefixed eko). The ontology describes an eko:Occupant that has an eko:OccupantBehavior, influ-
enced by eko:IndoorComfort, and therefore assumes that various indoor comfort parameters (such as temperature,
humidity, and CO2 levels) directly affect one’s behavior. Comfort is not modeled as a property of the occupant but
merely as a set of observable parameters of a zone. Degha et al. [19] created a similar occupant profile using a
HumanProfile class. It describes, amongst others, humans’ states, activities, behavior, properties, and preferences.

2.2.2. Semantic web technologies for occupant feedback
Gray et al. [33] developed an ontology to describe occupant feedback in office buildings. The ontology is built

upon ifcOWL and contains classes describing a building’s topology, geographical location, room types, building
systems, and occupants and their feedback. Feedback is split into three classes, being:Feedback (to describe feed-
back of an occupant), :Comment (to describe comments on existing feedback), and :Vote (used to describe votes on
existing feedback). The ontology includes a taxonomy of feedback type classes, hardcoding various possible feed-
back types in commercial buildings (such as:BlindsMoreCloseComplaint). Zhao and Yang [88] similarly hardcoded
various evaluation tasks as classes. These were used to describe POE survey results in an RDF format.
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While Gray et al. [33] follow the common monolithic approach that many non-RDF standards adhere to, seman-
tic web technology best practices suggest creating modular ontologies that can be used following a plug-and-play
principle [84]. Following those best practices, Spoladore et al. [81] developed ComfOnt to describe occupant com-
fort metrics. They introduced comf:ComfortMetrics as an owl:equivalentClass of saref:Property to describe comfort
metrics, such as indoor temperature and indoor illuminance. Occupants can manually define preferred comfort met-
rics using comf:CustomizedComfortSetting, for example, by defining a minimum and maximum value. Qiu et al.
[71] developed the Hex ontology to describe human experiences and sensations for the IEQ domain, and linked this
ontology with their bim4Hex ontology that describes the spaces and building elements that these experiences are
linked to.

Describing metadata in the context of building performance is essential but simultaneously one of the most time-
consuming tasks [36]. Similar to FOAF, a few domain agnostic ontologies exist that might be used to describe
metadata of feedback. Metadata of agents, documents, and other resources can be described using the DCMI Meta-
data Terms.1 The ontology includes object properties to describe the creator, date, description, title, and relation to
other resources. Another metadata ontology is PROV-O,2 which is designed to describe provenance data. It includes
various subject properties to describe time, source, location, and associations of entities, agents, and activities.

2.2.3. Semantic web technologies for building performance
Spoladore et al. [64,80,81] used SWRL rules [39] to assess the performance of a building and trigger systems

to change their state accordingly. These rules typically compare a sensor reading with predefined criteria. These
criteria can either be based on certification schemes or personal preferences. If a temperature sensor reading is, for
example, greater than a maximum preferred value, the air conditioning system will be triggered. Degha et al. [19]
used a similar strategy to trigger building systems to improve comfort and give feedback to the occupant. Zhao and
Yang [88] used SWRL to evaluate whether POE survey results match predefined performance criteria.

Using SWRL or SHACL to assess building performance typically requires the sensor readings to be written
in RDF format, using, for example, the SSN ontology [34]. However, various researchers suggest storing sensor
readings in time-series databases [26,40,68]. The performance assessment is then often executed in a dedicated
software layer that uses SPARQL results and time-series data [40]. Both Hu et al. [42] and Donkers et al. [22] used
this principle to assess energy performance and indoor environmental quality, respectively.

Hu et al. [42] and Donkers et al. [22] stored performance metrics in an RDF format to evaluate building perfor-
mance. Their work is based on ontologies previously developed by Hu et al. [40,41] and Corry et al. [17]. A similar
ontology was created by Li et al. [58] and describes stakeholders and their key performance indicators in RDF.
Performance indicators of different stakeholders can be linked to elements in cross-domain building information.

These ontologies show similarities with the work of Spoladore et al. [64,80,81] and Degha et al. [19]. However,
Hu et al. [42], Donkers et al. [22], and Li et al. [58] query the performance indicators using SPARQL and compare
them to sensor data in separate software applications, whereas Spoladore et al. [64,80,81] and Degha et al. [19] rely
on SWRL to make this comparison.

Petrova et al. [68] argue that performance data should not be stored in a graph. They applied knowledge discovery
techniques (suffix trees to find the longest repeated substrings) to interpret and evaluate sensor data in buildings.
According to them, the results of such algorithms should be represented in semantic graphs and linked to the linked
building data to be useful for later purposes. Adeleke et al. [4] used a multilayer perceptron model to predict indoor
air quality based on sensor data and encoded the results as RDF triples. They extended SSN [34] to semantically
describe the predicted performance and the assessment of the observations, while other ontologies already include
specific classes to do so [3,55].

2.3. Research gaps

The introduction identified that there is a need for a scalable method to measure occupant feedback and inte-
grate this feedback with building information. This related work section describes μEMA as a method to acquire

1http://purl.org/dc/terms/
2http://www.w3.org/ns/prov#

http://purl.org/dc/terms/
http://www.w3.org/ns/prov#
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continuous occupant feedback. Semantic web technologies show potential to integrate this feedback with building
information and sensor data.

Currently available technologies are promising but lack a few components to fully reach the potentials of this re-
search domain. Various wearable applications were designed to acquire occupant feedback [28,45,47,48] or monitor
occupants [35,43,59,61,75]. However, none of these applications convert their results to RDF to integrate the data
with other linked data. The HumBAS Feedback Tool of Ramsauer et al. [72] is based on the RDF model, but does
not provide any wearable sensors.

Multiple ontologies exist that cover occupants, their feedback and building performance evaluations (as discussed
in Section 2.2). Other ontologies are able to describe systems and their observations (such as SSN/SOSA [34,46]
and Brick [10]), wearables (SAREF4WEAR [23]), and buildings and their properties (BOT [74] and OPM [73]).
However, an ontology that covers the full semantics of continuous occupant feedback monitoring and integration
has not been found. The existing ontologies either miss concepts to semantically describe feedback [10,18,22,23,34,
40,42,46,58] or are not focused on wearables and the sensor data they generate [19,33,38,64,71,80,81,88]. Table 1
summarizes some features covered by these existing works.

Solving those challenges will lead to the creation of occupant-centric digital twins: digital twins that integrate het-
erogeneous data related to the preferences, actions, and behavior of occupants with building information, enabling
occupant-centric building design and operation, as described in IEA EBC annex 79 [65].

Table 1

An overview of the existing work

Source Acquires
occupant
comfort
feedback

Monitors
occupants

Stores
feedback
as RDF

Uses a
wearable

device

Describes
feedback

Describes
sensor
data

Describes
wearables

Describes
occupants

[28] " " "

[45] " " "

[47,48] " " "

[35] " " "

[43] " " "

[59] " " "

[75] " " "

[72] " " " " " "

[10] "

[18] " "

[22] "

[23] " " "

[34] "

[40] " "

[42] " "

[46] "

[58] " "

[19] " " " " "

[33] " " " " "

[38] " " "

[64] " " " " "

[71] " " " "

[80] " " " " "

[81] " " " " "

[88] " " " " "
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3. Methodology and experimental setup

This paper presents two novel developments to solve the issues of continuous occupant feedback monitoring and
integration of this feedback with other building information. First, the Occupant Feedback Ontology is designed
to enable semantic integration of passive and active occupant feedback with other data in the semantic web. The
following steps were taken to develop the ontology: 1. Specification. 2. Knowledge acquisition. 3. Requirements
specification. 4. Building. 5. Evaluation. 6. Integration. 7. Documentation and publication. After specifying various
competency questions, state-of-the-art domain ontologies were reviewed related to those questions. Performing a
state-of-the-art smartwatch technology review gave insights in the possible human-machine interactions and the
available sensor technologies. A literature review into post-occupancy evaluations and conversations with housing
corporations and IEQ professionals were held to understand the workflow and challenges of understanding oc-
cupant satisfaction. Based on this review, classes, object properties, datatype properties, and their restrictions are
developed, after which the ontology is built using Stanford Protégé 5.5.0 [63]. The evaluation of the ontology is
threefold. First, various SPARQL queries were designed to show how the ontology aims to answer the various com-
petency questions. Later, these SPARQL queries come to life in a real-world case study. Next to this, OFO was
validated using the OntOlogy Pitfall Scanner! (OOPS!) [70]. Step 3, 4, and 5 follow an iterative process, where
insights from the evaluation phase were fed back into the requirements specification phase. Finally, the ontology is
aligned with other ontologies and documented using WIDOCO [31]. The HTML documentation is openly published
online.3

A smartwatch app – Mintal – was designed to measure occupant feedback continuously. The clock face app is
designed for Fitbit OS 5 devices using Fitbit Studio and the Fitbit OS Simulator. Fitbit Studio allows developers
to swiftly develop an app using JavaScript, CSS, and SVG. Many lessons were learned from Fitbit’s Application
Architecture Guide4 and earlier research [45,47,48]. The app is added to the Fitbit App Gallery and is readily
available for Fitbit Sense and Versa 3 devices.

A case study is performed to test the app’s functionality in a real-world scenario and to answer the competency
questions. A BIM model of an apartment building – the OpenFlat – was created using Revit 2020 and converted to
RDF Turtle using the IFC-to-LBD converter [13], after which the output was manually extended with the BOP [22]
and BOT [74] ontologies. The full conversion procedure has been explained in earlier work [22]. Both the linked
building data and the BIM model of the apartment are published online.5 IEQ measurements were performed using
a Raspberry Pi 4 B with 2 GB RAM and a Seeed GrovePi+. The Seeed Grove Air Quality Sensor v1.3 and Tem-
perature&Humidity Sensor (DHT11) measured air quality, temperature, and relative humidity. Mintal was installed
on a Fitbit Sense and measured an occupant’s feedback and heart rate. All data is written to an InfluxDB bucket
using a companion (OnePlus Nord) in real-time. The IEQ sensor data was tagged with a building (“OpenFlat”) and
a location (“Kitchen”) tag corresponding to the manual location input in Mintal. By doing so, we could query a
bot:Zone from our linked building data and use the name of this zone to query corresponding sensor data and occu-
pant feedback from InfluxDB. Figure 2 shows the experimental setup that is used to integrate the occupant feedback
with the Turtle representation of the OpenFlat.

4. Occupant Feedback Ontology

There’s a growing interest in building performance; however, facility managers lack methods to use POE results
in their decision-making. We, therefore, identified the demand for an ontology that can integrate occupant feedback
with other building information. Based on this demand and the practical use cases found in the literature, we set up
the following seven competency questions for this ontology:

CQ1 What active feedback is given by the occupant?
CQ2 What passive feedback is measured by the wearable?

3https://w3id.org/ofo
4https://dev.fitbit.com/build/guides/application/
5https://w3id.org/ofo

https://w3id.org/ofo
https://dev.fitbit.com/build/guides/application/
https://w3id.org/ofo
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Fig. 2. Experimental setup to integrate occupant feedback with linked building data.

CQ3 What location or object is the feedback referring to?
CQ4 Which persons gave feedback to a particular feature of interest?
CQ5 What feedback was given to a feature of interest between time t1 and t2?
CQ6 What feedback is given to the properties related to a specific IEQ parameter?
CQ7 What passive feedback is measured by the wearable during the active feedback of the occupant?
The Occupant Feedback Ontology aims to semantically describe passive and active occupant feedback and to

enable integration of this feedback with linked building data. The ambition to create a scalable concept for mass
implementation introduces multiple requirements. The feedback process should be quick and painless to prevent
survey fatigue.

Therefore, the Occupant Feedback Ontology should introduce various patterns for inferencing so that the digital
twin can describe a rich occupant profile and context with limited input data. As there is no standard method
to acquire occupant feedback, OFO should not impose a particular method of semantically describing the feedback
results on the data modeler. Simultaneously, OFO should be able to semantically describe multiple types of feedback,
including simple votes stored in the graph [78], longitudinal feedback in external time-series databases [47], or
documents.

OFO is documented at https://w3id.org/ofo and uses the namespace https://w3id.org/ofo#. Its prefix is ofo:, which
is registered at prefix.cc. The OntOlogy Pitfall Scanner! (OOPS!) [70] was used to detect and solve common pitfalls
in the ontology.

To enable seamless data integration with building information, OFO follows the high-level structure of the Build-
ing Performance Ontology (BOP) [21,22]. Therefore, the color convention in Fig. 3 and Table 2 follows the color
convention of BOP. OFO’s classes and object properties are aligned with BOP in an alignment module available at
OFO’s HTML documentation. This alignment allows simultaneous querying of sensor measurements and occupant
feedback on the same property.

The ontology’s core is a block of four classes (Fig. 3). It semantically describes how an ofo:Wearable could be
used to give ofo:Feedback on an ofo:Property of an ofo:FeatureOfInterest. This construct is inspired by the sensor
pattern of BOP (bop:Sensor makes a bop:Observation on a bop:Property of a bop:FeatureOfInterest).

The result of an ofo:Feedback can be described in the graph itself using an ofo:Result or a literal, or as an
ofo:DataPoint. The ofo:DataPoint points towards a value in an external ofo:Database, in which the feedback is
stored. Depending on the use case, one of the two options might be more efficient. Similarly, (medical) data mea-
sured by the built-in smartwatch sensors can be described using an ofo:Property and can be stored in the graph or in
external databases, while the graph stores the relevant metadata.

https://w3id.org/ofo
https://w3id.org/ofo#
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Fig. 3. An overview of the Occupant Feedback Ontology.

Table 2

Class definitions of the Occupant Feedback Ontology

Class Definition

ofo:Property A measurable and intrinsic characteristic of a feature of interest.

ofo:PropertySet A collection of properties. The collection could also be a singleton or a null set.

ofo:FeatureOfInterest An abstraction of a real-world phenomenon that could be described in terms of its properties.

ofo:Person A member of the human race.

ofo:Wearable A smart electronic device that is worn close to or on the surface of a person’s skin. It can implement
procedures to perform observations and actuations.

ofo:Smartwatch �
ofo:Wearable

A wearable computer in the form of a watch. It can implement procedures to perform observations and
actuations.

ofo:Feedback An act of producing a statement of opinion on the state of a property.

ofo:Location The area or space something is in.

ofo:Result The outcome of an execution.

ofo:DataPoint �
ofo:Result

A data element in a database representing the state of a property.

ofo:Unit A particular quantity value that has been chosen as a scale for measuring other quantities of the same
kind.

OFO follows the ideas of earlier research initiatives [22,73,85] to include multiple levels of detail describing
properties. Results of type ofo:Result could therefore be linked to either ofo:Feedback, an ofo:Property, or an
ofo:FeatureOfInterest. As all object properties pointing towards ofo:Result are subproperties of ofo:hasResult, one
could query different types of results using only one query. Similarly, ofo:hasSimpleResult groups all datatype
properties pointing towards a simple result in the form of a literal.

An ofo:Wearable could be worn by an ofo:Person, which is also the one that gives the ofo:Feedback. Both the
ofo:Person and the ofo:Wearable can have an ofo:Location. In practice, the location of a wearable and the person
wearing it will be similar. Ofo:Wearable has one subclass; the ofo:Smartwatch. While ofo:Smartwatch will be
used most in practice, adding the more abstract notion of ofo:Wearable enables extending the ontology with other
wearable IoT devices if necessary.

An ofo:Property can be part of an ofo:PropertySet. This construct allows the data modeler to group properties
based on similarities or practical reasons. One could, for example, group properties related to stress and query them
simultaneously.
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Fig. 4. Snippet of the Occupant Property Taxonomy as a subclass of ofo:Property.

opt:hasName rdfs:subPropertyOf ofo:hasSimpleProperty .
opt:hasAge rdfs:subPropertyOf ofo:hasSimpleProperty .
opt:hasGender rdfs:subPropertyOf ofo:hasSimpleProperty .
opt:hasWeight rdfs:subPropertyOf ofo:hasSimpleProperty .
opt:hasHeight rdfs:subPropertyOf ofo:hasSimpleProperty .

Listing 1. Subproperties of ofo:hasSimpleProperty in OPT

4.1. Extending OFO with the Occupant Property Taxonomy

A modular taxonomy of properties is introduced to make OFO applicable in practice. In previous work [22], we
reused the qudt quantitykind ontology [37] to cover various properties. However, state-of-the-art wearables typically
measure various properties related to a person, for instance, skin temperature, heart rate, and stress levels, and quan-
titykind does not cover the full range of properties necessary for the various use cases mentioned in Section 2. This
is why the Occupant Property Taxonomy (OPT) introduces these specific properties as subclasses of ofo:Property
(Fig. 4). Where possible, these specific properties are aligned to quantitykind (e.g. opt:SkinTemperature � quanti-
tykind:Temperature). The taxonomy of properties is based on earlier work by Tekce et al. [83]. The properties can be
part of property sets to enhance querying possibilities. OPT is being maintained at http://github.com/AlexDonkers/
opt and welcomes public extensions.

OPT also includes various rdfs:subPropertyOf properties of ofo:hasSimpleProperty adding some fundamental
datatype properties to describe persons, shown in Listing 1. Using these datatype properties, a data modeler could
describe basic personal information as literals.

4.2. Reasoning using OFO

The fact that a person wears a smartwatch leads to multiple logical reasoning constructs. For example, if the
smartwatch is in RoomX, the person wearing that smartwatch is also in RoomX. If the smartwatch monitors feed-
back, this feedback belongs to the person wearing that smartwatch. Property chains were used to model this kind of
logic (Fig. 5). These property chains increase the reasoning capabilities of OFO and reduce the amount of data that
needs to be captured during surveys, reducing the risk of survey fatigue. Listing 2 shows the Turtle syntax of the
applied property chains. The last property chain in Listing 2 is demonstrated in Listing 18.

http://github.com/AlexDonkers/opt
http://github.com/AlexDonkers/opt
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Fig. 5. Property chains in the Occupant Feedback Ontology.

ofo:hasLocation owl:propertyChainAxiom (ofo:wears ofo:hasLocation).
ofo:givesFeedback owl:propertyChainAxiom (ofo:wears ofo:monitorsFeedback).
ofo:hasLocation owl:propertyChainAxiom (ofo:isWornBy ofo:hasLocation).
ofo:hasFeatureOfInterest owl:propertyChainAxiom (ofo:hasEvaluatedProperty ofo:isPropertyOf).
ofo:isFeedbackOf owl:propertyChainAxiom (ofo:isMonitoredBy ofo:isWornBy) .
ofo:hasPropertyState owl:propertyChainAxiom (ofo:hasFeedback ofo:hasFeedbackResult) .

Listing 2. Property chains in OFO (Turtle syntax)

4.3. Alignment to existing ontologies

OFO is designed based on multiple existing modeling patterns, described in Section 2.2. The ontology is strongly
aligned with existing ontologies, such as SOSA/SSN [34,46] and OPM [73], and has relations with SAREF4WEAR
[23] and FOAF [32] as well. To overcome a heterogeneous landscape of domain ontologies and enable reuse of
applications, explicit alignment modules were created for OFO to SOSA/SSN, OPM, SAREF4WEAR and FOAF.
Next to this, an alignment to BOP [21] was created. All modules are available at the html documentation of OFO.

5. Mintal

While OFO can structure occupant feedback (and its metadata) as a graph and integrate it with linked building
data, the literature identifies the need for scalable data collection methods [24,57,65]. Based on findings in the
literature [45,47,48], we identified the need for a smartwatch app that can easily acquire occupant feedback and
integrate it with linked building data. Based on this demand, we set various design requirements:

REQ1 The device access time and the interface usage time should be below 5 seconds.
REQ2 The application should be able to monitor the time and location of the feedback.
REQ3 The application should be extendable for future questionnaires.
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REQ4 The application should be able to monitor personal information through the smartwatch’s medical sensors.
The user should be able to opt out of this process.

REQ5 The application should store its data in a secure cloud with access control.
REQ6 The application should be able to generate a Turtle file with the occupant’s feedback and its metadata that

can be linked with linked building data.
This paper presents Mintal to solve the mentioned challenges. Mintal is an easy-to-use, scalable method for longi-

tudinal feedback collection. The smartwatch clock face is designed for Fitbit Sense and Versa 3. The next subsections
will cover Mintal’s functionality and explain how the clock face app aims to satisfy the design requirements.

5.1. End-user functionality

Mintal is a clock face app that can be opened by simply activating the Fitbit screen (Fig. 6). Simple red and green
buttons allow the user to select negative or positive feedback. After clicking one of the buttons, the user will be
guided to a second screen to select the property that the feedback is given to. In the current version of Mintal, these
are thermal comfort, visual comfort, acoustic comfort, and air quality. After selecting the property, a final screen
asks the location of the feedback. The survey can be finalized in only a few seconds by minimizing the number of
screens, reducing the risk of survey fatigue (REQ1).

A companion app, running on the user’s smartphone, accompanies the clock face app. After installing Mintal,
an additional settings menu will appear in the Fitbit application (Fig. 7). The menu enables the user to fill in some
personal data, edit the locations menu, and edit the name of the building. The companion uses this information to
create a Turtle file later (REQ6). The settings menu also allows the user to edit database information, including a
read-access token (REQ5), and has toggles to turn various health sensors on or off (REQ4). Sensors are turned off
by default so that data is only stored in the database after the user’s full consent.

5.2. Internal processes

Once a user clicks on one of the two feedback buttons on the home screen, a feedback data variable is initiated. If
available, a geolocation is added to the feedback data, which would mainly be useful for outdoor application. Every
click initiates switching to a new screen using a buttonX.onclick function. New screens could be easily added, which
is useful for potential future extensions of Mintal (REQ3).

Fig. 6. Mintal app architecture.
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Fig. 7. Snippet of the settings menu in the companion’s Fitbit app.

let personRDF =
"@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix ofo:<https://w3id.org/ofo#>.
@prefix unit:<http://qudt.org/2.1/vocab/unit/>. @prefix :<http://www.example.org/>. ";

Listing 3. Basic personRDF string containing prefixes

Each click on a feedback button stores the value of this button in the feedback data variable. Data is stored
as 0 (“not comfortable”) or 1 (“comfortable”). These values can be extended or changed for future applications
(REQ3). After submitting feedback, Mintal asks to submit a current location. The buttons correspond with the lo-
cations given in the companion’s settings app and are also stored as values in the feedback data variable. When
finishing the micro survey, Mintal collects data from various sensors. These currently only include heart rate and
body presence due to limitations in Fitbit’s sensor APIs. Once available, other sensors, such as sleep score, stress
levels, and blood oxygen saturation, will be added to the data collection. The health metrics measured by those
sensors could give comprehensive insights into the user’s well-being and might be used to improve building perfor-
mance.

The feedback data is sent to the companion. The companion connects to an InfluxDB cloud database based on
the given settings in the settings menu of the companion’s Fitbit app. This includes the name of the database URL,
bucket, and organization. Secure interaction between users and data is ensured using authentication tokens. Mintal
uses separate read- and write-tokens; Mintal-users only have write access and could never see the data in a database,
while applications using this data – such as smart homes – would only be granted read access. The companion
transforms all feedback data to InfluxDB Line Protocol so that it can be stored in the InfluxDB database. This
feedback data includes location, time, various health metrics, and the given feedback (REQ2).

5.3. Creating RDF metadata

Mintal applies the OFO ontology so that the sensor data can be automatically linked to other linked data. Metadata
is created, containing the person, the smartwatch, the feedback, properties, units, data points, and the database
(Fig. 8). After filling in the user information in the companion’s settings menu, the companion creates an RDF
Turtle representation using JavaScript string concatenation. The basic string contains the prefixes of ontologies
used in this RDF file (Listing 3). Triples are created by querying the data from the settings menu and inserting
this data in the string (Listing 4). String concatenation is turned off for sensors that are turned off in the settings
menu.
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Fig. 8. Instantiation of the Occupant Feedback Ontology.

try {name = JSON.parse(settingsStorage.getItem(’name’)).name;}
catch (error) {

if (error instanceof TypeError) {
name = ’undefined’

}};
personRDF += ’:’+name+’_’+device.modelName+’ rdf:type ofo:Smartwatch; ofo:isWornBy :’+name+’. ’;
>> ’:JohnDoe_FitbitSense rdf:type ofo:SmartWatch; ofo:isWornBy :JohnDoe. ’

Listing 4. Adding a triple to the personRDF string

6. Competency questions

The promise of Mintal and OFO to enable continuous feedback monitoring and integration is validated by an-
swering seven competency questions. To make the answers tangible, we applied the Turtle file of the OpenFlat and
the Turtle file created by Mintal. These files were used to perform various queries in GraphDB that answer each
competency question. The functionality of Mintal and OFO in practice has been tested by performing real tests
in the OpenFlat. The following subsections show the answers to those competency questions and the case study
results.

Figure 9 shows the Turtle representation of the OpenFlat. When using the same prefix, the :Kitchen node in the
graph created by Mintal (Fig. 8) and the :Kitchen node in the OpenFlat graph (Fig. 9) will overlap each other so that
one can traverse both graphs simultaneously. The following subsections demonstrate how the various competency
questions are answered by OFO and Mintal and show how a rich knowledge graph containing building information,
sensor data, and occupant feedback could be applied in practical use cases.

6.1. CQ1: What active feedback is given by the occupant?

Best practices suggest that sensor data could be best stored in time-series databases [26,68]. As Mintal is de-
signed to generate large amounts of feedback, the application stores this feedback in InfluxDB. Mintal creates RDF
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Fig. 9. Turtle representation of the OpenFlat using the BOP and BOT ontologies.

PREFIX ofo: <https://w3id.org/ofo#>
SELECT ?comfortProperty ?feedback ?dataPoint ?database
WHERE {
:JohnDoe ofo:givesFeedback ?feedback .
?feedback ofo:hasEvaluatedProperty
?comfortProperty .
?comfortProperty a ofo:Property .
?feedback ofo:hasResult ?dataPoint .
?dataPoint ofo:isDataPointOf ?database . }

Listing 5. Querying feedback on comfort properties and the related database

USE ?database
SELECT ?feedback FROM ?dataPoint ORDER BY time DESC LIMIT 1

Listing 6. Querying time-series data based on the SPARQL results

metadata of this feedback (as explained in 5.3). Similar to querying sensor data from external databases [22], the
datapoint of the feedback in InfluxDB is stored in the graph and could be queried using SPARQL. Listing 5 shows
a simple SPARQL query that finds all the feedback on an ofo:Property by :JohnDoe. Listing 6 shows how the re-
sults of this query could be used to query specific feedback from InfluxDB. Those basic InfluxDB queries could
be extended by using more SPARQL results, for example, by only querying feedback on thermal comfort or only
querying feedback in a specific room.

6.2. CQ2: What passive feedback is measured by the wearable?

State-of-the-art wearables are increasingly able to monitor health and well-being metrics using advanced health
sensors. As there is a likely relationship between those metrics and the feeling of comfort in buildings, OFO and
Mintal are designed to monitor those health metrics and capture them in the graph. The amount of sensor data that
can be obtained from a wearable is highly vendor-dependent but is likely to grow in the future. That is why OPT
introduced the opt:PersonalProperty class (as a subclass of ofo:Property) that describes those properties of a person,
measured by an ofo:Wearable. Listing 7 shows the SPARQL query that queries the metadata of those personal
properties. The construct is highly extendable; adding a new personal property to a graph would not cause problems
with the SPARQL query in Listing 7 and the corresponding InfluxDB query in Listing 8.
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PREFIX ofo: <https://w3id.org/ofo#>
PREFIX opt: <https://alexdonkers.github.io/opt#>
SELECT ?personalProperty ?dataPoint ?database
WHERE {
:JohnsFitbit ofo:executesOn ?personalProperty .
?personalProperty a opt:PersonalProperty .
?personalProperty ofo:hasResult ?dataPoint .
?dataPoint ofo:isDataPointOf ?database . }

Listing 7. Querying feedback on comfort properties and the related database

USE ?database
SELECT ?personalProperty FROM ?dataPoint ORDER BY time DESC LIMIT 1

Listing 8. Querying time-series data based on the SPARQL results

PREFIX ofo: <https://w3id.org/ofo#>
SELECT ?feedback ?foi
WHERE {
:JohnDoe ofo:givesFeedback ?feedback .
?feedback ofo:hasFeatureOfInterest ?foi . }

Listing 9. Querying the feature of interest of feedback given by John Doe

PREFIX ofo: <https://w3id.org/ofo#>
SELECT ?location ?dataPoint ?database
WHERE {
:JohnDoe ofo:hasLocation ?location .
?location ofo:hasDataPoint ?dataPoint .
?dataPoint ofo:isDataPointOf ?database . }

Listing 10. Querying the location of John Doe

USE ?database
SELECT ?location FROM ?dataPoint ORDER BY time DESC LIMIT 1

Listing 11. Querying John Doe’s location from InfluxDB based on the SPARQL results

6.3. CQ3: What location or object is the feedback referring to?

This research aims to tackle the lack of feedback integration with other building information [57] by directly
linking occupant feedback to linked building data. OFO introduces two methods. First, feedback can be linked with
the feature of interest of this feedback. Listing 9 shows how one could query the feature of interest of given feedback.
This structure could also be used to query feedback that has been specifically given on one feature of interest, such
as an object or a room.

Secondly, OFO introduces the ofo:Location class that describes the location of a person or wearable giving feed-
back. Since the location of an occupant is highly volatile, Mintal stores the location of feedback in an InfluxDB
cloud database. The ofo:Location class could be used to query the location of given feedback or all feedback given
at a particular location. Listing 10 shows how the relevant metadata could be queried using SPARQL, after which
one could use the results of this query as an input for a Flux query (Listing 11). The property chains in OFO enable
inferring the location of an ofo:Wearable if worn by an ofo:Person. Since the queries in CQ3 are similar to those
in CQ1 and CQ2, these could be easily combined to simultaneously query active feedback, passive feedback, and
related building information.
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PREFIX ofo: <https://w3id.org/ofo#>
PREFIX bot: <https://w3id.org/bot#>
SELECT ?person ?feedback ?foi
WHERE {
?person ofo:givesFeedback ?feedback .
?feedback ofo:hasFeatureOfInterest ?foi .
:Kitchen bot:hasElement ?foi . }

Listing 12. Querying feedback on an FOI and the person who gave that feedback

USE ?database
SELECT ?feedback FROM ?dataPoint WHERE time > ?t1 and time <= ?t2

Listing 13. Querying all feedback given between t1 and t2 from InfluxDB

PREFIX ofo: <https://w3id.org/ofo#>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?feedback ?result ?resultTime
WHERE {
?feedback ofo:hasResult ?result .
?result prov:generatedAtTimev ?resultTime .
BIND(xsd:dateTime(NOW()) AS ?now) .
FILTER (YEAR(xsd:dateTime(?resultTime)) > (YEAR(?now) - 3)) }

Listing 14. Querying all feedback given between t1 and t2

6.4. CQ4: Which persons gave feedback to a particular feature of interest?

The ofo:Person class is introduced to describe occupants that gave feedback. Section 6.3 showed how ofo:has-
FeatureOfInterest links feedback to a specific feature of interest. Combining OFO with other domain ontologies,
such as BOT [74], could link feedback directly to building elements. The query in Listing 12 returns all feedback
given on building elements in the :Kitchen, including the person that gave this feedback. The Turtle files generated
by Mintal include an ofo:Person, their ofo:Feedback, and a corresponding ofo:FeatureOfInterest.

6.5. CQ5: What feedback was given to a feature of interest between time t1 and t2?

Various use cases require the ability to query feedback given in a specific period. Time could be stored in multiple
ways, such as in the graph (as a literal) or in external databases (such as a timestamp in a time-series database). OFO
offers multiple options to query feedback with a specific timestamp.

Mintal stores feedback in a time-series database. Querying feedback between two timeslots should therefore be
done in InfluxDB itself (Listing 13). InfluxDB enables querying data with a specific timestamp, data within a certain
time range, and various other mathematical functions to specify the time of the feedback.

OFO, however, also enables storing feedback directly in the graph, either as RDF-based or non-RDF-based de-
scriptions. Inspired by the OPM ontology [73], time could be linked to a property state (in this case ofo:Result)
using prov:generatedAtTime. This datatype property links an ofo:Result to a literal representing time. SPARQL has
several built-in functions that can be used to filter query results based on that time value. As an example, Listing 14
results all feedback given in the last three years.

6.6. CQ6: What feedback is given to the properties related to a specific IEQ parameter?

OFO introduces an ofo:PropertySet class to group properties. Using property sets, one can query all the properties
related to a specific IEQ parameter. Listing 15 shows a simple SPARQL query that queries all feedback given
properties of a :ThermalComfortPropertySet. Feedback is filtered for persons located in :Room1.
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PREFIX ofo: <https://w3id.org/ofo#>
SELECT ?database ?feedback ?dataPoint
WHERE {
:ThermalComfortPropertySet ofo:containsProperty ?property .
?property ofo:hasFeedback ?feedback .
?feedback ofo:isFeedbackOf ?person .
?person ofo:hasLocation :Room1 .
?feedback ofo:hasResult ?dataPoint . }

Listing 15. Querying all feedback related to thermal comfort given by persons in :Room1

PREFIX ofo: <https://w3id.org/ofo#>
SELECT ?database ?feedback ?dataPoint .
WHERE {
:ThermalComfortPropertySet ofo:containsProperty
?property .
?property ofo:hasFeedback / ofo:isFeedbackOf
:JohnDoe .
?feedback ofo:hasResult ?dataPoint . }

Listing 16. Querying all feedback related to thermal comfort given by :JohnDoe

USE ?database
SELECT ?feedback FROM ?dataPoint WHERE location = ‘:Room1’

Listing 17. Querying all feedback of :JohnDoe on thermal comfort in :Room1

Such a SPARQL query would return the feedback on properties in the :ThermalComfortPropertySet (using List-
ing 17). Listing 15 does require the description of a person’s location in the graph. As Mintal stores this information
in an external database, a data modeler could filter the location in the InfluxDB query. The input for this location
could be a manual input (such as in Listing 17) or a result of a previous SPARQL query.

The query in Listing 15 could be further specified to only query feedback by a specific person (Listing 16). With
the availability of richer graph datasets (such as HR data or agendas), data modelers could even further specify
queries and, for example, query the feedback on air quality by maintenance workers that work after 5 PM. The
ofo:PropertySet could be used to include sensor data or building information, to simultaneously query a building’s
properties and the feedback related to those properties.

6.7. CQ7: What passive feedback is measured by the wearable during the active feedback of the occupant?

Research suggests that health-related properties, such as skin temperature and heart rate [2,59], affect the per-
ceived IEQ. Mintal allows the user to measure various health-related properties and automatically creates RDF
metadata of those properties. Listing 7 and 8 describe how those personal properties could be queried individually.
The SPARQL query in Listing 18 simultaneously queries the datapoints of this passive feedback and the active
feedback given by a person. A simple query in InfluxDB (Listing 17) would return all properties, while Listing 13
would add a time filter. The last property chain axiom in Listing 2 enables querying the datapoint of the feedback
results by using ofo:hasResult, without explicitly linking this to the instance of ofo:Feedback.

7. Case study

A case study was conducted to validate the answers to the seven competency questions. Two solutions are pre-
sented that can lead to improved insight into an occupant’s evaluation of a building. The first solution compares
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PREFIX ofo: <https://w3id.org/ofo#>
SELECT ?property ?dataPoint ?database
WHERE {
:ThermalComfortPropertySet ofo:containsProperty
?property .
{ ?property ofo:isPropertyOf :JohnDoe . }
UNION
{ ?property ofo:hasFeedback / ofo:isFeedbackOf
:JohnDoe . }
?property ofo:hasResult ?dataPoint . }

Listing 18. Querying properties of :JohnDoe and feedback on properties by :JohnDoe

Fig. 10. Sensor data in the :Kitchen and feedback given by :JohnDoe.

objective measurements to the active occupant feedback. The queries answering CQ1, CQ3, CQ4, and CQ5 were
used to find both sensor data and active feedback given by :JohnDoe on thermal comfort and air quality in the
:Kitchen between 9:00 AM and 12:00 AM. Figure 10 shows how these queries enable a visual analysis of occupant
feedback and possibly related sensor data.

In the second solution, objective sensor measurements are used to calculate the thermal comfort of the :Kitchen
using the PMV/PPD method [5,9] and compare the results with both active and passive occupant feedback. Tartarini
and Schiavon [82] built a python library that calculates the PMV/PPD using the dry-bulb temperature, mean radiant
temperature (Tmr ), air velocity, relative humidity, the metabolic rate of the occupant, and clothing insulation of
the occupant. :JohnDoe’s clothing level is estimated to be 0.7. The metabolic rate was approximated to be 1.1
based on :JohnDoe’s activity level [82]. Future research could automate this process, as Hasan et al. [35] described
an algorithm to predict an occupant’s metabolic rate based on a Fitbit’s accelerometer data. Air velocity is set to
0.1 m/s by default. The dry-bulb temperature and relative humidity were acquired from sensors. The Tmr could be
calculated using Eq. (1):

Tmr =
∑n

i=0(Ts,i ∗ As,i)
∑n

i=0 As,i

, (1)

where

Tmr = mean radiant temperature [°C]
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Fig. 11. PPD in the :Kitchen and :JohnDoe’s thermal feedback and heart rate.

Ts,i = indoor surface temperature [°C]
As,i = surface area [m2].

The indoor surface temperature of each wall was calculated using dry-bulb temperature and relative humidity
(returned from the sensors), area, tilt, and the solar azimuth of walls, windows, doors, floors, and ceilings (queried
from the linked building data), meteorological data (acquired via CustomWeather6) and thermal insulation of all
room bounding elements (queried from the linked building data). The full procedure is explained in earlier work
[22].

The results show the calculated PPD (Percentage of People Dissatisfied) and the feedback on thermal comfort
to assess the relationship between the active feedback and the measured state of the building (CQ6). Figure 11
also shows the heart rate measured during the interaction with Mintal. This enables us to assess so-called passive
feedback, such as health status, stress levels, and sleep score with active feedback (CQ7).

Based on indoor thermal comfort criteria by Loomans et al. [60], the observed thermal comfort is poor. This is
likely caused by the relatively low operative temperature and low clothing levels. A rising relative humidity causes
improved thermal comfort, indicated by a decline of the PPD. While the dataset is too small to find statistical
significance, we can observe positive thermal feedback when the PPD drops, followed by negative thermal feedback
after a rising PPD.

8. Discussion

To assess the contribution of this study, this discussions section reflects on the impact that Mintal and OFO might
have on current trends and challenges in the AEC sector. A few findings could be drawn based on the results of our
study.

First, we conclude that the growing attention for occupant-centric buildings has not yet been extensively con-
cretized in the domain of linked data in the AEC sector. More effort is necessary to digitize occupants’ needs and
integrate occupant-related ontologies with common domain ontologies in the AEC sector. Integrating occupants
and their drivers, needs, and actions with linked building data is necessary to kick-start the development of decision
support tools that can help various stakeholders in occupant-centric buildings.

6https://www.timeanddate.com/weather/

https://www.timeanddate.com/weather/
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Secondly, the literature stated that we lack systems to acquire longitudinal occupant feedback. Based on the results
of our study, we conclude that smartwatches can serve as a tool to acquire this feedback using the μEMA-method
and fill this research gap. The method fulfills the requirements of multiple stakeholders. It serves the end-user, as
the tool – compared to existing solutions – is faster, easier to operate, and less intrusive. It serves the data user,
as the method showed to give more response than other methods [45]. Considering the projected growth of the
smartwatch as a consumer gadget, implementation of the μEMA-method is expected to become cheaper and easier
in the future. Finally, the tool solves various existing challenges in collecting feedback. Research demonstrated
lower survey fatigue, reduced recall bias, high ecological validity [45], and little device access time and interface
usage time.

Thirdly, semantic web technologies are deemed to be valuable in integrating data from heterogeneous sources.
Implementing the Occupant Feedback Ontology in a smartwatch app – Mintal – resulted in direct integration of
feedback with other linked building data. The case study in the Open Flat demonstrated this integration success-
fully. Simple SPARQL queries can return rich information, including passive and active occupant feedback, building
information, and sensor data. Combining a tool for longitudinal data collection and a method for semantic data in-
tegration demonstrably fills the identified research gaps. This method can be applied to a multitude of use cases in
the AEC sector, including facility management, HVAC automation, maintenance, and other post-occupancy evalua-
tions. However, possible use cases extend beyond buildings and include complaint management in cities, measuring
emotions at festivals, and issue management at manufacturing halls.

Finally, we obtain labeled time-series data by directly integrating occupant feedback with linked building data
and sensor data. Every time an occupant provides feedback, the occupant produces a series of sensor data, building
information, personal data, and a label: comfortable or uncomfortable. This labeled data would perfectly fit various
machine learning algorithms and could lead to developments in building automation processes. More than ever,
decisions could be made based on occupants’ needs, enabling truly occupant-centric decision support systems.
These systems could be used in the operational phase of a building (for example operating an HVAC system based
on the occupants’ feedback on IEQ parameters) or the design phase (by using the feedback on an existing building
as design input for a new building).

Creating linked building data is still a manual process, which is a limitation in terms of scalability of the approach.
Good IFC-to-RDF converters exist [13], but do not incorporate the custom stack of ontologies that was developed
for this paper. Extending the converter to include those ontologies would highly improve scalability of the approach.
Another limitation is the fact that Mintal can only be used for μEMA, while some occupant feedback might require
different forms. Creating tools that convert different types of feedback to RDF would further enhance occupant-
centric decision making.

9. Conclusion

Optimizing the indoor climate is a crucial factor in enhancing occupants’ health. The growing interest in occupant-
centric building operation [65] teaches us that decisions on indoor climate should not be entirely based on models but
rather on the occupants’ needs. We identified two challenges. First, it is challenging to collect occupant feedback on
a large scale [57,65]. Secondly, subsequently integrating that feedback with other building information to play a role
in multiple decision-making processes is a challenge [52,57]. Wearable devices are promising to acquire occupant
feedback [28,45,47,48] or monitor occupants [35,43,59,61,75], however, none of the available applications convert
their results to RDF. Simultaneously, semantic web technologies in the AEC domain proved to enable the integration
of heterogeneous data by semantically describing systems and their observations, wearables and buildings and their
properties. However, the existing ontologies miss concepts to semantically describe feedback [10,18,22,23,34,40,
42,46,58] or are not focused on wearables and the sensor data they generate [19,33,38,64,71,80,81,88].

This is why we presented two developments in this paper. First, we presented the Occupant Feedback Ontology.
OFO semantically describes passive and active occupant feedback and enables integration of this feedback with
linked building data. By answering seven competency questions, a robust ontology was established that can be used
in practice and adds academic value. OFO follows the structure of the Building Performance Ontology, enabling
integration with linked building data and sensor data.
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The second development of this paper is Mintal. Mintal is a clock face app that runs on Fitbit Sense and Versa
3 and allows occupants to provide quick feedback about the indoor environmental quality. Six requirements were
set based on the challenges identified in the literature review. Mintal is designed to provide feedback in less than
5 seconds while collecting information about the occupant’s heart rate and other passive feedback. During this
process, Mintal encodes metadata about the provided feedback in RDF Turtle format to integrate the feedback with
linked building data.

OFO and Mintal were demonstrated in a case study. It shows how OFO and Mintal succeed in collecting occupant
feedback and integrating this feedback with linked building data. We, therefore, believe that this method answers
state-of-the-art challenges found in the literature study.

Future research should focus on applying Mintal and OFO to create occupant-centric buildings. This could be
done by creating occupant-driven decision support systems, such as personal preference profiles based on occupant
feedback or the automation of building systems based on the output of Mintal. Given that Mintal produces labeled
time-series data, including feedback, personal data, building information, and sensor data, future research will in-
vestigate the role of Machine Learning in creating more occupant-centric buildings. Collecting data over a longer
period might also lead to a better understanding of the occupants’ needs by integrating active and passive feedback,
sensor data, and linked building data.
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