Appendix - Details of the selected studies

	Features											
Ref.	Article Title	Confidentiality	Integrity	Availability	Privacy	Provenance	Authentication	Authorization	Category	Underlying mechanisms/technologies	Highlights	Similar to
[38]	A fine-grained context-aware access control model for health care and life science linked data	a -	-		-	-	x	x	Access Control	- XACML - OWL Ontology - SWRL rules - Inference/reasoning engine	 Publishers of Linked Data can define access conditions for their data by extending XACML with semantics Access requests are evaluated by SWRL rules through a decision-making inference engine 	[51]
[35]	A semantic authorization model for pervasive healthcare	-	-	-	-	-	-	x	Access Control	- Ontology - Inference/reasoning engine	 4 layers authorization model Ontologies encode context dynamics (concepts, relationships, policies, security rules) Context-aware authorizations are granted through semantic reasoning 	-
[51]	A SWRL bridge to XACML for clouds privacy compliant policies	-	-	-	x	-	x	x	Access Control	- XACML - OWL Ontology - SWRL rules	 Modelling of privacy requirements defined in data protection laws as privacy-aware access control policies Semi-automated definition of XACML policies mapped from access control ontologies (good for existing and complex environments) Access requests are evaluated by SWRL rules 	[9], [38]
[57]	Access control management for e-Healthcare in cloud environment		-	-	-	-	x	x	Access Control	- XACML - OWL Ontology - SWRL Rules - RBAC security model	 RBAC security model supported by ontologies A semantic knowledge base is queried for attributes of subjects and objects XACML requests are created for access control evaluation 	[35], [50]
[50]	An access control framework for pervasive mobile healthcare systems utilizing cloud services	-	-	-	-	-	-	x	Access Control	- OWL Ontology - SWRL Rules - Inference/reasoning engine - RBAC security model	 RBAC security model supported by ontologies Captures the user's context through a mobile application Provides automatic reasoning of access rigths to patient data and performs context-dependent temporary role changes for users 	[35], [57]
[60]	Behavior-Based Access Control for Distributed Healthcare Environment	-	-	-	x	-	-	x	Access Control	- Ontology - Inference/reasoning engine	 Compares users' real and expected behavior and infer adequate access policies Flexible solution based on semantic interoperability Allows requests from different organizations without demanding changes in their systems' security architectures 	[35], [50], [57]
[14]	Context-aware Access Control Using Semantic Policies	-	-	-	-	-	-	x	Access Control	- XACML - OWL Ontology - SWRL rules - Inference/reasoning engine	 Context-based access control policies are derivated from captured semantic contexts The system suppresses user complexity of writing access control policies 	[35], [38], [50], [57]
[36]	Establishment of access levels for health sensitive data exchange through semantic web	-	-	-	-	-	x	x	Access Control	- Ontology - Jena - JSON-LD - Semantic API	Permissions are defined on ontology or property-level Metadata-driven solution for system-level access control Semantic responses are generated according to external systems' access level	-
[34]	Flexible access to patient data through e-Consent	t -	-	-	x	x	-	x	Access Control	- Ontology - Abstract annotation model - RDF	 Provides a fine-grained access control mechanism based on electronic consent provided by the patient Data is modeled and disclosed in RDF for semantic interoperability purposes Solution based on abstract annotation model (less costly that standard annotation model) 	-
[15]	Multi Authority Access Control in a Cloud EHR System with MA-ABE	x	-	-	x	-	x	x	Access Control	 Encryption (MA-ABE) ABAC security model Ontology SWRL rules Inference/reasoning engine 	 Access policies are stored as SWRL rules Users' attributes are extracted and confronted with policies Provides flexibility for a complex environment where attributes differ among organizations. 	[8]

Appendix - Details of the selected studies

	Features											
Ref.	Article Title	Confidentiality	Integrity	Availability	Privacy	Provenance	Authentication	Authorization	Category	Underlying mechanisms/technologies	Highlights	Similar to
[52]	Privacy compliance and enforcement on European healthgrids: An approach through ontology	-	-	-	х	-		x	Access Control	- OWL Ontology - SWRL rules	 Ontology-based approach for conflicting privacy and ethical requirements Direct mapping of legislation to operational- level privacy-aware controls Access control policies are defined as ontologies and SWRL rules are used for reasoning 	
[47]	Securing access to sensitive RDF data	-	-	-	x	х	-	х	Access Control	 Ontology Abstract annotation model RDF 	- Presents a practical example of the solution presented in [34]	[34]
[39]	Semantic privacy-preserving framework for electronic health record linkage	-	-	-	x	-	-	x	Access control	- XACML - OWL Ontology - SWRL rules - Inference/reasoning engine	 Privacy preserving through a fine-grained access control mechanism Promote secure electronic records linkage by controlling privacy risks based on semantic expressiveness 	[38]
[17]	Towards a semantic medical internet of things	х	-	-	x	-	х	х	Access Control	- Ontology - RDF - IoT devices	 Semantic annotation and integration of healh data Use of contract-based security policies 	[2]
[5]	Using OWL and SWRL to represent and reason with situation-based access control policies	-	-	-	-	-	-	x	Access Control	 OWL Ontology SWRL rules Description Logic Inference/reasoning engine 	 Represents patient's data access scenario and perform inferences to either approve or deny access to data Scenarios are modelled as ontologies and SWRL rules The framework complies with the "need to know" principle for data disclosure 	-
[8]	ARTEMIS: towards a secure interoperability infrastructure for healthcare information systems	, x	Х	-	x	-	x	x	Interoperability Infrastructure	 Semantic Web Services Ontology Inference/reasoning engine Encryption (Triple-DES) 	 Middleware for inter-organizational policies (architecture for functional, semantic and organizational interoperability) Abstracts the differences in security requirements (roles, clinical concepts and policies) and capabilities of each system through reasoning 	[15]
[59]	Secure semantic smart healthcare (S3HC)	x	x	x	x	-	x	x	Interoperability Infrastructure	- Ontology - SWRL rules - Inference/reasoning engine - SPARQL - RDF/XML Security - Encryption - Hash functions - IoT devices	 Collection, representation, storage, and integration of healthcare devices data Implementation of several security layers/features Doctors can securely analyze the collected data 	[37]
[37]	Security Framework for Tuberculosis Health Data Interoperability Through the Semantic Web	, x	x	x	-	-	x	x	Interoperability Infrastructure	 Ontology Hybrid cryptography Hash functions Jena SPARQL D2Rq Server HyperGraphQL Semantic APIs JSON-LD RDF 	 Integration with a semantic interoperability layer Implementation of several security layers/features Availability of several semantic endpoints (SPARQL, GraphQL, APIs) 	[36], [59]
[9]	A Model-driven Privacy Compliance Decision Support for Medical Data Sharing in Europe	-	-	-	x	-	-	-	Privacy Compliance	- Ontology - SWRL rules - Inference/reasoning engine	 Ontologies are used to model the required domain and context information about data sharing and privacy requirements SWRL rules allow reasoning about legal privacy requirements that are applicable to a specific context of data disclosure (considering different entities in European countries) 	[51]

Appendix - Details of the selected studies

			Features										
l	Ref.	Article Title	Confidentiality	Integrity	Availability	Privacy	Provenance	Authentication	Authorization	Category	Underlying mechanisms/technologies	Highlights	Similar to
	[2]	An integrated framework for privacy protection in IoT — Applied to smart healthcare	-	-	-	x	-	-	-	Privacy Compliance	- OWL Ontology - Inference/reasoning engine - IoT devices	 The framework integrates data collected from IoT medical devices Inference engine to determine the privacy risks incurred when some personal data elements are shared with a data consumer. A list of risks and recommendations is provided to the data owner for informed decision-making. 	[17]
	[30]	An Ontology for a HIPAA compliant cloud services	-	-	-	x	-	-	-	Privacy Compliance	- OWL Ontology	 The ontology represents the HIPAA concepts (stakeholders, privacy and security rules) Users can identify healthcare services that comply with the HIPAA act Guidance for organizations to ensure HIPAA compliance 	-
	[16]	COC: An ontology for capturing semantics of circle of care	-	-	-	х	X	-	x	Privacy Compliance	- Ontology - RDF - SPARQL	 Captures the concepts and relations of the patient's circle of care Compatible with HL7 FHIR standard Data access logs are annotated with the COC ontology and converted into an RDF dataset that can be queried using SPARQL queries to investigate if a data consumer is in the circle of care of a patient and, therefore, can access the patient's data. 	[10], [26], [46]
	[10]	Improving privacy in health care with an ontology-based provenance management system	-	-	-	х	x	-	-	Privacy Compliance	- Ontology - SPARQL	 Patients define access permissions for their medical data Domain ontologies support the detection of privacy violations by querying provenance data 	[16], [26], [46]
	[13]	Knowledge-based personalized search engine for the Web-based Human Musculoskeletal System Resources (HMSR) in biomechanics	X	-	-	-	-	-	-	Privacy Compliance	- OWL Ontology - Multi-agent semantic crawler for the Web - Asymmetric encryption	 A semantic crawler searches the web based on user-defined keywords Results are encrypted using asymmetric encryption to protect medical information (confidentiality) 	-
	[46]	Ontology for Attack Detection: Semantic-Based Approach for Genomic Data Security	-	-	-	x	-	-	-	Privacy Compliance	- OWL Ontology - SWRL rules - SPARQL - Jena - Inference/reasoning engine	 Definition of an ontology to detect attacks on genomic data The system analyzes incoming requests through a knowledge base of threat and inference rules The ontology captures the context of attacks and threats for further analysis 	[10], [10], [20]
	[26]	Preserving patients' privacy in health scenarios through a multicontext-aware system	-	-	-	x	-		-	Privacy Compliance	- OWL Ontology - SWRL rules - SPARQL - Jena - Inference/reasoning engine	 Users can choose privacy policies to manage when, where, how, and to whom their private information can be revealed Information about users and contexts is represented by ontologies and privacy policies are expressed as SWRL rules A reasoner receives the ontological models and applies SPARQL queries 	e [10], [16], [46]