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Abstract. Knowledge Graphs (KGs) have proliferated on the Web since the introduction of knowledge panels to Google search
in 2012. KGs are large data-first graph databases with weak inference rules and weakly-constraining data schemes. SHACL,
the Shapes Constraint Language, is a W3C recommendation for expressing constraints on graph data as shapes. SHACL shapes
serve to validate a KG, to underpin manual KG editing tasks, and to offer insight into KG structure. Often in practice, large KGs
have no available shape constraints and so cannot obtain these benefits for ongoing maintenance and extension.

We introduce Inverse Open Path (IOP) rules, a predicate logic formalism which presents specific shapes in the form of paths
over connected entities that are present in a KG. IOP rules express simple shape patterns that can be augmented with minimum
cardinality constraints and also used as a building block for more complex shapes, such as trees and other rule patterns. We
define formal quality measures for IOP rules and propose a novel method to learn high-quality rules from KGs. We show how
to build high-quality tree shapes from the IOP rules. Our learning method, SHACLEARNER, is adapted from a state-of-the-art
embedding-based open path rule learner (OPRL).

We evaluate SHACLEARNER on some real-world massive KGs, including YAGO?2s (4M facts), DBpedia 3.8 (11M facts), and
Wikidata (8M facts). The experiments show that our SHACLEARNER can effectively learn informative and intuitive shapes from
massive KGs. The shapes are diverse in structural features such as depth and width, and also in quality measures that indicate
confidence and generality.

Keywords: SHACL shape learning, shapes constraint language, knowledge graph, inverse open path rule

1. Introduction

While public knowledge graphs (KGs) became popular with the development of DBpedia [2] and Yago [33]
more than a decade ago, interest in enterprise knowledge graphs [26] has taken off since the inclusion of knowledge
panels on the Google Search engine in 2012, driven by its internal knowledge graph. Although these KGs are
massive and diverse, they are typically incomplete. Regardless of the method that is used to build a KG (e.g.,
collaboratively vs individually, manually vs automatically), it will be incomplete because of the evolving nature of
human knowledge, cultural bias [7] and resource constraints. Consider Wikidata [35], for example, where there is

*Corresponding author. E-mail: P.G.Omran@anu.edu.au.

1570-0844 © 2023 — The authors. Published by I0S Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).


mailto:P.G.Omran@anu.edu.au
mailto:Kerry.Taylor@anu.edu.au
mailto:Sergio.RodriguezMendez@anu.edu.au
mailto:Armin.Haller@anu.edu.au
mailto:P.G.Omran@anu.edu.au
https://creativecommons.org/licenses/by/4.0/

102 P. Ghiasnezhad Omran et al. / SHACLearner

/) Type_song
()

alburn producer
" producer’ )
OO

recordLabel “

(=)

Fig. 1. A tree shape for the Song concept from DBpedia.

more complete information for some types of entities (e.g., pop stars), while less for others (e.g., opera singers).
Even for the same type of entity, for example, computer scientists, there are different depths of detail for similarly
accomplished scientists, depending on their country of residence.

However, the power of KGs comes from their data-first approach, enabling contributors to extend a KG in a
relatively arbitrary manner. By contrast, a relational database typically employs not-null and other schema-based
constraints that require some attributes to be instantiated in a defined way at all times. Large KGs are typically
populated by automatic and semi-automatic methods using non-structured sources such as Wikipedia that are prone
to errors of omission (i.e., incompleteness) and commission (i.e., falsity). Both kinds of errors can be highlighted
for correction by a careful application of schema constraints. However, such constraints are commonly unavailable
and, if available, uncertain and frequently violated in a KG for valid reasons, arising from the intended data-first
approach of KG applications.

SHACL [21] was formally recommended by the W3C in 2017 to express such constraints on a KG as shapes.
For example, SHACL can be used to express that a person (in a specific use case) needs to have a name, birth date,
and place of birth, and that these attributes have particular types: a string; a date; and a location. The shapes are
used to guide the population of a KG, although they are not necessarily enforced. Typically, SHACL shapes are
manually-specified. However, as for multidimensional relational database schemes [19], shapes could, in principle,
be inferred from KG data. As frequent patterns, the shapes characterise a KG and can be used for subsequent data
cleaning or ongoing data entry. There is scant previous research on this topic [4,5,14,16,23,31].

While basic SHACL [21] and its advanced features [20] allows the modelling of diverse shapes including rules and
constraints, most of these shapes are previously well known when expressed by alternative formalisms, including
closed rules [15], trees, existential rules [3], and graph functional dependencies [13]. We claim that the common
underlying form of all these shapes is the path, over which additional constraints induce alternative shapes. For
example, in DBpedia we see the following path, < dbo : type > _ < db : Song > (x) —< dbo : album >
(x, yY)A < dbo : recordLabel > (y, z). which expresses that if an entity x is a song, then x is in an album y which
has a record label z.

Since the satisfaction of a less-constrained shape is a necessary condition for satisfaction of a more complex shape
(but not a sufficient condition), in this paper we focus on learning paths, the least constrained shape for our purposes.
In addition, we learn cardinality constraints that can express, for example, that a song has at least 2 producers. We
also investigate the process of constructing one kind of more complex shape, that is a tree, out of paths. For example,
we discover a tree about an entity which has song as its type as shown in Fig. 1. In a KG context, the tree suggests
that if we have an entity of type song in the KG, then we would expect to have the associated facts too.

In this paper, we present a system, SHACLEARNER, that mines shapes from KG data. For this purpose we propose
a predicate calculus formalism in which rules have one body atom and a chain of conjunctive atoms in the head with
a specific variable binding pattern. Since these rules are an inverse version of open path rules [18], we call them
inverse open path (I0P) rules. To learn IOP rules we adapt an embedding-based open path rule learner, OPRL [18].
We define quality measures to express the validity of IOP rules in a KG. SHACLEARNER uses the mined IOP rules
to subsequently discover more complex tree shapes. Each IOP rule or tree is a SHACL shape, in the sense that it can
be syntactically rewritten in SHACL. Our mined shapes are augmented with a novel numerical confidence measure
to express the strength of evidence in the KG for each shape.
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In summary, the main contributions of this paper are:

— We introduce a new formalism called Inverse Open Path rules, that serves as a building block for more complex
shapes such as trees, together with cardinality constraints and quality measurements;

— We extend the Open Path rule learning method, OPRL [17,18], to learn IOP (Inverse Open Path) rules annotated
with cardinality constraints, while introducing unary predicates that can act as class or type constraints; and

— We propose a method to aggregate IOP rules to produce tree shapes.

This paper is organised as follows. After presenting some foundations in Section 2, we describe our SHACL learning
method in Section 3, including the formalism of IOP rules, the embedding-based method that discovers IOP rules
from a KG, and the method for aggregating IOP rules into trees. In Section 4, we present related work. We discuss
results of an experimental evaluation in Section 5 before we conclude in Section 6.

2. Preliminaries

The presentation of closed path rules and open path rules in this section is adapted and extended from [18].

An entity e is an identifier for an object such as a place or a person. A fact (also known as a link) is an RDF triple
(e, P, ¢'), written here as P (e, ¢'), meaning that the subject entity e is related to an object entity ¢’ via the binary
predicate (also known as a property), P. In addition, we allow unary predicates of the form P (e), also equivalently
written here as the binary fact P (e, ¢). We model unary predicates as self-loops to have a unary predicate act as the
label of a link in the graph, as shown in Fig. 1, just as for binary predicates. Unary predicates may, but are not limited
to, represent class assertions expressed in an RDF triple as (e, rdf : type, P) where P is a class or a datatype. A
knowledge graph (KG) is a pair K = (E, F), where E is a set of entities and F is a set of facts and all the entities
occurring in F also occur in E.

2.1. Closed-path rules

KG rule learning systems employ various rule languages to express rules. RLVLR [27] and SCALEKB [9] use
so-called closed path (CP) rules. Each consists of a head at the front of the implication arrow and a body at the tail.
We say the rule is about the predicate of the head. The rule forms a closed path, or single unbroken loop of links
between the variables. It has the following general form.

Pi(x,y) < Pi(x,z1) A P2(z1,22) Ao A Py(zp—1, y)- (D

We interpret these kinds of rules with universal quantification of all variables at the outside, and so we can infer a
fact that instantiates the head of the rule by finding an instantiation of the body of the rule in the KG. For example,
from the rule citizenOf (x, y) < livesIn(x, z) AlocatedIn(z, y) and the facts in the KG: livesIn(Mary, Canberra)
and locatedIn(Canberra, Australia), we can infer and assert the new fact: citizenOf (Mary, Australia).

Rules are considered of more use if they generalise well, that is, they explain many facts. To quantify this idea
we recall measures support, head coverage and standard confidence that are used in some major approaches to rule
learning including [9] and [15].

Definition 1 (satisfies, support). Let r be a CP rule of the form (1). A pair of entities (e,e’) satis-
fies the body of r, denoted body,(e,¢’), if there exist entities ej,...,e,—1 in the KG such that all of
{Pi(e, e1), Py(e1,e3), ..., Py(e,_1, e)} are facts in the KG. Further (e, ') satisfies the head of r, denoted P; (e, €'),
if P;(e, ¢) is a fact in the KG. Then the support of r counts the rule instances for which the body and the head are
both satisfied in the KG.

supp(r) = |{(e. €') : body, (e, ¢') and P(e, ¢')}]|
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Standard confidence (SC) and head coverage (HC) offer standardised measures for comparing rule quality. SC
describes how frequently the rule is true, i.e., of the number of entity pairs that satisfy the body in the KG, what
proportion of the inferred head instances are satisfied? It is closely related to confidence widely used in association
rule mining [1]. HC measures the explanatory power of the rule, i.e., what proportion of the facts satisfying the head
of the rule could be inferred by satisfying the rule body? It is closely related to cover which is widely used for rule
learning in inductive logic programming [34]. A non-recursive rule that has both 100% SC and HC is redundant
with respect to the KG, and every KG fact that is an instance of the rule head is redundant with respect to the rule.

Definition 2 (standard confidence, head coverage). Let r, e, ¢, body, be as given in Definition 1. Then standard

confidence is

supp(r)
[{(e, €') : body, (e, ')}

SC(r) =

and head coverage is

supp(r)

R TP X Pt

2.2. Open-path rules: Rules with open variables

Unlike earlier work in rule mining for KG completion, OPRL for active knowledge graph completion [18] defines
open path (OP) rules of the form:

P1(z0,z21) A P2(z1,22) Ao A Pu(zn—1,y) = 3x Pi(x, 20). ©))

Here, P; is a predicate in the KG, each of {x, z;, y} are entity variables, and all free variables are universally
quantified at the outside.

We call a variable closed if it occurs in at least two distinct predicate terms, such as zg here, and otherwise it is
open. If all variables of a rule are closed then the rule is closed. An OP rule has two open variables, y and x. [18]
uses OP rules since they imply the existence of a fact, like spouse(x, y) — 3z child(x, z) [15]. Unlike CP rules, OP
rules do not necessarily form a loop, but a straightforward variable unification transforms an OP rule to a CP rule,
and every entity-instantiation of a CP rule is also an entity-instantiation of the related OP rule (but not vice-versa).

To assess the quality of OP rules, we use open path standard confidence (OPSC) and open path head coverage
(OPHC) which are derived in [18] from the closed path forms (Definition 2).

Definition 3 (open path: OPsupp, OPSC, OPHC). Let r be an OP rule of the form (2). Then a pair of entities
(e, €') satisfies the body of r, denoted body, (e, €), if there exist entities e1, ..., e,—] in the KG such that Pj (e, e}),
Py(e1,e2), ..., Py(en—1,€') are facts in the KG. Also (¢/, e) satisfies the head of r, denoted P; (€', e), if Pi(¢, e)
is a fact in the KG. The open path support, open path standard confidence, and open path head coverage of r are
given respectively by

OPsupp(r) = |{e : 3¢, " s.t. body, (e, e’) and Py (e”, e)H

OP
OPSC(r) = supp(r)
|{e : Je’ s.t. body, (e, €')}|
OP
OPHC(r) = supp(r)

I{e : Je’ s.t. Pi(e, )}

2.3. SHACL shapes

A KG is a schema-free database and does not need to be augmented with schema information natively. However,
many KGs are augmented with type information that can be used to understand and validate data and can also
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Fig. 2. An example of a SHACL shape from Wikidata.

be very helpful for inference processes on the KG. In 2017 the Shapes Constraint Language (SHACL) [21] was
introduced as a W3C recommendation to define schema information for KGs stored as an RDF graph. SHACL
defines constraints for graphs as shapes. KGs can then be validated against a set of shapes.

Shapes can serve two main purposes: validating the quality of a KG and characterising the frequent patterns in a
KG. In Fig. 2, we illustrate an example of a shape from Wikidata,' where x and z;s are variables that are instantiated
by entities. Although the shape is originally expressed in ShEx [32], we translate it to SHACL in the following.

humanShape

a sh:NodeShape;

sh:targetClass class:human ;

sh:property [
sh:path property:citizenOf ;
sh:class class:country ;
sh:nodeKind sh:IRI ;

I

sh:property [
sh:path property:father ;
sh:class class:human ;
sh:nodeKind sh:IRI ;

I

sh:property [
sh:path property:nativelLanguage ;
sh:class class:language ;
sh:nodeKind sh:IRI ;

i

SHACL, together with SHACL advanced features [20] is extensive. Here we focus on the core of SHACL in
which node shapes constrain a target predicate (e.g., the unary predicate human in Fig. 2), with property shapes
expressing constraints over facts related to the target predicate. We particularly focus on property shapes which act
to constrain an argument of the target predicate. In Fig. 2 the shape expresses that each entity x which satisfies
human(x) should satisfy the following paths: (1) citizenOf (x, z1) A country(z1), (2) father(x, z2) A human(z,), and
(3) nativeLanguage(x, z3) A language(z3).

Various formalisms with corresponding shapes have been proposed to express diverse kinds of patterns exhibited
in KGs, such as k-cliques, Closed rules (CR) [15] (that include closed path rules), Functional Graph Dependency
(FGD) [13], and trees [3]. CRs are used for inferring new facts. FGDs define constraints like the type of entities in
the domain and range of predicates, or the number of entities to which an entity can be related by a specific predicate.
These constraints are deployed to make the KG consistent. Regardless of differences amongst these formalisms, they

1 https://www.wikidata.org/wiki/EntitySchema:E10
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share a key feature in their syntax. The building block for expressing all of these shape constraints is a sequence of
predicates.

We focus on such path shapes for our shape learning system. A path is a sequence of predicates connected by
closed intermediate variables but terminating with open variables at both ends. Although shapes in the form of a path
are less constrained than some more complex shapes, they are a more general template for more complex shapes
like closed rules or trees, which are also paths (with further restrictions). We will define Inverse Open Path rules
induced from paths that have a straightforward interpretation as shapes, and also propose a method to mine such
rules from a KG. To demonstrate the potential for these kind of shapes to serve as building blocks for more complex
shapes, we then propose a method that builds trees out of mined rules, and briefly discuss the application of such
trees to KG completion.

3. SHACL learning
3.1. Rules with open variables or uncertain shapes

We observe that the converse of OP rules, that we call inverse open path rules (10P), correspond to SHACL
shapes. For example, the shape of Fig. 2 can be derived from the following three IOP rules:

human(x, x) — citizenOf (x, z1) A country(z1, 21).
human(x, x) — father(x, z2) A human(za, z22).

human(x, x) — nativeLanguage(x, z3) A language(z3, z3).
The general form of an IOP rule is given by

P/(x,z0) =>3(z1, ..., 2n—1, ¥) P{ (0, 21)

A Py(z1,22) A v A Py(za—t, ¥). 3

where each P/ is either a predicate in the KG or its reverse with the subject and object bindings swapped, and free
variables are universally quantified at the outside. We often omit the quantifiers when writing IOP rules. In an IOP
rule the body of the rule is P and its head is the sequence of predicates, P; A P> A --- A P,. Hence we instantiate
the atomic body to predict an instance of the head. IOP rules are not Horn. The pattern of existential variables in the
head and universal variables in the body has been investigated in the literature as existential rules [3].

To assess the quality of IOP rules we follow the style of quality measures for OP rules [18].

Definition 4 (inverse open path: IOPsupp, IOPSC, IOPHC). Let r be an IOP rule of the form (3). Then a pair of
entities (e, e’) satisfies the head of r, denoted head, (e, '), if there exist entities ey, ..., e,_; in the KG such that
Pi(e, e1), Pr(e1, e2), ..., Py(en—1, €') are facts in the KG. A pair of entities (¢”, e) satisfies the body of r, denoted
P:(e”, e), if Pi(e”,e) is a fact in the KG. The inverse open path support, inverse open path standard confidence,
and inverse open path head coverage of r are given respectively by

I0Psupp(r) = He 1 3¢, ¢ s.t. head, (e, e’) and P, (e”, e)H

IOP
IOPSC(r) = uppir)
l{e : Fe” s.t. P(e”, )}
IOP
IOPHC(r) = spp(r)

|{e : Je’ s.t. head, (e, €')}|

Notably, because any instantiated open path in a KG induces both an OP and IOP rule: the support for an IOP
rule is the same as the support for its corresponding OP form; IOPSC is the same as the corresponding OPHC; and
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IOPHC is the same as the corresponding OPSC. This close relationship between OP and IOP rules helps us to mine
both OP and IOP rules in the one process.

We show the relationship between an OP rule and its converse IOP version in the following example. Consider
the OP rule, P;(x, zg) < P>(z0, z21) A P3(z1, z2). Assume we have three entities ({e3, e4, e5}) which can instantiate
zo and satisfy both Py (x, z9) and P»(zo, z1) A P3(z1, z2). Assume the number of entities that can instantiate zg to
satisfy the head part is 5 ({e1, e2, €3, e4, e5}) and the number of entities that can instantiate zq to satisfy the body
part is 7 ({e3, es, 5, eg, €7, €3, e9}). Hence, we have the following for this rule, OPsupp = 3, OPSC = 3/7 and
OPHC = 3/5. For the IOP version of the rule over the same KG, P;(x, z9) = P2(z0, z1) A P3(21, z2), we have the
same entities to instantiate z, while the predicate terms corresponding to the bodies and heads are swapped. Hence,
we have the following for the IOP version of the rule, IOPsupp = 3, IOPSC = 3/5 and IOPHC = 3/7.

In many cases we need the rules to express not only the necessity of a chain of facts (the facts in the head of the
IOP rule) but the number of different chains which should exist. For example, we may need a rule to express that
each human has at least two parents. Hence, we introduce IOP rules annotated with a cardinality, Car. This gives us
the following annotated form for each IOP rule.

IOPSC, IOPHC, Car : Pt’(x, 20)

— P{(z0,21) A P3(z1,22) A+ A Pp(zn—1, ). “)

where IOPSC and IOPHC belong to [0, 1] and denote those qualities of the rule. Car is an integer > 1.

Definition 5 (Cardinality of an IOP rule, Car). Let r be an annotated IOP rule of the form (4) and let Car(r) be
the cardinality annotation for r. Then r satisfies Car(r) iff for each entity e € {e|3e” s.t. P;(¢”, e)}, Car(r) <
I{e’|head; (e, e'}].

The cardinality expresses a lower bound on the number of head paths which are satisfied in the KG for every
instantiation of the variable that joins the body to the head. For example, if we have 0.8,0.1,2 : Pi(x,y) —
P1(y,2) A Pa(z,t) and have P (eq, ep) satisfied, we should have at least two paths starting from e; that instantiate
two distinct entities for variable ¢, of the form P; (e, z2) A P2(z, e3) and Pj(e2, z) A P2(z, e4). There is no limitation
on the instantiations for variable z which is scoped inside the head, so these two pairs of instantiations both satisfy
cardinality of 2: (1) Pj(e2, e5) A P2(es, e3) and Pi(ea, es)A Pa(es, e4) and (2) Py (e2, e5) A P2 (es, e3) and Py (ez, eg) A
P (es, eq).

Rules with the same head and the same body may have different cardinalities. In the given example we might
have the following rule as well, 0.9, 0.1, 1 : P;(x, y) — P1(y, z) A P(z, t). While we have a rule with a cardinality,
c1, we also have rules with lower cardinalities 1, ..., (c; — 1) but their IOPSCs should be as good or better than the
rule with ¢ cardinality. This statement is quite intuitive since cardinality expresses a lower bound on the number of
instances of the head in the KB.

Lemma 1 (IOPSC is non-increasing with length). Let r be an IOP rule of the form (3) withn > 2 and let r' be an
IOP rule of the form P/(x, z0) — P (20, 21) A P3(21,22) A+ A P, (zy—2, y), being r shortened by the removal of
the last head predicate. Then IOPSC(r) < IOPSC(r').

Proof. Observe that by Definition 4, the denominator of JOPSC() is not affected by the head of the rule, and so has
the same value for both. Now, looking at the numerators, we have that Ve(Jeq, .. ., e, (Pl/ (e,e1) A Pz/(el ,e) A A
Py(en—2,en-1) A Pyen_1,€,)) = 3er,...,eq_1(P{(e,e1) A Py(e1,e2) A--- A P)(ey—2,€,-1))). Therefore
{e : 3e' s.t. head, (e, e')} C {e : e’ s.t. head, (e, €')}. Therefore {e : 3e', e’ s.t. head, (e, €') and P;(e”, e)} C
{e: 3¢, " s.t. head, (e, e)and P;(e”, e)}. So IOPsupp(r) < IOPsupp(r’) as required. |

This Lemma is useful in the process of rule learning since it shows that if we discard a rule due to its low IOPSC,
v, we do not need to check the rule extended with more head atoms, since those rules’ IOPSCs are at most v. Hence
the process of pruning such rules does not harm the completeness of the rule learning.
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Algorithm 1 SHACLEARNER

Input: a KG K, a target predicate P;

Parameters: max rule length /, max rule cardinality MCar, MinlOPSC, MinlOPHC, and MinTreeSC
Output: a set of IOP rules R and Tree

K’ := Sampling(K, P,)
(P, A) := Embeddings(K")
R =0
for2 <k <ldo
Add PathFinding(K’, P;, P, A, k) to R’
end for
R :=Ev(R', K, MCar, MinlOPSC, MinlOPHC)
Tree := GreedySearch(R, MinTreeSC)
return Tree and R

D A A e

3.2. IOP learning through representation learning

To mine IOP rules, we start with the open path rule learner OPRL [18], and adapt its embedding-based OP rule
learning to learn annotated IOP rules. We call this new IOP rule learner, SHACLEARNER, shown in Algorithm 1.

SHACLEARNER uses a sampling method Sampling(), shown in Algorithm 2, to prune the entities and predicates
that are less relevant to the target predicate to obtain a sampled KG. The sample is fed to an embedding learner,
RESCAL [24,25], in Embeddings(). Then in PathFinding(), SHACLEARNER uses the computed embedding rep-
resentations of predicates and entities in heuristic functions that inform the generation of IOP rules bounded by a
maximum length. Then, potential IOP rules are evaluated, annotated, and filtered in Ev() to produce annotated IOP
rules. Eventually, a tree is discovered for each argument of each target predicate by aggregating mined IOP rules in
GreedySearch().

While the overall algorithm structure of SHACLEARNER is similar to OPRL [18], as is the embedding-based
scoring function, the following elements are novel in SHACLEARNER:

— OPRL cannot handle unary predicates while SHACLEARNER admits unary predicates both in the head and the
body of IOP rules.

— SHACLEARNER can discover and evaluate IOP rules with minimum cardinality constraints in the head of the
IOP rule, while OPRL is effectively limited to learning the special case of minimum cardinality 1 for all rules.
For this reason, the evaluation method of SHACLEARNER, Ev(), differs from the OPRL evaluation module.

— The aggregation module that produces trees out of learnt IOP rules, ready for translation to SHACL, is novel
in SHACLEARNER.

3.3. Sampling

In more detail, the Sampling() method in line 1 of Algorithm 1 computes a fragment of the KG, K’, consisting of
a bounded number of entities that are related to the target predicate P;. This sampling is essential since embedding
learners (e.g., HOLE [24] and RESCAL) cannot handle massive KGs with millions of entities (e.g., YAGO2).

The sampling method, first introduced in [27], is shown in Algorithm 2. Since we search for IOP rules with up
to / atoms (including the specific body target predicate, P;), the entity set Egample and corresponding fact set K’
contains the information needed for learning such rules. Predicates less relevant to the target predicate are pruned in
the sampling process and no facts about those predicates remain in K.

This simple approach reduces the size of the problem significantly, as discussed in [28]. For a KG K with entities
E and facts F, the set of sampled entities for a target predicate will be of size 2/.| F|.|E| in the worst case. Hence,
the complexity of the sampling algorithm is O (|K|) where |K| = |E|.| F'|. In the worst case, the sampled KG size is
the same as the original KG, but real-world KGs are sparse with only a very small proportion of entities associated
with any predicate within distance /. In practice, the sampled KG is far smaller than the original KG.
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Algorithm 2 Sampling

Input: a KG K, a target predicate P;
Parameters: max rule length /

Output: K’ a subgraph of the input graph

Ei={e|3e : Pe,e) Vv Pi(e,e)}
for2 <k <lIldo

Er={e|3e : (e € Ex_1) A (Pi(e,e) Vv Pi(e,e))}
end for
Esample = Ull Ei
K’ :={Pi(e,€) | (e € Esample) A e e (Esample) }
return K’

e o

3.4. Embeddings

After sampling, in line 2 Embeddings(), we compute predicate embeddings as well as subject and object argument
embeddings for all predicates in the sampled K’, as is done in RLVLR [27]. The embedding is obtained from
RESCAL [24,25] as it can provide an extensive representation of predicates and entities as is shown in previous
heuristic rule learners like [28].

Briefly, we use RESCAL [24] to embed each entity e; to a vector E; € R? and each predicate Py to a matrix
P; € R?*¢ where R is the set of real numbers and d is an integer (a parameter of RESCAL). For each given fact
Py(eq, e2), the following scoring function is computed:

fler, Po,e2) =El Py -Ep )

The scoring function indicates the plausibility of the fact that e; has relation Py with e>.

In Embeddings() we additionally compute argument embeddings according to the method proposed in [27]. To
compute the subject (respectively object) argument embeddings of a predicate Py, we aggregate the embeddings of
entities that occur as the subject (respectively object) of Py in the KG. Hence for each predicate P, we have two
vectors, P,l and P,% that present the subject argument and object argument of Py respectively.

3.5. Generating and pruning rules

After that, in line 3 to line 7 of Algorithm 1, PathFinding() produces candidate IOP rules based on the embedding
representation of the predicates which are involved in each rule. The candidate rules are pruned by the scoring
function heuristic proposed in [18] for OP rules. Due to the close relationship between OP and IOP rules, a high-
scoring candidate OP rule suggests both a good OP rule and a good IOP rule.

An IOP rule P;(x,y) — P1(y,2) A P2(z, ). acts to connect entities satisfying the subject argument of the body
predicate, P, to entities forming the object argument of the last predicate, P», along a path of entities that satisfy
a chain of predicates in the rule. There is a relationship between the logical statement of the rule and the following
properties in the embedding space [18]:

1. The predicate arguments that have the same variable in the rule should have similar argument emdeddings.
For example we should have the following similarities, Pt2 ~ P% and P% ~ Pé.

2. The whole path forms a composite predicate, like P*(x, 1) = Pi(x,y) A P1(y,z) A P2(z,t). We compute
the embedding representation of the composite predicate based on its components, P*(x,t) = P;(x, y) -
Pi(y, z) - P2(z, 1). Now we could check the plausibility of P*(x, t) for any pair of entities by equation (5).
However, since we are interested in the existence of an entity-free rule, the following similarity will hold:
1~P!.P,-P-P,-P3

Based on the above two properties, [18] defines two scoring functions that help us to heuristically mine the space
of all possible IOP rules to produce a reduced set of candidate IOP rules.
The ultimate evaluation of an IOP rule will be done in the next step as described below.
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3.6. Efficient computation of quality measures

Now we focus our attention on the efficient matrix-computation of the quality measures that are novel for SHA-
CLEARNER. Ev() in Algorithm 1 first evaluates candidate rules on the small sampled KG, and selects only the rules
with IOPsupp(r) > 1. They may still include a large number of redundant and low quality rules and so are further
downselected based on their IOPSC and IOPHC calculated over the full KG. We show in the following how to
efficiently compute the measures over massive KGs using an adjacency matrix representation of the KG.

Let K = (E, F) with E = {ey, ..., e,} be the set of all entities and P = { Py, ..., P} be the set of all predicates
in F. Like RESCAL [24,25], we represent K as a set of square n x n adjacency matrices by defining the function
A. Specifically, the [i, jlth element A(P)[i, j]is 1 if the fact Pi(e;, ¢;) is in F; and O otherwise. Thus, A(Px) is a
matrix of binary values and the set {A(Py) | k € {1, ..., m}} represents K.

We illustrate the computation of IOPSC and IOPHC through an example. Consider the IOP rule r : P;(x, zg) —
P1(z0, 21) A P2(z1,y). Let E = {ey, e2, e3} and

F ={Pi(e1, e2), Pi(e2, €1), Pi(e2, €3), Pi(e3, e1),
Pa(e1, e2), Pa(e3, e2), Pa(es, e3), Pi(er, e3),

Pl(e37 62)5 Pt(e?)v 63)}

The adjacency matrices for the predicates Py, P, and Py are:

010 010
APD: |1 0 1|, A®P):|0 0 0f,
1 00 0 1 1
00 1
AP): |0 0
0 1

For IOPSC and IOPHC (Definition 4) we need to calculate (1) the number of entities that satisfy the body of the
rule, i.e., #e : Je” s.t. Pi(e”, e), (2) the number of entities that satisfy the head of arule i.e., #e : 3¢’ s.t. head, (e, €’)
and, (3) the number of entities that join the head of a rule to its body i.e., #e : 3¢’, €” s.t. head, (e, €') and P;(e”, e).

For (1) we can read the pairs (¢”, e) directly from the matrix A(P;). To find distinct es we sum each column
(corresponding to each value for the second argument) and transpose to obtain the vector V?(P;). Each non-zero
element of this vector indicates a satisfying e and the number of distinct es is given by simply counting the number
of non-zero elements. In the example, the only non-zero element in A(P;) is A(P)[1, 3] and after summing the
columns and transposing we have

0
V3P) = |1
2

so we have only VZ(P,)[3] non-zero and {e;, e3} satisfies the head with count 2.

For (2) the pairs (e, ¢’) satisfying the head are connected by the path Py, P,, ... Py, and can be obtained, as for
(1), directly from the matrix product A(P1)A(P>) ... A(Py), being the elements with a value > Car (for rules with
cardinality Car). To find distinct es we sum each row (corresponding to each value for the first argument) to obtain
the vector VI (A(P))A(P3) ... A(Py)). Each element with > Car value of this vector indicates a satisfying e and
the number of distinct es is given by counting the number of elements in V! (A(P))A(P,) ... A(Py)).

In the example we have

0 0 0 0
APDAP) =0 2 1|, VP, P)=|3
01 0 1
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with satisfying entities e> and e3 and count of 2 for Car = 1. For Car = 2, e; satisfies the rule so the count is 1.

Computing (3) is now straightforward. We have that the row index of non-zero elements of V?(P;) indicates
entities that satisfy the second argument of the body and that the row index of elements with a value > Car of
Yl (A(P)A(Py) ... A(Py)) indicates entities that satisfy the first argument of the head. Therefore we can find
the entities that satisfy both of these conditions by pairwise multiplication. That is, the entities we need are {e; |
OV2(P)[i] > 0 A VIAPDA(PY) ... A(Py))Ii]) > Carand 1 < i < n}, and the count of entities is the size of
this set. For the example, for Car = 1, we have {e>, e3} in the set with count 2 and for Car = 2, we have {e>} in the
set with count 1.

Hence, we could have three versions of r, i.e., r!, r2 and r3 with three different Car of 1, 2, and 3 respectively.
For Car = 1, IOPsupp(r') = |{e>, e3}| = 2. From Definition 4 we can obtain IJOPHC(r') = 2/2 and IOPSC(r") =
2/2. For Car = 2, IOPsupp(r?®) = |{e2}| = 1. We can obtain IOPHC(r*) = 1/1 and IOPSC(r*) = 1/2. In this
case, we have the same qualities for Car = 3 as we have for Car = 2.

1

3.7. From IOP rules to tree shapes

Now in line 8 of Algorithm 1 we turn to deriving SHACL trees, as illustrated in Fig. 3, from annotated IOP
rules. This procedure is novel in SHACLEARNER. We use a greedy search to aggregate the IOP rules for the subject
argument and the object argument of each target predicate.

For example, the shape of Fig. 2 has the following tree:

human(x, x)— citizenOf (x, z1) A country(z1, 21)
A father(x, z2) A human(zy, z2)

A nativeLanguage(x, z3)

A language(z3, z3).
The general form of a tree is given by

P/(x,z0) — El(zi, y*)
P! (z0.21) A Py (a1 20) Ao AP (20 0!)

AP (20, 20) A P2 (aE 23) A A P (g )

A Pl/q(zo, 2 A Pz/q(z(f, ZYAA Pt/q(z;’_l, y9). 6)

where each Pl./ /"is either a predicate in the KG or its reverse with the subject and object bindings swapped. Free
variables are universally quantified at the outside. In a tree we say the body of the shape is P; and its head is the
sequence of paths or branches, Path! A Path® A --- A Path?. Hence we instantiate the atomic body to predict an
instance of the head. All head branches and the body join in one shared variable, zg.

To assess the quality of a tree we follow the quality measures for IOP rules.

Definition 6 (Tree: Treesupp, TreeSC). Let r be a tree of the above form. Then a set of pairs of entities

(e,e)), ..., (e, e?) satisfies the head of r, denoted head,(e), if there exist the following sequences of enti-
ties el,...,el . e? ...,e2 | and el ..., e? | in the KG such that P/ (e, e}), P)(el,el), ..., Pl(e! | eb),
Ple,e}), Pi(el, e3),..., P2(e2_,.e*) and Pl (e el), Pl(el, el) ..., Pl(el |, e9) are facts in the KG. A pair

of entities (e”, e) satisfies the body of r, denoted P;(e”, ), if P;(¢”, e) is a fact in the KG. The free support and tree
standard confidence of r are given respectively by

Treesupp(r) = He :3e” s.t. head, (e) and P;(e”, e)}‘
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)
P?

IOPSC : |
Fig. 3. Trees for a target predicate P;. Each v; indicates a TreeSC.

Treesupp(r)
I{e : 3e” s.t. Pi(e”, e)}]

TreeSC(r) =

To learn each tree we employ a greedy search, GreedySearch, in line 8 of Algorithm 1. To do so, we sort all rules
that bind the subject argument (for the left hand tree in Fig. 3) in a non-increasing order with respect to IOPSC.
Then we iteratively try to add the first rule in the list to the tree and compute the TreeSC. If the TreeSC drops below
the defined threshold (i.e., TreeSCMIN) we dismiss the rule otherwise we add it to the tree. For the right hand tree
we do the same with the rules that bind the object argument of the target predicate. Since a conjunction of IOP rules
form a tree, TreeSC is bounded above by the minimum IOPSC of its constituent IOP rules.

These uncertain shapes can be presented as standard SHACL shapes by ignoring those that fail to satisfy minimum
quality thresholds and deleting the quality annotations. Aside from the cardinality, the tree may be straightforwardly
interpreted as a set of SHACL shapes by reading off every path from the target predicate terminating at a node in
the tree. The body predicate is declared a sh:nodeShape and the path of head predicates as nested sh:path
declarations within a sh: property declaration. Cardinality of a path is read from the annotation of the branch
at the terminating node, and declared by sh: minCount within the property declaration. See Section 3.1 for an
example.

SHACLEARNER supports all the SHACL Core* [21] features (node and property shapes). The limitations of
SHACLEARNER with respect to SHACL Core are: (1) it treats all properties, both object and datatype properties,
as “plain predicates” so there is no distinction; (2) and so it does not perform any kind of data type validation;
and (3) of cardinality expressions, only min cardinality is handled. SHACLEARNER does not mine SPARQL-like
constraints, SHACL-SPARQL.3

3.7.1. Tree shapes are useful for human interaction

Shapes offer KG documentation as readable patterns and also provide a way to validate a KG. Our novel
tree shapes can additionally be used for KG-completion. While there are several methods proposed to complete
KGs automatically (e.g., [24,25,27]) by predicting missing facts (also called links), all these methods traverse
the KG in a breadth-first manner. In other words, they sequentially answer a set of independent questions such
as birthPlace(Trump, ?) followed by playsin(Naomi_Watts, 7). Our proposed tree shapes instead provide an op-
portunity to work sequentially along a path of dependent questions such as birthPlace(Trump, ?1) followed by
capitalOf (71, 7). The latter question cannot even be asked until we have an answer for the former question, and
the existence of an answer to the former gives us the confidence to proceed to the next question along the path.
This completion strategy is depth-first as it works through a shape tree. Importantly, when we want to ask such
completion questions of a human, this depth-first questioning strategy will reduce the cognitive load due to the con-
textual connections between successive questions. This strategy for human-KG-completion is applied in the smart
KG editor Schimatos [36] using trees that can be generated by SHACLEARNER.

Tree shapes can also help a human expert to extract a more intuitive concise sub-tree out of a deeper, more com-
plex tree when desired for human interpretation. If a tree with confidence TreeSCorig is pruned either by removing
branches (width-wise) or by reducing the length of branches (depth-wise), it remains a valid tree with confidence

2https://www.w3 .org/TR/shacl/#dfn-shacl-core
3 https://www.w3.org/TR/shacl/#dfn-shacl-sparql
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TreeSChew with the property that TreeSCrew > TreeSCorig. Hence, by pruning a tree we obtain a simpler tree with
higher confidence in the KG.

4. Related work

There are some exploratory attempts to address learning SHACL shapes from KGs [4,14,16,23,31]. They are
procedural methods without logical foundations and are not shown to be scalable to handle real-world KGs. They
work with a small amount of data and the representation formalism they use for their output is difficult to compare
with the IOP rules which we use in this paper. [4] carries out the task in a semi-automatic manner: it provides a
sample of data to an off-the-shelf graph structure learner and provides the output in an interactive interface for a
human user to create SHACL shapes.

In [5] the authors provide an interactive framework to define SHACL shapes with different complexities, including
nested patterns that are similar to the trees that we use. A formalisation of the approach is given, but there are no
shape quality measures that are essential for large scale shape mining. Because the paper does not provide a system
that discovers patterns from massive KGs, we cannot deploy their method for comparison purposes.

There are some works [10,29] that use existing ontologies for KGs to generate SHACL shapes. [10] uses two
different kinds of knowledge to automatically generate SHACL shapes: ontology constraint patterns as well as input
ontologies. In our work we use the KG itself to discover the shapes, without relying on external modelling artefacts.

From an application point of view, there are papers which investigate the application of SHACL shapes to the
validation of RDF databases including [6,22], but these do not contribute to the discovery of shapes.

[30] proposes an extended validation framework for the interaction between inference rules and SHACL shapes
in KGs. When a set of rules and shapes are provided, a method is proposed to detect which shapes could be violated
by applying a rule.

There are some attempts to provide logical foundations for the semantics of the SHACL language including [11]
that presents the semantics of recursive SHACL shapes. By contrast, in our work we approach SHACL semantics in
the reverse direction. We start with logical formalisms with both well-defined semantics and motivating use cases
to derive shapes that can be trivially expressed in a fragment of SHACL.

5. Experiments

We have implemented our SHACLEARNER” based on Algorithm 1, and conducted experiments to assess it.
Our experiments are designed to prove the effectiveness of our SHACLEARNER at capturing shapes with varying
confidence, length and cardinality from various real-world massive KGs. Since our proposed system is the first
method to learn shapes from massive KGs automatically, we have no benchmark with which to compare. However,
the performance of our system shows that it can handle the task satisfactorily and can be applied in practice. We
demonstrate that:

SHACLEARNER is scalable so it can handle real-world massive KGs including DBpedia with over 11M facts.
SHACLEARNER can learn several shapes each for various target predicates.

SHACLEARNER can discover diverse shapes with respect to the quality measurements of IOPSC and IOPHC.
SHACLEARNER discovers shapes of varying complexity, and diverse with respect to length and cardinality.
SHACLEARNER discovers every high-quality rule (with JOPSC > 0.9) for a small complete KG, by compar-
ison with an ideal learner.

6. SHACLEARNER discovers more complex shapes (trees) by aggregating learnt IOP rules efficiently.

Al

Our four benchmark KGs are described in Table 1. Three benchmarks, namely YAGO?2s, Wikidata, and DBpedia,
are common KGs and have been used in rule learning experiments previously [15,27]. The fourth is a small synthetic

4Detailed experimental results can be found at https://gitlab.anu.edu.au/u1080771/SHACLearner.
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Table 1
Benchmark specifications
KG # Facts # Entities # Predicates
YAGO2s 4,122,438 2,260,672 37
Wikidata 8,397,936 3,085,248 430
Wikidata +UP 8,780,716 3,085,248 587
DBpedia 3.8 11,024,066 3,102,999 650
DBpedia 3.8 +UP 11,498,575 3,102,999 1,005
Poker 6,790 575 35

KG, Poker, for analysing the completeness of our algorithm. The Poker KG was introduced in [18], adapted from
the classic version [8,12] to be a rich and correct KG for evaluation experiments. Each poker hand comprises 5
playing cards drawn from a deck with 13 ranks and 4 suits. Each card is described using two attributes: suit and
rank. Each hand is assigned to any or all of 9 different ranks, including High Card, One Pair, Two Pair, etc. We
randomly generate 500 poker hands and all facts related to them to build a small but complete and correct KG as
summarised in Table 1. 28 out of 35 predicates are unary predicates, such as fullHouse(x) where x is a specific poker
hand.

All experiments were conducted on an Intel Xeon CPU E5-2650 v4 @2.20 GHz, 66GB RAM and running CentOS
8.

5.1. Transforming KGs with type predicates for experiments

Since real-world KG models treat predicates and entities in a variety of ways, we require a common represen-
tation for this work that clearly distinguishes entities and predicates. We employ an abstract model that is used in
Description Logic ontologies, where classes and types are named unary predicates, and roles (also called properties)
are named binary predicates.

Presenting the class and type information as unary predicates also allows us to learn fully abstracted (entity-
free) shapes (e.g. type_E(x) — P1(x,y), P2(y, z)) instead of partially instantiated shapes (e.g. type(x, E) —
Pl(x,y), P2(y, z)). This feature is important since learning partially instantiated shapes can cause an explosion in
the space of possible shapes. Using self-loop links for unary predicates is convenient syntactic sugar to keep the
presentation in the triple format, as for the original input KGs.

In real-world KGs, concept or class membership may be modeled as entity instances of a binary fact. For exam-
ple, DBpedia contains “<dbo:type>(x, y)” and “<dbo:class>(x, y)” predicates where the second arguments of these
predicates are types (e.g. “<db:Album>" or “<db:City>") or classes (e.g. “<db:Reptile>" or “<db:Bird>"). Instead,
we choose to model types and classes with unary predicates. To do so we make new predicates like <dbo:type>_
<db:Album>(x) from facts in the form <dbo:type> (x,<db:Album>), where x is the name of an album. Then we pro-
duce new unary facts based on the new predicate and related facts. For example, for <dbo:type>(Revolver,<db:Al-
bum>), we produce the new fact <dbo:type>_<db: Album>(Revolver).

We use the two type-like predicates from DBpedia 3.8 “<dbo:type>" and “<dbo:class>" and the one from Wiki-
data “<occupation_P106>" to generate our unary predicates and facts. These predicates each have a class as their
second argument. To prune the classes with few instances for which learning may be pointless, we consider only
our unary predicates which have at least 100 facts. We retain the original predicates and facts in the KG as well as
extending it with our new ones. In Table 1 we report the specifications of two benchmarks where we have added the
unary predicates and facts (denoted as +UP).

5.2. Learning IOP rules

We follow the established approach for evaluating KG rule-learning methods, that is, measuring the quantity and
quality of distinct rules learnt. Rule quality is measured by Inverse open path standard confidence (IOPSC) and
Inverse open path head coverage (IOPHC). We randomly select 50 target predicates from Wikidata and DBPedia
unary predicates (157 and 355 respectively). We use all binary predicates of YAGO2s (i.e., 37) as target predicates.
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Table 2
Performance of SHACLEARNER on benchmark KGs
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Benchmark %SucTarget #Rules Time (hours)
YAGO2s 80 42 0.6
Wikidata+UP 82 67 1.8
DBpedia+UP 98 157 2.4
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Fig. 4. Distribution of mined rules with respect to IOPSC and IOPHC.

Each binary target predicate serves as two target predicates, once in the straight form (where the object argument
of the predicate is the common variable to connect the head) and secondly in its reverse form (where the subject
argument serves to connect). In this manner, we ensure that the results of SHACLEARNER on YAGO2s with its
binary predicates as targets is comparable with the results for Wikidata and DBpedia that have unary predicates as
targets. Hence for YAGO2s we have 74 target predicates.

A 10 hour limit is set for learning each target predicate.

Table 2 shows #Rules, the average numbers of quality IOP rules found; %SucTarget, the proportion of target
predicates for which at least one IOP rule was found; and the running times in hours, averaged over the targets.
Only high quality rules meeting minimum quality thresholds are included in these figures, that is, with IOPSC> 0.1
and IOPHC> 0.01, thresholds established in comparative work [15]. These thresholds are quite low, so rules of low
quality are also included. Generally, selecting a low threshold at the time of learning is a safe choice since the rules
can be further pruned by applying stricter quality thresholds later on.

SHACLEARNER shows satisfactory performance in terms of both the runtime and the numbers of quality rules
mined. Note that rules found have a variety of lengths and cardinalities. To better present the quality performance of
rules we illustrate the distribution of rules with respect to the features, IOPSC, IOPHC, cardinality and length, and
also IOPSC vs length. In the following, the proportion of mined rules having the various feature values is presented,
to more evenly demonstrate the quality of performance over the three very different KGs.

The distribution of mined rules with respect to their IOPSC and IOPHC is shown in Fig. 4. In the left-hand chart
we observe a consistent decrease in the proportion of quality rules as the IOPSC increases. In the right hand chart
we see a similar pattern for increasing IOPHC, but the decrease is not as consistent, showing there must be many
relevant rules with many covered head instances. Over all benchmarks, the majority of learned rules have lower
IOPSC and IOPHC. This is expected because the statistical likelihood of poor quality rules is much higher. Indeed,
we show experimentally in Section 5.3 that our pruning techniques, that are necessary for scalability, prune away
predominantly lower quality rules.

With respect to IOPSC, proportionally more quality rules are learnt from DBpedia than from the other KGs, with
Wikidata coming second, ahead of YAGO2s. This phenomenon might be a result of our deliberate selection of type-
like unary predicates as targets for DBPedia and Wikidata, whereas for YAGO2s we use every one of the 37 binary
predicates as a target.

The distribution of mined rules with respect to their cardinalities is shown in Fig. 5. We observe that the largest
proportion of rules has a cardinality of 1, as expected, as they have the least stringent requirements to be met in the
KG. We observe an expected decrease with greater cardinalities as they demand tighter restrictions to be satisfied.
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Fig. 6. Distribution of mined rules with respect to their lengths.

YAGO?2 demonstrates a tendency towards higher cardinalities than the other KGs, possibly a result of its more
curated development.

The distribution of mined rules with respect to their lengths is shown in Fig. 6. One might expect that as the length
increases, the number of rules would increase since the space of possible rules grows, and this is what we see.

For a concrete example of SHACL learning, we show the following three IOP rules mined from DBpedia in the
experiments. The IOPSC, IOPHC, and Cardinality annotations respectively prefix each rule.

0.64,0.01, 1 : < dbo : type > _ < db : Song >(x)

— < dbo : album >(x, z1) A < dbo : recordLabel >(z1, y).
0.63,0.01,1: < dbo : type > _ < db : Song >(x)

— < dbo : producer >(x, y).
0.41,0.01,2 : < dbo : type > _ < db : Song >(x)

— < dbo : producer >(x, y).

< dbo : type > _ < db: Song >(x) expresses x is a song. The first rule indicates x should belong to an album
(z1) that has y as record label. The second rule requires a song (x) to have at least one producer while the third rule
requires a song to have at least two producers, and these two rules are distinguished by the cardinality annotation.
As we discussed in 3.1, the third rule is more constraining than the second, so the confidence of the third rule is
lower than the confidence of the second, based on the KG data.

The rules can be trivially rewritten (through a script that we developed) into SHACL syntax as follows.

:s1l a sh:NodeShape ;
sh:targetClass :<dbo:type> <db:Song> ;
sh:property [
sh:minCount 1 ;
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sh:path :<dbo:album> ;
[sh:path :<dbo:recordLabel> ; 1
1.
:s2 a sh:NodeShape ;
sh:targetClass :<dbo:type> <db:Song> ;
sh:property [
sh:minCount 1 ;
sh:path :<dbo:producers ;
1.
:s3 a sh:NodeShape ;
sh:targetClass :<dbo:type> <db:Song> ;
sh:property [
sh:minCount 2 ;
sh:path :<dbo:producers> ;
]

5.2.1. IOPSC vs IOPHC

Using rules found in the experiments, we further illustrate the practical meaning of the IOPSC and IOHC qualities.
While IOPSC determines the confidence of a rule based on counting the proportion of target predicate instances for
which the rule holds true in the KG, IOPHC indicates the proportion of rule consequent instances that are justified
by target predicate instances in the KG, thereby indicating the relevance of the rule to the target. In Wikidata+UP,
all unary predicates are occupations such as singer or entrepreneur, so all the entities which have these types turn
out to be persons even though there is no explicit person type in our KG. Thus, the occupations all have very similar
IOP rules about each of them with high IOPSC and low IOPHC, like the following one, for example.

0.47,0.01, 1 : < occupation > _ < singer >(x)

— < country_of_citizenship >(x, y).

On the other hand, for these unary occupation predicates there are also some IOP rules with high IOPHC that apply
only to one specific unary predicate, such as the following one.

0.15,0.16, 5 : < occupation > _ < singer >(x)

— < performer_musical_artist >(x, y).
5.3. Completeness analysis of IOP rule learning

SHACLEARNER uses two tricks to significantly reduce the search space for IOP rules in PathFinding() of Algo-
rithm 1, namely the prior Sampling() and the heuristic pruning used inside PathFinding() that uses the embedding-
based scoring function. We conduct experiments to explore how these two pruning methods affect SHACLEARNER
with regard to the quality and quantity of learnt rules. To do so we create three variants of SHACLEARNER as
follows.

(-S+H): SHACLEARNER that does not sample and so uses the complete input KG in all components, including
embedding learning, heuristic pruning and ultimate evaluation.

(+S-H): SHACLEARNER that samples but does not use heuristic pruning and so generates rules based on the
sampled KG and evaluates rules on the complete KG.

(-S-H): SHACLEARNER that does not use sampling nor heuristic pruning. This system is an ideal IOP rule
learner that generates and evaluates all possible rules up to the maximum length parameter. Since this method
is a brute-force search, it cannot handle any real-world KG such as those we used in the performance evaluation
(Section 5.2).

(+S+H): SHACLEARNER with its full functionality.
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Table 3

IOPSC performance of the ideal no-pruning SHACLEARNER variant on Poker, showing the percentage reduction in rules found by IOPSC
intervals for variants with sampling and/or heuristic pruning

Learner/IOPSC [0.1,0.3) [0.3,0.5) [0.5,0.7) [0.7,0.9) [0.9, 1]
#(-S-H) 163 44 74 36 46
(-S+H)% —10% 0% —32% —25% 0%
(+S-H)% —93% —93% —12% —11% 0%
(+S+H)% —98% —93% —35% —22% 0%
Table 4

Tree-learning performance of SHACLEARNER on benchmark KGs
Benchmark TreeSC #branches Time (hours)
YAGO2s 0.13 21 0.06
Wikidata+UP 0.19 21 0.1
DBpedia+UP 0.2 88 0.14

Since we use only the small Poker KG for this experiment, we can handle the task without sampling or heuristic
mechanisms. We use all 28 unary predicates as the target predicates. The first row of Table 3 shows the number of
IOP rules that are learnt by ideal, modified SHACLEARNER (-S-H) with no pruning, for all target predicates, sepa-
rated into various IOPSC intervals. The latter rows show, for each variant, the percentage difference in the number
of rules found, relative to the first row. The last row corresponds to unmodified SHACLEARNER of Algorithm 1.
For example, consider the first column (the number of learnt rules with IOPSC in range of [0.1,0.3)). In the first row
(#(-S-H)) we have 163 rules learnt by ideal rule learner (SHACLEARNER (-S-H)) that is inefficient yet complete. In
the second row, we have the performance of the SHACLEARNER (-S+H), the system without sampling, but with the
heuristic rule learning module, in comparison with the ideal rule learner (SHACLEARNER (-S-H)), given as -10%.
That means SHACLEARNER (-S+H) learns 146 rules with IOPSC in range of [0.1,0.3): 17 or 10% fewer rules than
the ideal learner.

We observe that SHACLEARNER does not miss any rules of the highest quality, i.e., with JOPSC > 0.9. SHA-
CLEARNER’s pruning methods cause it to fail to discover more rules of lower quality, with the number of missing
rules increasing as quality decreases. This is a reassuring property, since the goal of pruning is to improve the com-
putational performance without missing high-quality rules. In real applications we will typically retain and action
only the highest quality rules.

We observe that, unlike the other pruning variants, using heuristic pruning alone in (-S+H) does not uniformly
increase in effectiveness with decreasing rule quality. This may be because using the complete KG for learning
rules about all target predicates could harm the quality of the learnt embeddings used in the scoring function of
SHACLEARNER. The better quality of embeddings extracted from the sampled KG arises from our sampling method
that creates a KG that is customised for the target predicate. All entities in the sampled KG are either directly related
to the target predicate or close neighbours of directly related entities as we described in 3.3.

5.4. Learning trees from IOP rules

Now we turn to presenting results for the trees that are built based on the IOP rules discovered in the experiments.
We report the characteristics of discovered trees in Table 4. We use a value of 0.1 for the TreeSCMIN parameter
and show average TreeSC for each KG, along with the average number of branches in the trees and the average
tree-building runtime. The number of trees for each KG is defined by the number of target predicates for which we
have at least one IOP rule (see %SucTarget in Table 2).

The results show the running time for aggregating IOP rules into trees is lower than the initial IOP mining time
by a factor greater than 10. If, on the other hand, we wanted to discover such complex shapes from scratch it would
be exhaustively time consuming due to the sensitivity of rule learners to the maximum length of rules. The number
of potential rules in the search space grows exponentially with the maximum number of predicates of the rules.
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The average number of branches in the mined trees are 50%, 31%, and 56% of the corresponding number of mined
rules respectively from Table 2. Hence, by imposing the additional tree-shaped constraint over the basic IOP-shaped
constraint, at least 44% of IOP rules are pruned.

For an example of tree shape learning, in the following, we show a fragment of a 39-branched tree mined from
DBpedia by aggregating IOP rules in the experiments.

0.13: < dbo : type > _ < db: Song >(x)
— 1: < dbo : album >(x, z1)
A < dbo : recordLabel >(z1, yi)
A2 : < dbo:album >(x, z2)
A < dbo : producer >(z3, y2)
A1l : < dbo:album >(x, z3)
A < dbo : genre >(z3, y3)
A3 < dbo: artist >(x, z4)

A < dbo : musicalArtist >(z4, y4).

Here, the first annotation value (0.13) presents the SC of the tree and the subsequent values at the beginning of
each branch indicate the branch cardinality. This tree can be read as saying that a song has an album with a record
label, an album with two producers, an album with a genre, and an artist who is a musical artist.

As can be seen here, there remains an opportunity for improving tree shapes for simplicity and easier interpreta-
tion by unifying some variables that occur in predicates that occur in multiple branches. We plan to investigate this
potential post-processing step in future work.

6. Conclusion

In this paper we propose a method to learn SHACL shapes from KGs as a way to describe KG patterns, to validate
KGs, and also to support new data entry. For entities that satisfy target predicates, our shapes describe conjunctive
paths of constraints over properties, enhanced with minimum cardinality constraints.

We reduce the SHACL learning problem to learning a novel kind of rules, Inverse Open Path rules (IOP). We
introduce rule quality measures IOP Standard Confidence, IOP Head Coverage and Cardinality which augment the
rules. IOPSC effectively extends SHACL with shapes, representing the quantified uncertainty of a candidate shape
to be selected for interestingness or for KG verification. We also propose a method to aggregate learnt IOP rules in
order to discover more complex shapes, that is, trees.

The shapes support efficient and interpretable human validation in a depth-first manner and are employed, for
example, in an editor Schimatos [36] for manual knowledge graph completion. The shapes can also be used to
complete information triggered by entities with only a type or class declaration by automatically generating dynamic
data entry forms. In this manual mode, they can also be used more traditionally to complete missing facts for a target
predicate, as well as other predicates related to the target, while enabling the acquisition of facts about entities that
are entirely missing from the KG.

To learn such shapes we adapt an embedding-based Open Path Rule Learner (OPRL) by introducing the following
novel components: (1) we propose an IOP rule language which allow us to mine rules with open variables with one
predicate forming the body and a chain of predicates as the head, while keeping the complexity of the learning
phase manageable; (2) we introduce cardinality constraints and tree shapes for more expressive patterns; and (3) we
propose an efficient method to evaluate IOP rules and trees by exactly computing the quality measures of each rule
using fast matrix and vector operations.
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Our experiments show that SHACLEARNER can mine IOP rules of various lengths, cardinalities, and qualities
from three massive real-world benchmark KGs including Yago, Wikidata and DBpedia.

Learning shape constraints from schema-free knowledge-bases, such as most modern KGes, is a challenging task.
The challenge starts from the formalism of constraints that determine the scope of knowledge that could be acquired.
The next challenge is to design an efficient learning method. Dealing with uncertainty in the constraints and the
learning process adds an extra dimension of challenge, but also adds to utility. A good learning algorithm should
scale gracefully so that discovered constraints are relatively more certain than those that are missed. SHACLEARNER
establishes a benchmark for this problem.

In future work we will validate the shapes we learn with SHACLEARNER via formal human-expert evaluation
and further extend the expressivity of the shapes we can discover. We also propose to redesign the SHACLEARNER
algorithm for a MapReduce implementation to handle extremely massive KGs with tens of billions of facts, such as
the most recent version of Wikidata.
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