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Abstract. In recent years, we have witnessed a steady growth of linguistic information represented and exposed as linked data
on the Web. Such linguistic linked data have stimulated the development and use of openly available linguistic knowledge
graphs, as is the case with the Apertium RDF, a collection of interconnected bilingual dictionaries represented and accessible
through Semantic Web standards. In this work, we explore techniques that exploit the graph nature of bilingual dictionaries to
automatically infer new links (translations). We build upon a cycle density based method: partitioning the graph into biconnected
components for a speed-up, and simplifying the pipeline through a careful structural analysis that reduces hyperparameter tuning
requirements. We also analyse the shortcomings of traditional evaluation metrics used for translation inference and propose to
complement them with new ones, both-word precision (BWP) and both-word recall (BWR), aimed at being more informative
of algorithmic improvements. Over twenty-seven language pairs, our algorithm produces dictionaries about 70% the size of
existing Apertium RDF dictionaries at a high BWP of 85% from scratch within a minute. Human evaluation shows that 78% of
the additional translations generated for dictionary enrichment are correct as well. We further describe an interesting use-case:
inferring synonyms within a single language, on which our initial human-based evaluation shows an average accuracy of 84%.
We release our tool as free/open-source software which can not only be applied to RDF data and Apertium dictionaries, but is
also easily usable for other formats and communities.

Keywords: Bilingual dictionaries, RDF, Apertium, graph, linguistic linked data, evaluation methods, polysemy

1. Introduction

Bilingual electronic dictionaries contain translations between collections of lexical entries in two different lan-
guages. They constitute very useful language resources, both for professionals (such as translators) and for language
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Fig. 1. Graphical visualization of dictionaries in the Apertium RDF graph (figure taken from [11]), which covers 44 languages and 53 language
pairs. The nodes represent monolingual lexicons and edges the translation sets among them. Darker nodes correspond to more interconnected
languages.

technologies (such as machine translation or the alignment of sentences in translated documents). Currently, we are
witnessing an increase of such resources as linked data on the Web, owing to the adoption of linguistic linked data
(LLD) techniques [6] by the language technologies community. That is the case of the Apertium RDF graph, built on
the basis of the family of bilingual dictionaries of Apertium,1 a free-open/source machine translation platform [8].
A subset of 22 such dictionaries was initially converted into RDF (resource description framework),2 published
as linked open data on the Web, and made available for access and querying in a way compliant with Semantic
Web standards [13]. More recently, an updated version of the Apertium RDF graph has been released, covering 53
language pairs [11] (see Fig. 1).

Publishing bilingual dictionaries, and linguistic data in general, as linked data on the Web has a number of ad-
vantages. First, the data are described by using standard mechanisms of the Semantic Web, such as RDF and OWL
(web ontology language3), and use consensual ontologies, agreed by the community, for their conceptual represen-
tation (such as Ontolex-lemon4 [28] in the case of the Apertium RDF). Further, it can be accessed through standard
languages and query means such as the SPARQL protocol and RDF query language,5 avoiding any dependence on
proprietary application programming interfaces (APIs). This enhances the availability, the interoperability, and the
usability of the linguistic information that use such techniques [6]. In fact, every piece of lexical information (such
as lexical entries, lexical senses, or translations) has its own URI, which identifies it at the Web scale and makes
it easier to be linked to, or to be reused by, any other dataset or semantic-aware system developed for any pur-
pose. For instance, the Apertium data, initially intended for their use in machine translation, has been successfully
used, in its RDF version, for cross-lingual model transfer in the pharmaceutical domain [11]. In this application, an
embeddings-based model for sentiment analysis in English was efficiently transferred into Spanish without retrain-
ing it from scratch, by injecting the English–Spanish translations contained in the Apertium RDF.

In this work, we explore a method to automatically expand a graph of bilingual translations by inferring new
translations based on the already existing ones. The method is agnostic of the particular graph formalism used to
represent the data, although we apply it to the particular case of Apertium RDF. We further show how automatic
dictionary generation is actually far more effective than reported in existing literature by developing evaluation
methods that are better indicators of the actual utility. The motivation is two-fold: to support the evolution and

1http://apertium.org
2http://www.w3.org/TR/rdf-primer
3http://www.w3.org/TR/owl-primer
4https://www.w3.org/2016/05/ontolex/
5http://www.w3.org/TR/sparql11-protocol/

http://apertium.org
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Fig. 2. A small subgraph of translations based on the Apertium RDF. The shapes represent the semantic senses: black boxes, ‘bench’; red
diamonds, ‘bench’ and ‘financial institution’; blue trapezium, ‘financial institution’ and ‘edge of a river’.

enrichment of the Apertium RDF graph with new, automatically obtained high-quality data, and to support the
Apertium developers when building new bilingual dictionaries from scratch as validating and adapting automatically
predicted translations is easier for dictionary developers than writing new translation entries from scratch.

For instance, in Fig. 2, translations between nouns such as banc (Catalan) – banco (Galician), banco (Galician)
– panchina (Italian), banc (Catalan) – banquillo (Spanish), are all valid but not present in the Apertium RDF. Our
method tries to discover such indirect translations and assigns a confidence score to them. Our work is grounded on
the approach proposed by Villegas et al. [34], based on the identification of dense cycles in the graph. We improve
and extend this work in several directions:

– We improve the cycle-based algorithm by exploiting properties of biconnected graphs, which reduces execution
time while discovering the same translations.

– We reduce the number of hyperparameters, and provide theoretical analysis for the ones chosen empirically in
prior work, which reduces the search space for end users.

– We scale the experimental set-up to a much larger dataset, from two language pairs in the initial work (English–
Spanish and English–French) up to 27 language pairs.

– We also measure the quality of predictions not found in the evaluation set through human evaluation and
through validation with other available dictionaries, such as MUSE.6

We also contribute to the general translation inference problem in the following aspects:

– We demonstrate weaknesses of evaluation metrics used in existing literature that underestimate progress in
translation inference. To this effect, we introduce and discuss novel metrics which are representative of perfor-
mance and provide insights for further improvement.

– We propose a novel use case for the cycles-based method, the generation of synonyms.

As a result of this work, we release a modular and easily extensible software tool that can be used for practical
dictionary generation (see Section 7). Currently, it supports RDF and the original Apertium format, but it can be
easily extended to other communities and systems that need dictionary generation, simply by converting between
their format and the internal tabulator-separated value (TSV) format.

6https://github.com/facebookresearch/MUSE

https://github.com/facebookresearch/MUSE
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The remainder of this paper is organized as follows: First, related work is summarized in Section 2. Then, Sec-
tion 3 describes translation graphs, Section 4 describes the original cycle density algorithm [34], Section 5 describes
the optimized version of the algorithm described in this work, Section 6 analyses the roles and need of each hy-
perparameter, Section 7 describes the software implementation, Section 8 describes the experimental settings of the
study, novel evaluation metrics are proposed in Section 9, and the results are presented and discussed in Section 10.
Use cases are discussed in Section 11 and, finally, Section 12 presents some conclusions and future work.

2. Related work

The automatic generation of electronic bilingual dictionaries based on existing ones is not a new research topic.
Several approaches have been proposed over the last few decades. In this section we give an overview of the main
ones.

2.1. Pivot-based methods

The simplest approach is to assume that the translation relation is transitive. This method assumes the existence of
two bilingual dictionaries, one containing translations from language L1 to another language L2, and another from
L2 to L3. Language L2 acts as pivot language and a new set of translations from L1 to L3 is discovered through
direct transitivity. For instance in Fig. 2, the translations banc to panchina and panchina to banquillo contained in
a Catalan–Italian and Italian–Spanish dictionary, respectively, would lead to valid discovery of the translation banc
(Catalan) to banquillo (Spanish). This method, despite its simplicity, is still quite effective in a scenario in which
human supervision is assumed. Actually, this is the basis of the cross option provided in the Apertium framework
as part of the apertium-dixtools tool,7 which is used to cross two language pairs to generate a new language
pair [33].

However, the translation relation is not always transitive, as polysemy in the pivot language could lead to wrong
translations being inferred. For instance in Fig. 2, the Catalan (L2) noun banc is a translation of bank in English
(L1) in one sense (‘financial institution’), while it translates to panchina in Italian (L3) in another sense (‘bench’).
Clearly, Italian panchina is not a good translation for English bank, but simple transitive approaches will propose it.

In order to overcome this issue and identify incorrect translations when constructing bilingual dictionaries medi-
ated by a third language, Tanaka and Umemura [32] proposed in 1994 a method called one-time inverse consultation
(OTIC). In short, the idea of the OTIC method is, for each word w in L1, to assign a score to each candidate trans-
lation ti of w in L3 based on the overlap of pivot translations in L2 shared by both w and ti .

OTIC was later adapted for different purposes, such as the creation of multilingual lexicons from bilingual lists
of words [22]. While OTIC is intended for generic dictionaries, similar methods have been developed for generation
of domain-adapted bilingual dictionaries [18]. Other authors have enriched OTIC with the inclusion of semantic
features, such as Bond and Ogura [5] for the creation of a Japanese–Malay dictionary. Saralegi et al. [31] studied
how to use distributional semantics computed from comparable corpora to prune pivot-based translations.

2.2. Graph-based methods

The works referred so far illustrate techniques that take into account the existence of (at least) two language
pairs connected through a common pivot. However, when dictionaries can be connected in a richer way as part
of a larger graph, other algorithms based on graph exploration may come into play. That is the case, for instance,
of the CQC algorithm, developed by Flati and Navigli [7], which exploits the notion of cycles and quasi-cycles
(hence the acronym CQC) for the automated disambiguation of translations in a bilingual dictionary. Notice that,
unlike our approach, this method is not intended for dictionary building but for dictionary validation. Another
remarkable method based on graph exploration is the SenseUniformPaths algorithm proposed by Mausam et al. [25],
which relies on probabilistic methods to infer lexical translations. SenseUniformPaths was used in the generation

7https://wiki.apertium.org/wiki/Apertium-dixtools

https://wiki.apertium.org/wiki/Apertium-dixtools
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of PanDictionary [26], a massive translation graph built from 630 machine-readable dictionaries and Wiktionaries,8

which contain over 10 million words in different languages and 60 million translation pairs. The method applies
probabilistic sense matching to infer lexical translations between two languages that do not share a translation
dictionary. To that end, they define circuits (cycles with no repeated vertices), calculate scores for the different
translation paths, and prune those circuits that contain nodes that exhibit undesirable behaviour, called correlated
polysemy (see Section 4.1).

The SenseUniformPaths algorithm served as the basis for the cycle density method proposed by Villegas et al. [34]
that we explore and expand in this work. SenseUniformPaths also uses cycles to identify potential translation targets,
but the method by Villegas et al. differs in that it uses the graph density of cycles to rate the confidence value.
This cycle density algorithm does not need to identify ambiguous cycles, and is therefore computationally less
expensive. Moreover, SenseUniformPaths exploits dictionary senses, as found in resources such as Wiktionary while
the cycle density method can operate in dictionaries without such sense information, such as the Apertium bilingual
dictionaries, and therefore solves a harder problem.

2.3. Distributional semantics-based methods

Other methods have also been proposed that do not rely on graph exploration for bilingual lexicon induction,
but are based on distributional semantics. Initial approaches have been based on vector space models [30,35] or in
leveraging statistical similarities between two languages [9,16]. More recent approaches that exploit distributional
semantics rely on the inference and use of cross-lingual word embeddings. An initial contribution in that direction
was made by Mikolov et al. [29]. Methods using word embeddings to infer new dictionary entries require an initial
seed dictionary that is used to learn a linear transformation that maps the monolingual embeddings into a shared
cross-lingual space. Then, the resulting cross-lingual embeddings are used to induce the translations of words that
are missing in the seed dictionary [3].

Such ideas evolved and new embeddings-based methods appeared that did not need such initial training, such as
the work by Lample et al. [21], who propose a method to develop a bilingual dictionary between two languages
without the need of using parallel corpora. The method needs large monolingual corpora for the source and target
languages and leverages adversarial training to learn a linear mapping between the source and target spaces. The
software implementing the method and the ground-truth bilingual dictionaries used to test it are publicly available.9

We use these ground-truth dictionaries as part of our evaluation (Section 9.3).
Another remarkable method of this embeddings-based family of techniques was developed by Artetxe et al. [4].

In their work, instead of directly inducing a bilingual lexicon from cross-lingual embeddings as in [21], they use
the embeddings to build a phrase table, combine it with a language model, and use the resulting machine translation
system to generate a synthetic parallel corpus, from which the bilingual lexicon is extracted using statistical word-
alignment techniques.

In contrast to graph-based methods, the embeddings-based approaches still need large corpora to operate, which
limits, for example, their applicability for under-resourced languages. Moreover, they operate at the word represen-
tation level, and therefore do not take into account other lexical information such as the part of speech, which can
be essential to disambiguate the semantic sense of the word.

2.4. Systematic evaluation

The fact that inferring new translations is not a trivial problem has motivated the Translation Inference Across
Dictionaries (TIAD)10 periodic shared task, as a coherent experimental framework to enable reliable comparison
between methods and techniques for automatically generating new bilingual (and multilingual) dictionaries from
existing ones. A number of works, based on graph exploration, word embeddings, parallel corpora, etc. have par-
ticipated so far in the campaign to test their ideas, many of them preliminary and subject to continuous improve-
ment [12,19,27].

8http://wiktionary.org
9https://github.com/facebookresearch/MUSE
10https://tiad2021.unizar.es/

http://wiktionary.org
https://github.com/facebookresearch/MUSE
https://tiad2021.unizar.es/
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2.5. Comparison with OTIC

As the TIAD campaign has showed, the OTIC algorithm continues to be a powerful method for translation
inference, and it has proven to be very effective even in comparison with more contemporary methods [12,19].
However, OTIC needs a pivot language to operate, while cycle-based systems can discover translations between
more indirectly connected languages. For instance, out of 946 possible language pairs in Fig. 1, pivot-based methods
are applicable to 145 pairs which have a pivot, whereas the cycle density method that we study in this article can be
applied to any of the 414 connected pairs. As an example, OTIC cannot work for Sardinian (sc) – Galician (gl)
whereas the cycle-based method is able to infer translations between them. On the other hand, there can be less
connected parts of the graph where dense cycles are difficult to find, where OTIC performs better. For instance,
English (en) – Russian (ru) in the Apertium RDF.

Cycle-based methods can be used for additional tasks, such as synonym generation (see Section 11.2), which
OTIC is not able to address. Moreover, cycle-based procedures are more suitable for iterative dictionary enrichment,
as the produced translations for a target language pair (L1 → L2), once manually validated and integrated into the
ground-truth input sets, can help produce more cycles. However, for the OTIC algorithm, the pivot dictionaries
would also have to be enriched to be able to produce further entries. Lastly, the richer Apertium RDF gets in terms
of language pair connections and number of translations, the more capable the cycle-based algorithm becomes as it
can harness the entire graph, not just information from pivot dictionaries.

In parallel work, a recent contribution to TIAD [10] demonstrates that OTIC and the cycle density algorithm
can be combined into a generalized Augmented Cycle Density (ACD) framework that leverages their complemen-
tary advantages. Built on top of our released open-source tool and insights, ACD is a state-of-the-art procedure,
outperforming both the OTIC and cycle density algorithm individually. In particular, in the TIAD 2021 official eval-
uations,11 ACD achieved an average F1 score of 0.62 compared to OTIC’s 0.30 across 3 languages. Improvements
to the cycle density algorithm translate directly into increased performance of the ACD method. This reaffirms the
importance of gaining insights into the cycle density method as done in this article.

3. Translation graph

We define translation graph as an undirected graph G(V,E) where V and E denote the set of vertices and edges,
respectively. Each vertex v ∈ V represents a dictionary lexical entry defined by the tuple: 〈rep, lang, pos〉 where rep
is the written representation of its canonical form, lang is the language, and pos is the part of speech (POS). An edge
e(u, v) ∈ E indicates that the lexical entries u and v are connected through a translation relation, therefore sharing
at least one lexical sense. For simplicity, we will use word to refer to a lexical entry in the remainder of the paper,
which may also include multi-word expressions.

Note that G is initially populated using multiple bilingual dictionaries at once. Since the input translations (and
hence the graph edges) are between words of different languages (∀(u, v) ∈ E, u.lang �= v.lang), the graph is
K-partite, where K is the number of distinct languages in the input data.

In particular, we have used the latest version (v2.1) of the Apertium RDF graph as our initial translation graph.12

It contains 44 languages and 53 language pairs, with a total number of translations |E| = 1, 540, 996 and words
|V | = 1, 750, 917.

Our problem is now to enrich this initial graph G, that is, to infer edges that do not initially exist but define valid
translations.

11https://tiad2021.unizar.es/results.html
12The Apertium RDF data dumps, developed by Goethe University Frankfurt, are available in Zenodo through this URL: https://tinyurl.com/

apertiumrdfv2. More details on the generation of Apertium RDF v2 can be found at [11]. A stable version of Apertium RDF v2 will be uploaded
to http://linguistic.linkeddata.es/apertium/ and hosted by Universidad Politécnica de Madrid (UPM) as part of the Prêt-à-LLOD H2020 project.

https://tiad2021.unizar.es/results.html
https://tinyurl.com/apertiumrdfv2
https://tinyurl.com/apertiumrdfv2
http://linguistic.linkeddata.es/apertium/
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4. The original cycle density method

In this section, we describe with more detail the cycle density method developed by Villegas et al. [34], which we
base this work on.

4.1. Cycles in the translation graph

As mentioned in Section 2, the original algorithm relies on simple cycles instead of transitive chains, following
the idea of circuits introduced in [25]. A simple cycle is a sequence of vertices starting and ending in the same
vertex with no repetitions of vertices and edges. For ease of explanation, we will be referring to simple cycles as
just cycles.

For a sequence of words u1, u2 . . . un, u1 to be in a cycle while simultaneously containing a pair of words that are
not a valid translation, there needs to be a stronger condition than polysemy, which we will call correlated polysemy.
This means that two words in the cycle, say, vertices ui and uj (i < j without loss of generality) contain the same
distinct set of possible senses. This may lead to ui, ui+1 . . . uj and uj , uj+1 . . . un, u1, . . . ui being paths along two
different senses, but still completing a cycle. For instance, in Fig. 2, 〈banc, cat, noun〉 and 〈banco, glg, noun〉 share
the same 2 senses: ‘bench’ and ‘financial institution’. Thus, we get banc – panchina – banquillo – banco along the
sense ‘bench’, and banco – bank – banc along the sense ‘financial institution’. We want to ensure that words from
differing sense-paths such as bank and panchina/banquillo are not considered valid translation pairs, but this is not
trivial considering the source data does not carry any sense information.

4.2. Confidence metric: Cycle density

There can be multiple instances of correlated polysemy in a single cycle. In fact, considering that many language
pairs in Apertium are linguistically close, this is not unexpected. Therefore, approaches based on exploiting sparsely
inter-connected partitions of cycles may not be fruitful, as our experience has shown. Accordingly, we stick to using
cycle density as proposed in [34] as a metric to avoid invalid predictions due to correlated polysemy.

The density of a subgraph G′(V ′, E′) here is defined as 2|E′|
|V ′|(|V ′|−1)

, that is, as the ratio of the actual number of

edges |E′| to the number of edges |V ′|(|V ′|−1)
2 that would be found in a fully connected graph (or clique). Cycle

density is therefore the density of the subgraph induced by a cycle, that is, the subgraph made up of the vertices in
the cycle and the edges between them.

A higher density implies that the nodes in a cycle are closer to forming a clique. Therefore, intuitively, for high-
density cycles, completing the clique by predicting the pairs of words with no edge between them as possible
translations becomes a useful strategy, one which we adopt. In cases with correlated polysemy, subsets of vertices
corresponding to a different set of senses are unlikely to have any edges between them, leading to a lower cycle
density. In Fig. 2, there are 5 edges out of a possible 10, giving a density of 0.5. Thus, a density threshold higher
than 0.5 will prevent (〈bank, eng, noun〉, 〈panchina, ita, noun〉) being wrongly predicted as a translation based on
this cycle, despite correlated polysemy due to 〈banc, cat, noun〉 and 〈banco, glg, noun〉. Moreover, one would hope
to get valid new translations like (〈banc, cat, noun〉, 〈banquillo, spa, noun〉) through a different cycle.

4.3. Original algorithm

The algorithm outlined in [34] is summarized in the following lines. For each word w do the following:

1. Find the D-context of w, which is the subgraph GD(w)(VD(w),ED(w)) formed by vertices within a certain
distance D from W ; D is referred to as the context depth.

2. Find all cycles in GD(w) traversing w. Since there can be up to O(2|VD(w)|2) [1] such cycles, and even real
translation graphs are not sparse enough to compute them all, limit the cycle length to Lmax.

3. The confidence score of a translation from w to u not directly connected in the input data to w is the density
of the densest cycle containing both w and u.
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4. Impose further constraints on possible translations to improve empirical results such as (see Section 6.2 for
more detail):

(a) not allowing language repetition within a cycle, that is, one word per language only;
(b) ignoring cycles with size under a particular minimum length Dmin, which is chosen differently for small

and large GD(w);
(c) requiring a lower confidence score for target nodes u that have a higher degree than 2 in the subgraph

induced by the cycle.

5. Improving the efficiency of the cycle density method

In order to allow for application scenarios in which time performance is an important feature as well as to facilitate
scalability to larger graphs, our first modifications to the cycle density method were aimed at making computation
more efficient, without having any negative impact on the quality of the inferred translations.

Notice that the algorithm requires us to operate on cycles, and cycle-finding is essentially a bottleneck in terms of
computation time, even after having established a bound on the maximum cycle length. Optimizing cycle-finding is
essential for scaling to larger graphs, and also allows end users to make multiple runs with different hyperparameter
settings, which can be important for achieving optimal results on the languages or language pairs 13 that are of
interest to them.

The original implementation of the cycle density method14 computes and stores all cycles up to length Lmax by
trying all possible combinations of nodes. Then, it proceeds to filter these and calculate the metrics. This can clearly
be improved, as will be described in the following paragraphs.

5.1. Precomputing biconnected components

A biconnected graph is one in which no vertex exists such that removing it disconnects the graph. A biconnected
component is a maximal biconnected subgraph.15

Different biconnected components can only share cut vertices, that is, vertices whose removal renders the graph
disconnected. The decomposition of a graph G(V,E) to compute all its biconnected components can be done
through a well-known algorithm with a time complexity in O(|V | + |E|) by Hopcroft and Tarjan [15]. Consider the
following fundamental properties of a biconnected component:

Property 1. Consider any two vertices u, v in the same biconnected component. There must be at least one simple
cycle with vertices only in the biconnected component containing both u and v.

Proof. There must be at least two vertex-disjoint (apart from u and v) paths from u to v. Combining these 2 vertex-
disjoint paths would give a simple cycle, as the graph is undirected. Otherwise, if all paths from u to v within the
component have a common vertex w, removing w would disconnect u and v and this is not possible in a biconnected
component by definition.

Property 2. For every simple cycle C, there exists a biconnected component B such that ∀v ∈ V (C), v ∈ V (B)

where V (G) denotes the set of vertices of a graph G.

Proof. A simple cycle is in itself a biconnected graph. It must therefore be a subgraph of some biconnected compo-
nent.

13Generating dictionaries for particular language pairs is a popular instance of the more general dictionary enrichment problem.
14https://github.com/martavillegas/ApertiumRDF
15More generally, a k-connected graph is one which remains connected if fewer than k vertices are removed.

https://github.com/martavillegas/ApertiumRDF
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Table 1

For our lexicon-wide experiments, splitting into biconnected components reduces time by about a third on average compared to when we are
not. The development and large data sets contains 11 and 27 language pairs respectively (see details in Section 8)

Data set Computed on Time range (sec)

Development biconnected 10–15

entire graph 17–23

Large biconnected 22–57

entire graph 33–80

Table 2

Size of the entire graph (G) and largest biconnected component (Bmax) when using the 27-language-pair large set (see Section 8). Ignoring just
5,278 cross-POS translations almost halves the size of the largest biconnected component (a bottleneck in our procedure)

Case |V (G)| |E(G)| |V (Bmax)| |E(Bmax)|
All translations 704,284 774,986 84,088 188,116

No cross-POS 704,284 769,708 44,542 99,081

Table 3

Distribution of biconnected component size in the main graph containing 27 language pairs

Size 4–5 6–10 11–20 21–100 >100

# 7,193 5,520 1,847 262 7

Property 2 tells us that we can run the algorithm separately for each biconnected component without missing
any cycle, and consequently any translation. Property 1 shows us that biconnected components are in some sense
the minimal units such that decomposing them further would make us lose information. Finding all cycles takes
a number of operation which is exponential on the number of edges; therefore, by splitting a graph into smaller
subgraphs, we require much less computation. Mathematically, this follows from

∑
i (xi)

k � (
∑

i xi)
k (for x > 0

and k � 1), which comes from the multinomial theorem.
The empirical speed-up is demonstrated in Table 1. Note that the improvement on lexicon-wide experiments like

in Table 1 is partially shadowed by the cycle finding algorithm we use (see Section 5.3), which already implicitly
exploits the locality of the graph. The partition into biconnected components is more useful when searching for
translations of specific words instead of the entire vocabulary in one go. A lookup table file mapping words to
biconnected components can be maintained. This helps load only the biconnected components the word belongs to
instead of the entire graph, which cuts both computation time and memory requirements.

5.2. Filtering cross-part-of-speech translations

Although it is not frequent, there might be cases in RDF dictionaries in which translations connect words with
different POS. As shown in Table 2, by removing such cases, large biconnected components containing multiple
POS can be further split into smaller ones with just one POS. Our method takes that step in order to reduce run-time,
and to prevent potentially spurious inferred translations.

In Table 3 we present the distribution of number of biconnected components by size on our large set of 27
language pairs (see Section 8) after discarding the cross-POS translations.

While clearly most biconnected components are small, some are indeed quite large, which is evident from the
size of the largest one as shown in Table 2.

There are situations, however, where users might need to keep such cross-POS translations. For instance, in
Apertium one can find a translation of the English noun computer into the Spanish adjective informático. This allows
for rules, in a machine translation system, that may translate noun modifiers such as computer engineer as adjectives
to get fluent translations such as ingeniero informático by looking up these cross-POS entries in the dictionary. This
is especially important when the target languages do not have the same set of POS, requiring changes in POS during
translation. Therefore, any implementation of the method should make this filter optional.
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5.3. Backtracking search per source word

Within each biconnected component, we iterate over all words as the source word and repeat the following
procedure for finding possible target words: First, we find and store the context graph of depth D for word w,
GD(w) using breadth-first search. Then, we launch a backtracking search maintaining a stack to find relevant cycles,
using an algorithm originally described in [36]. While more efficient algorithms for generating cycles exist [17], the
chosen one has a good balance between ease of modification and time response (see Section 10).

6. Analysis of hyperparameters

The heuristic indicators used in the original cycle density method were derived empirically by studying small
parts of the RDF graph. Scaling to larger vocabulary-wide experiments requires generalizing these heuristics to
tunable hyperparameters. To that end, a deeper understanding of such hyperparameters is needed. Ideally, language
pair developers should be able to iteratively run the algorithm, verify and include the correct translations, and then
repeat the process on the updated, richer graph, getting new entries each time. This necessitates reducing the eight
distinct indicators proposed originally [34] and limiting the combinations that need to be tried to obtain optimal
results. Through our exploratory analysis of the hyperparameters we describe in this section, we reduce both runtime
and human effort.

6.1. Removed hyperparameters

After a careful analysis, we found that a number of heuristics and hyperparameters proposed in [34] were not
leading to better results, therefore we propose to discard them:

Language repetition: The intuition for removing cycles with language repetition as in [34] is that two words in
the same language are likely to not have the exact same set of semantic senses. Example: pupil in English can mean
the aperture of the iris, but will also come in cycles with student. This can become a breeding ground for correlated
polysemy, leading to incorrect translations. But allowing language repetition is necessary to generate synonyms (see
Section 11.2); this would necessitate making this optional by adding a binary hyperparameter.

Furthermore, we find that not allowing repetition reduces recall significantly, and the same higher precision can
instead be achieved by increasing the confidence threshold for a lesser loss in recall. Handling correlated polysemy
is exactly what measuring cycle density is aimed at, so it is a natural way to mitigate this issue. We therefore proceed
to remove this hyperparameter.

Minimum cycle length: Notice that cycle density as defined in Section 4.2 would favour shorter cycles, as the
denominator grows quadratically with cycle length. In particular, a 4-cycle without any other edges among its
vertices would have a density of 4

4(4−1)/2 = 2
3 , which would mean a good chance of being selected unless the

threshold is set very high. So essentially, being part of any 4-cycle (which can easily be 2 correlated polysemous
senses) ensures a that a pair of words becomes a predicted translation.

This is why the original algorithm [34] requires a minimum cycle length. In fact, they require different minimum
lengths for a large context and a small context because in relatively sparse areas of the graph, many cycles might be
small and yet correct. This leads to having three hyperparameters that require tuning: the minimum length in small
contexts, the minimum length in large contexts, and the threshold defining when a context becomes large.

However, we found that eliminating all three hyperparameters gives similar results on average, while simpli-
fying the pipeline significantly. Allowing small cycles allows more translations to be produced, as ignoring them
completely would also leave out the probably valid translations we could predict using the dense small cycles.

6.2. Used hyperparameters

Having eliminated four hyperparameters of the original cycle density method, we now justify why we need the
remaining ones and find the most suitable range of values for them.
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Maximum cycle length (Lmax): The cycle length was originally bounded above to reduce computation time. Our
large-scale experiments reveal that increasing cycle length beyond a certain threshold does not even help much,
because of two main reasons:

1. With increasing distance16 from the source vertex, the chances of sense shifting increase. Thus, larger cycles
have a higher chance of being polysemous.

2. Induced graphs of large cycles will probably have as subgraphs smaller cycles with higher density. These
smaller cycles get selected as the ones with the highest density for most pairs of words. This means allowing
larger cycles does not lead to the generation of many new translations.

The diminishing returns upon increasing context depth and maximum cycle length (see Table 6) also tell us that
while the cycle-density procedure in the worst case is exponential on the square of the number of vertices, computing
for small context subgraphs and considering only cycles of a small length suffices, which is tractable.

Context depth (D): Similarly to the cycle length, the original motivation for limiting context depth was to reduce
computation time. We find that increasing it beyond a certain threshold is not helpful because of the following
property:

Property 3. It is lossless to keep D � int(Lmax
2 ).

Proof. If cycle length is limited to Lmax, the maximum distance between any 2 vertices that share a common cycle
can be int(Lmax

2 ). Therefore, there will be no cycle containing both the source vertex and potential target vertices at

more than int(Lmax
2 ) distance. Therefore, having D > int(Lmax

2 ) leads to no new predictions.

This effectively sets an upper bound to the context depth based on the maximum cycle length. We recommend
using int(Lmax

2 ) as the value throughout experiments, as lowering it would lead to loss of information.

Target degree multiplier (M): Here, by the degree of a vertex, we refer to the number of edges from the vertex
within the subgraph induced by the cycle. Originally, in [34], a fixed lower (0.5 instead of 0.7) confidence threshold
(density) was required for cycles if the target word had degree > 2. We model this as a tunable hyperparameter: the
multiplier applied to the density of the given cycle when the degree of the target is > 2. This allows its effect to
scale relatively when changing the density thresholds used for final translation selection. But why is this multiplier
important in the first place? If the target word has only degree 2, it means that, apart from the two edges on its vertex
in the cycle itself, the target word is not connected to other words in the cycle. This points to a chance of the target
word not sharing a sense with a large part of the cycle (if it does, it can still be detected through a different cycle).

Transitivity (T ): While an essential premise to necessitate a cycle-based approach is that transitivity does not
always hold for translations due to polysemy, we realized that it can still perform well for non-polysemous cat-
egories of words.17 Specifically, we identify proper nouns and numerals as being largely non-polysemous. Both
categories are part of the LexInfo ontology,18 a catalogue of grammar categories used by the Apertium RDF. We
model transitivity as a ternary hyperparameter:

– T = 0: The default cycle density metric (no transitivity).
– T = 1: Transitive closure within biconnected components.19

– T = 2: Transitive closure up to the distance D (context depth).

Notice that tuning the context depth is only required for T = 2 as the other hyperparameters are irrelevant with that
method.

16Defined here as the length of the shortest path between two vertices.
17This is partly why we allow different hyperparameter settings for different POS.
18http://www.lexinfo.net/ontology/2.0/lexinfo
19Not used in this paper, it exists for ongoing exploration towards future work.

http://www.lexinfo.net/ontology/2.0/lexinfo
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Confidence threshold (C): For a given pair of words u, v, let Su,v be the set of all cycles that follow the constraints
set by the first 2 hyperparameters D and Lmax. For a cycle c ∈ Su,v , let dc be the density of its induced subgraph. Let
Mc be the target degree multiplier M if the condition for target degree multiplication is satisfied, and 1 otherwise.
We define the confidence score of a predicted translation between u and v as:

argmax
c∈Su,v

min(Mcdc, 1)

This effectively keeps the confidence score within the range [0, 1].
Note that we stick to only the cycle with the highest confidence. We prefer this over metrics that use aggregate

statistics over all the cycles containing the two words, such as the number of cycles or their average density. These
are more likely to be sensitive to some subgraphs or contexts being richer in the number of translations added during
creation, leading to superfluously better aggregates than others. The maximum is more robust to these differences,
as only one dense cycle is then sufficient.

For translations produced using transitivity (T = 1 and T = 2) instead of the cycle density method, we assign a
full confidence score of 1. This allows combining these methods so that they can be used for particular POS where
effective, leading to the generation of a unified set of possible translations with their confidence scores. We expect
the user to use transitivity only in cases where they are sure it is highly precise, considering the full confidence
assigned.

This motivates the final choice the user makes, the confidence threshold C. Generated translations above this
confidence threshold are all included in the final prediction set of the algorithm.

To conclude, we have a set of just four simple hyperparameters: context depth D, maximum cycle length Lmax,
target degree multiplier M , and transitivity T , with guidelines for their tuning based on insights described above.
This produces a set of possible translations along with their confidence scores, from which the user can select those
above a certain confidence threshold C, based on whether they want a large set or a highly precise one.

We have shown that a fixed value for context depth relative to the maximum cycle length is optimal in most
cases. Moreover, the procedure is not very sensitive to the target degree multiplier within a reasonable range of
[1, 1.5].20 From our tests, only proper nouns and numerals benefit from transitivity. Thus, when generating bilingual
dictionaries, only the maximum cycle length needs to be tuned in most cases, followed by trying different confidence
thresholds. This simplifies the experience for end users who may have to find values preferable to them for their
input datasets, and target language pair.

7. Implementation

We implemented the algorithmic pipeline in C++. Detailed instructions for usage are provided in our GitHub
repository.21 The pseudocode for our final algorithm is provided in Appendix 12. It has been simplified to convey
the core logic, for example, we omit describing the trivial transitive selection of translations which is a useful option
for some POS.

Using the command line options provided in our tool, translations can be generated for specific language pairs,
across all language pairs or for a single word. If the same language is specified in the pair, such as eng-eng, synonyms
are generated. Different configurations of the hyperparameters can be provided for each POS.

A simple format has been defined to represent the data of an input translation graph G(V,E). For every translation
e(s, t) ∈ E we represent the data in TSV format as:

(s.rep, s.pos, s.lang, t.rep, t.pos, t.lang).

20We still keep it as a hyperparameter as it can make the confidence score more reflective of the similarity, which might be important for some
use-cases.

21https://github.com/shash42/ApertiumBidixGen

https://github.com/shash42/ApertiumBidixGen
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Throughout our pipeline, wherever a language has to be specified, it is done with ISO-639-3 codes. We wrote parsers
that query RDF graphs for the required data using SPARQL or directly use Apertium bilingual dictionaries in their
XML format, converting them to our TSV format. Using such an intermediate TSV format allows to easily adapt
the system to different data formats, if needed. The final output TSV output can be converted to the user-desired
format.

8. Experimental setting

There are two main possible usage scenarios for the cycle density method: (i) generation of a new bilingual
dictionary from scratch for a new language pair, and (ii) enrichment of an already existing language pair. In order to
measure the effectiveness of the method in the first case, we remove one already existing language pair (dictionary)
from the graph, try to re-create it with the algorithm, and then compare the result with the removed dictionary. In the
second case, entirely new translations are created, which are more difficult to evaluate automatically. Nevertheless,
to provide a quality indication, we propose the use of external bilingual dictionaries that are not part of the Apertium
graph as well as a human evaluation.

8.1. Datasets

For initial experimentation with metrics and hyperparameter tuning, we picked a development set of 11 language
pairs across 6 languages: English, Catalan, Spanish, Esperanto, French, and Occitan (see Fig. 3). We leave out each
language pair and use the remaining 10 to re-generate it. This allows us to measure average metrics across the 11
language pairs.

Since one of our goals in this research is to scale up the initial cycle density algorithm, it is important to validate
that the method performs well even when more language pairs come into play. To that end, we define what we call the
large evaluation set, by taking all 27 language pairs across the 13 languages which constitute the largest biconnected
component in the RDF language graph (see Fig. 4).22 These languages are: Aragonese, Basque, Catalan, English,
Esperanto, French, Galician, Italian, Occitan, Portuguese, Romanian, Sardinian and Spanish.

We use the same leaving-one-pair-out experiment as the development set in this new setting, reporting average
metrics across the 27 language pairs.

In general, if a user wants to predict translations for a target language pair (L1, L2), using all language pairs in
the biconnected component containing both L1 and L2 is a good strategy. However, if L1 and L2 do not belong
to a common biconnected component, then pivot-based methods like OTIC should be preferred over cycle-based
procedures. This is because less cycles between words in L1 and L2 will be found, and those that are will rely
strongly on having multiple words from X, Y or intermediate languages. As discussed earlier, this can lead to
higher polysemy and hence lower quality predictions.

Fig. 3. Fragment of the Apertium RDF graph taken as development set, containing 6 languages and 11 language pairs.

22Notice that, although loosely related to the notion of training, development and test sets in machine learning, the purpose of creating our
development and large sets is slightly different, being targeted towards confirming scalability. The hyperparameters will ultimately be manually
tuned by the users to adapt the system to their particular needs.
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Fig. 4. Languages in the largest biconnected component in the Apertium RDF graph. It contains 13 languages and 27 language pairs.

8.2. Hyperparameter settings

After experimenting with the development set, the final hyperparameter setting, used across the rest of the eval-
uation, is the following (unless otherwise specified): transitive closure (T = 2) with D = 4 for proper nouns and
numerals; and T = 0, D = 3, Lmax = 6, M = 1.4, C = 0.5 for other POS. See Section 10.1 for more details on
the hyperparameter selection process.

8.3. Baseline

As mentioned earlier, one of the main usage scenarios of the cycle density algorithm is the generation of new
bilingual dictionaries for the Apertium framework. The idea is to substitute the cross option provided as part of
the apertium-dixtools in Apertium (see Section 2) which relies on transitive inference [33]. Therefore, we
introduce in our experiments an explicit comparison with a method that is purely based on transitivity, which we
emulate by running our system with two sets of hyperparameters: T = 2 and D = 2 (baseline 1) and T = 2 and
D = 4 (baseline 2). The latter is expected to produce a higher number of candidate translations since it will traverse
more vertices in the graph.

8.4. External dictionaries

In order to validate the enrichment of translations in already existent language pairs, we use the MUSE ground
truth dictionaries23 as an additional corpus. MUSE dictionaries, while rich in nouns, verbs, adjectives, adverbs
and numerals, have almost no proper nouns. We thus stick to translations in these five POS categories for our
experiments. There are five MUSE dictionaries that are common to our large set: English–Catalan, English–Spanish,
French–Spanish, Spanish–Italian, Spanish–Portuguese, which we use for our experiments.

9. Evaluation

When evaluating procedures aimed at generation, a fundamental problem arises when an exhaustive ground-truth
set is not available. Having an exhaustive set of translations turns out to be particularly hard because languages keep
evolving. Today’s complete set will become incomplete soon, as the vocabulary of the languages grow. Moreover,
many languages are low-resourced, and obtaining sets with high coverage itself is a difficult task.

While the in-production Apertium language pairs are large enough to be useful for a machine translation engine,
their coverage can clearly be increased. In the forthcoming discussion, we assume that while available evaluation
sets may reasonably be considered to have 100% precision (ground truth),24 they do not carry all possible valid
translations. Moreover, it is even difficult to estimate the total number of valid translations.

23https://github.com/facebookresearch/MUSE
24Apertium dictionaries (and hence the derived RDF dictionaries) do have some translations that may not be considered “correct”, so they are

not 100% precise as assumed, but such errors are limited in number and do not affect evaluation significantly.

https://github.com/facebookresearch/MUSE
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9.1. Notation

We begin by defining some notation we will use throughout the following sections.

– I denotes the input translation graph, which could include multiple bilingual dictionaries.
– P denotes the translation graph containing the predictions (output) of the algorithm. In our experiments, we

generate a single language pair, and hence P can be considered the graph of the predicted target language pair.
– L1 and L2 denote the languages in the target language pair.
– T denotes the translation graph of the chosen test dictionary for evaluation. This is the left-out RDF dictionary

for pair L1 − L2,
– A denotes the hypothetical complete set of valid translations for language L1 − L2. As mentioned before,

neither A nor |A| are known.
– V (X) (resp. E(X)) denotes the set of vertices (resp. edges) of a translation graph X.
– v1(e) (resp. v2(e)) denotes the vertex of edge e belonging to language L1 (resp. L2).
– BWA(B) where A and B are translation graphs denotes those translations (edges) in B for which both words

involved exist in A.

9.2. Metrics for automatic evaluation

The unavailability of a complete test dictionary makes it difficult to measure traditional metrics like precision
( |E(P )∩E(T )|

|E(P )| ) and recall ( |E(T )∩E(P )|
|E(T )| ). One might ask: is a translation produced by the algorithm that is not found

in the test dictionary incorrect, or is it correct but missing from the test dictionary? Should the algorithm really
be penalized for one of its main tasks, namely dictionary enrichment, generating valid translations that humans
might have overlooked? The unequivocal answer to that should be no, and yet precision and recall as defined here
(which we will call vanilla precision and recall in the remainder of this paper) do penalize the algorithm for this.
For instance, an algorithm which covers, say, 90 of 100 test dictionary translations would end up being considered
better (precision 0.9, recall 0.9) than one producing not only those 90, but 30 additional correct ones not in the test
dictionary (precision: 0.75, recall: 0.9). Indeed, the precision only goes down with additional translations (which
are all considered wrong in the vanilla precision formula). Clearly, using these vanilla metrics would move our
algorithms away from the goal of enrichment.

9.2.1. Both-Word Precision (BWP)
It is clear that the precision computed using any T is a lower-bound on the actual precision of the algorithm, as

T ⊂ A. But this lower-bound can be arbitrarily loose, depending on both |T | and how close the distributions of
translations in T and P are. We have no strategic incentive to make P imitate T , as translations in T , even if chosen
to be the most frequently used ones, may still be insufficient to obtain good text coverage, which could improve
with new correct translations from A \ T . Therefore, can we come up with a metric more independent of T ?

A predicted translation e ∈ E(P ) which is not in E(T ) can be classified as belonging to one of four categories:

1. v1(e) ∈ V (T ) and v2(e) ∈ V (T ), that is, both words are in the test dictionary.
2. v1(e) ∈ V (T ) and v2(e) /∈ V (T ), that is, the word in L1 is in the evaluation set, but its proposed translation in

L2 is not.
3. v1(e) /∈ V (T ) and v2(e) ∈ V (T ), that is, the word in L2 is in the evaluation set, but its proposed translation in

L1 is not.
4. v1(e) /∈ V (T ) and v2(e) /∈ V (T ), that is, neither word is in the evaluation set.

Categories 2–4 point to a clear insufficiency in the test dictionary itself. Our algorithm cannot come up with words
on its own, as any word in the output must belong to some input dictionary of that language (that is, ∀v ∈ V (P ), v ∈
V (I)), and hence the word is a valid part of that language.

Therefore, we propose measuring precision only among those predicted translations for which both words are
in the test dictionary. We define this as both-word precision BWP = |BWT (P )∩E(T )|

|BWT (P )| . 25 While it is theoretically

25See Fig. 8 and the corresponding discussion for a visual understanding of this metric, and the above categories.
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possible that the distribution of inaccuracies in BWT (P ) may not be an accurate representation of the entire set of
predictions in some combination of input and test dictionaries, it is a necessary approximation.

Note that if the test dictionary has both words but no edge between them, this could still be due to oversight
by the creators. The computed BWP is again a lower-bound for the actual BWP. Using a larger test dictionary T ′
such that T ⊂ T ′ would never decrease BWP, and possibly increase it. However, this is definitely tighter than the
original precision as now at least the test dictionary is aware of the existence of these words, and perhaps the creators
deliberately left out the translation because of being wrong. To conclude, we propose BWP as a heuristic indicator
for the actual precision, assuming that:

|BWT (P ) ∩ E(T )|
|BWT (P )| ≈ |E(P ) ∩ E(A)|

|E(P )| .

It clearly holds as an equality in the limiting case of T = A, as then BWA(P ) = E(P ) because A contains all
words, being exhaustive.

9.2.2. Both-Word Recall (BWR)
Achieving a high precision often entails that the prediction set produced has less coverage and hence low recall.

However, this could be due to insufficient input data or misalignment between the distributions of the input set and
the test dictionary. It can thus be useful to normalize by how much of the test dictionary can possibly be generated
using a given input set by a hypothetically perfect algorithm. Specifically, if for e ∈ T , v1(e) /∈ I or v2(e) /∈ I ,
there is no way any algorithm could predict e as a valid translation, as it would be completely unaware about the
existence of at least one of those two words.

It can thus be useful to limit our evaluation set to those translations for which both words are in the input set.
Therefore, we define both-word recall (BWR) as |BWI (T )∩E(P )|

|BWI (T )| and use it as an indicator. An auxiliary benefit of this
metric is that we can now gain insights on how performance can be improved further by comparing it to traditional
recall. Specifically, a recall significantly lower than BWR signals that the input data is inappropriate to cover the
test dictionary. If the BWR itself is low, the algorithm is too conservative in predicting translations. In this way, we
decouple input data insufficiency from algorithmic incapability.

Moreover, in our experiments, I consists of other RDF dictionaries. These dictionaries are likely to contain the
frequently used words, and evaluation set translations which do not have the corresponding words in the input graphs
are probably among less frequent, specific words. Thus, BWR can in some tasks be a measure of how much of the
important part of the left-out language pair we cover.

We would like to note that the BWR metric, while good at evaluating different modifications to the same algo-
rithmic pipeline (such as different hyperparameter settings), should be used carefully when comparing two methods
that use different input datasets. This is because BWI (T ) is by definition a function of I , the input data. BWR can
directly only be used to compare the data-effectiveness of the algorithms, i.e. how large a prediction set do they
produce considering the input provided.

9.3. Measuring dictionary enrichment with external data

While external corpora can be used for evaluating additional translations, they often have significantly different
properties from the input and target sets. This can lead to erroneous conclusions due to noisy results.

However, evaluating against additional data is particularly important in the context of this paper for the following
reasons:

– It is a direct accuracy indicator on the task of enrichment.
– It can also verify how tight the lower bounds that BWP provides are, as well as whether BWP is a good

substitute for precision.
– For the case of recall, while computing it against completely new data is generally not a good idea, we can ver-

ify that the BWR metric is much more robust to dataset distribution differences than vanilla recall by computing
both on this new test set.

We use the MUSE dictionaries (see Section 8.4) to evaluate the quality of additional translations.
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9.4. Measuring dictionary enrichment with human assessment

As a final sanity check of our additional entries, we took random samples of 150 predicted dictionary entries that
were not present in the test set T . These belonged to open POS categories, that is, nouns, adjectives, adverbs, verbs
and proper nouns, and also numerals. This was done directly using Apertium bilingual dictionaries as input data
with a rather liberal (recall-oriented) set of hyperparameters: T = 0, D = 4, Lmax = 8, M = 1.4, C = 0.1. for five
different language pairs (Spanish–English, Spanish–Catalan, French–Occitan, Esperanto–English, French–Catalan).
We asked bilingual experts to evaluate them, obtaining a sort of gold standard for each language pair.26

As these sets were produced with a different version of the data and hyperparameters, we took an intersection
between these sets and the additional translations produced by a different setting that need to be evaluated. While
this is not directly a random sample of the additional translations, it is a good approximation.

10. Results and discussion

In this section we show and discuss the experimental results of our evaluation. For the sake of brevity, we show
here an aggregated view of the results, but we make all the experimental data available online to allow further
inspection.27

In the following discussion, we define relative size as |E(P )|
|E(T )| . This metric puts the actual size of the prediction set

in context, comparing with the left-out evaluation set.28

Furthermore, we use the BWP and vanilla recall metric for computing F -scores. We prefer BWP over precision
as it is far more indicative, and the vanilla precision metric is noisy as shown in Table 5. We have to choose vanilla
recall over BWR, as recall uses the same target set (E(T )) as BWP, whereas BWR picks a subset of the target set
(BWI (T )). This is important as F -score is also used to compare algorithms, which may use a different input set (I ).
Thus, we define F1 score as the harmonic mean between BWP and vanilla recall. Note that the F1 score reported in
this section is the macro-average of the individual F1 scores over all language pairs tested.

We begin by showing our optimal results on the development set in Table 10 (first row). Each metric is averaged
across the 11 language pairs. The computation time differs for each language pair to be generated, so we report the
range (minimum–maximum).

Notice the significant gap between BWR and recall, showing the scope for improvement in the algorithm’s results
if the input RDF graph is enriched. Since our procedure itself can iteratively aid such enrichment, we hope that in the
future this gap will be bridged. Moreover, the BWP is much larger than the precision, which shows that evaluation
schemes based on precision could be grossly underestimating the performance of algorithms on this task, when the
actual insufficiency is in the test data.

We also report statistics in Table 4 for the 9 most frequent POS. The other POS have a too small number of
translations to give reliable results.

Table 4 shows that the transitive closure adopted produces much more translations of proper nouns and numerals
than the existing Apertium dictionaries. Yet, the BWP in Fig. 5 is quite high for proper nouns, and decent for
numerals. Moreover, our procedure has high precision for open POS, and less for closed POS. This is because
the translations of closed POS in Apertium often encode grammatical changes which are context specific and not

Table 4

Relative size for different parts of speech, averaged across the language pairs in the development set

POS Noun Verb Proper noun Adjective Adverb Determiner Numeral Pronoun Preposition

Rel. Sz. 55.04% 57.03% 497.99% 43.44% 43.22% 45.65% 211.28% 59.25% 74.27%

26We had 3 evaluators for the first 3 language pairs, so we consolidated their differences using a simple majority vote to produce the gold
standard. For the last two we had a single evaluator whose results became the gold standard.

27See https://github.com/shash42/ApertiumBidixGen.
28This can be larger than 100% if the prediction set is larger than the evaluation set.

https://github.com/shash42/ApertiumBidixGen
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Fig. 5. Breakdown by POS of BWP (left bars) and BWR (right bars), averaged across language pairs in the development set.

Table 5

Change in results when varying the confidence threshold

C BWP Prec. BWR Recall F1

0.4 81.60% 46.36% 52.11% 29.96% 50.86%

0.5 85.00% 48.37% 50.96% 29.32% 50.93%

0.6 86.39% 48.93% 48.68% 27.94% 50.25%

0.7 87.80% 48.55% 42.24% 24.19% 47.35%

0.8 89.52% 48.40% 37.98% 21.69% 45.24%

semantic equivalencies. Thus, when such closed POS translations are leveraged to produce new ones in our system,
the results are less likely to be correct than open POS. It might still be helpful to use more restrictive hyperparameters
or a higher confidence threshold when producing translations of closed POS.

10.1. Demonstrating hyperparameter changes

Table 5 shows how decreasing the confidence threshold C while holding all hyperparameters constant leads to
lower BWP and higher BWR, recall and prediction set size as expected. The end user can tune this precision-recall
tradeoff to their liking (see Section 11.1 for a discussion in the context of Apertium), but we stick to maximizing the
F1. Notice, however, the noisy trend in vanilla precision, which points to how it is not a reflective metric in many
cases.

Table 6 shows that increasing the maximum allowed cycle length keeping all else constant leads to decreasing
BWP, but increasing BWR, recall and time. We see diminishing returns in the F1 score beyond cycle length 6, as
expected.

Next, Table 7 shows the comparison for proper nouns and numerals between using the hyperparameter setting
used for other POS and the chosen T = 2, D = 4 one. Clearly, we achieve much higher BWR, and recall on using
transitivity, with lower but decent enough BWP. Particularly, the high BWR shows that this method generates a large
portion of the target set that it possibly could have with the given input data.
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Table 6

Change in results when varying the maximum cycle length

Lmax BWP BWR Recall F1 Time (s)

4 89.53% 30.50% 15.94% 30.24% 7–9

5 86.69% 49.39% 28.33% 50.43% 8–10

6 85.00% 50.96% 29.32% 50.93% 10–15

7 81.96% 51.56% 29.66% 50.31% 15–22

8 76.67% 52.35% 30.12% 47.92% 30–50

Table 7

Benefit from using transitivity for proper nouns and numerals

POS T BWP BWR Recall

Proper nouns 0 98.47% 24.75% 11.95%

2 91.81% 78.11% 32.81%

Numerals 0 97.66% 55.64% 35.22%

2 77.17% 90.55% 61.27%

Table 8

Average metrics across 11 language pairs in the dev. Set when using T = 2, D = 4 for all POS

BWP BWR Recall Rel. Sz. F1

15.26% 81.11% 46.81% 718.75% 23.94%

Table 9

Average metrics across 11 language pairs when not allowing language repetition compared to when it is allowed

Repetition BWP BWR Recall Rel. Sz. F1

Allowed 85.00% 50.96% 29.32% 75.73% 50.93%

Restricted 86.89% 46.81% 28.49% 73.03% 49.45%

To demonstrate the extent of polysemy in the RDF Graph, we use the T = 2, D = 4 transitive setting for all POS.
The dismal results produced are shown in Table 8. Despite the extremely large prediction set produced, vanilla recall
remains low. This illustrates a limitation of vanilla recall: it gives a pessimistic view of the algorithm performance.
In that sense, BWR is more reflective of the actual performance, given the data provided.

Finally, we show in Table 9 that allowing language repetition actually improves performance, which led us to
removing the hyperparameter.

10.2. Dictionary generation

In Table 10 we present the results of transferring the same hyperparameter setting derived in our development set
to our large set, continuing the dictionary generation experiment but with a larger graph. It takes longer to run, but
still within one minute for all language pairs. Once again, the accuracy metrics reported are averaged across the 27
language pairs that are left-out one by one.

The drop in the metrics on the large set compared to the development set is not necessarily a sign of overfitting.
The large set has more less-connected, under-resourced language pairs, which bring down the averages.

In Table 11, we demonstrate a significant gain in relative size across POS when using the large set compared to
Table 4 when using the development set. Similar trends are observed for BWR in Fig. 7. In Fig. 6 we show the
variation in the metrics across the 27 languages in the large set. While a high BWP is maintained across all language
pairs, the prediction set size varies greatly based on the richness of Apertium RDF entries in the input. Some of the
language pairs with the lowest number of translations produced are: por–glg (6,044), spa–por (10,176), eus–spa
(12,243). On the other hand, language pairs with the highest number of translations produced are: spa–cat (50,145),
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Table 10

Results of the cycle density algorithm on average metrics in the development and large sets

BWP BWR Recall Rel. Sz. F1 Time range (sec)

dev set 85.00% 50.96% 29.32% 75.73% 50.93% 10–15

large set 84.07% 40.98% 25.95% 71.39% 35.90% 22–57

Table 11

Relative size for different POS, averaged across the 27 language pairs in the large set

POS Noun Verb Proper noun Adjective Adverb Determiner Numeral Pronoun Preposition

Rel. size 70.78% 81.75% 539.29% 59.39% 61.99% 53.48% 241.53% 80.32% 107.10%

Fig. 6. Boxplot showing, left to right: BWP, recall, F1, and relative size across 27 languages being generated from scratch in the large set.

Table 12

Comparing the baselines 1 and 2 (D = 2 and D = 4 respectively) and cycle density algorithm. Metrics have been averaged across the large set
for all the language pairs

BWP BWR Recall Rel. size F1

Cycle density 84% 41% 26% 71% 36%

Baseline 1 55% 85% 56% 237% 42%

Baseline 2 13% 88% 57% 1038% 19%

eng–cat (52,323), fra-cat (68,087). This is consistent with Catalan (cat) having some of the largest dictionaries in
the Apertium RDF, whereas Portuguese (por) and Basque (eus) ones are much smaller.

We show a comparison between the cycle density algorithm and the transitive baselines in Table 12. We see that
transitive closure tends to increase relative coverage and recall, but at the cost of a much lower precision (55% and
13% for the respective baselines vs. 84% for cycle density). Depending on the use case, a balance towards recall
might be acceptable, but usually a decent level of precision is important, which the transitive procedures do not
provide. As expected, baseline 2 produces many more candidate translations, leading to a much larger prediction set
but dropping precision significantly.

In order to measure the impact of enriching the input graph towards improving results, in Table 13 we also
restrict the averaged metrics to the 11 development set language pairs, still using the whole large set as input. There
is a significant improvement in comparison with the original development set experiments (see Table 10). This
demonstrates the advantages of adding more input data. Notice how in this scenario, due to the fact that language
pairs are more connected, the cycle density algorithm beats the transitive baselines in terms of the F1-score as well.
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Fig. 7. Breakdown by POS of BWP (left bars) and BWR (right bars), averaged across language pairs in the large set.

Table 13

Comparing the baselines 1 and 2 (D = 2 and D = 4 respectively) and cycle density algorithm. Metric have been averaged for the 11 pairs in the
development set using the other 26 languages in the large set as input

BWP BWR Recall Rel. size F1

Cycle density 81% 56% 36% 94% 51%

Baseline 1 48% 81% 53% 267% 44%

Baseline 2 11% 83% 54% 1176% 17%

In conclusion, our produced translations are on average 71.39% the size of existing Apertium dictionaries at a
high BWP of 84.07% across 27 language pairs over 13 languages.

10.3. Dictionary enrichment

The coloured bar graph in Fig. 8 shows statistics about the predicted translations in P that match the test set T

and contrasts it with those that do not match, which are further classified. These are average metrics reported over
the 27 language pairs in the large set.

In particular, it classifies the additional translations in P (the left bar) in terms of how many words they have
in common with the original Apertium dictionary used as a test set, T , and classifies the missed translations (the
right bar) of T in terms of how many words they have in common with the input set I . This also provides a way to
visualize the BWP and BWR metrics defined in Sections 9.2.1 and 9.2.2 respectively. From bottom to top, the BWP
(resp. BWR) is the ratio of the height of the lowest sub-bar to the combined height of the lowest two sub-bars in the
left (resp. right) bars.

As has been said, Fig. 8 shows the ratios of different additional (resp. missed) translations based on the words
shared with the target original Apertium dictionaries used as test set T (resp. input Apertium dictionaries I ) in the
left (resp. right) bar of each POS. Almost 30% of predicted translations have neither word in the test set. This is
particularly high due to the large relative size in proper nouns and numerals and demonstrates the incompleteness
of original Apertium dictionaries, which implies there is a vast scope for enrichment. On the other hand, while the
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Fig. 8. Breakdown of the match between the predicted set P , the original test s, and the input set I . For all word classes (overall) and for words
in each lexical category, each left bar is divided from bottom to top, to show overall precision (predicted word correspondences in P which are
in the original apertium dictionary used as test set T ), and then the percentages of additional predicted word correspondences with both words
in the test set (both with original), with the left word in the test set (left with original), with the right word in the test set (right with original),
and with neither word in the test set (neither with original). Also for all word classes (overall) and for words in each lexical category, each right
bar is divided also from bottom to top, to show overall recall (word correspondences in the test set T which are in the predicted set P ), and then
the percentages of missed word correspondences in the test set T with both words in the input set I (both with input), with the left word in the
input set (left in input), with the right word in the input set (right in input), and with neither word in the input set (neither in input). Refer to the
discussion in Sections 10.3 and 9.2.

number of missed translations with neither word in the input data is just 10%, for over 30% of test set translations
only one word is present in the input data. This demonstrates the scope for improving the algorithm’s recall by
improving the coverage of the input data for specific languages. A similar analysis can be done on a more fine-
grained level for each POS.

We now evaluate the additional translations for the 5 language pairs also present in MUSE (see Section 8.4). In
Table 14, we calculate the overall BWP of our additional translation set with MUSE as test set. We further show
the breakdown of the additional translations in terms of number of words shared with our original test set, that
is, the left-out RDF dictionary. Particularly, nextra(i) denotes the number of additional translations with i words
shared. BWPextra(i) denotes the BWP with respect to MUSE for these nextra(i) translations. Notice the declining
trend of BWP with the increase in shared words with the test set. This confirms our hypothesis that many additional
translations are actually correct, and if both words are present in the test set without a translation between them,
the prediction is much less likely to be correct. This shows that BWP with respect to the test set is indeed a tight
approximation, and a much more useful metric than vanilla precision. These results also show that our method
produces a decent number of additional translations for many language pairs, with especially encouraging results
for French–Spanish. Note that the BWP for these additional translations reported using MUSE would again be a
lower bound, and many of those not counted could possibly be correct, just not present in MUSE.

Table 15 shows a comparison between BWR and recall with MUSE as the test set (T ) using the algorithm’s output
prediction sets (P ) when given the large set as input (I ). While the recall is dismal, the BWR is much higher, in
fact somewhat similar to the BWR on the actual test sets in the large experiments, when we evaluate on the left-out
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Table 14

BWP for different classes of additional translations based on words shared with original test set evaluated using MUSE

Lang. pair BWP nextra(0) BWPextra(0) nextra(1) BWPextra(1) nextra(2) BWPextra(2)

eng–cat 15.57% 156 80.00% 978 41.99% 2268 6.90%

eng–spa 35.64% 315 94.02% 575 51.89% 374 17.78%

fra–spa 65.97% 2218 94.94% 239 39.83% 105 11.08%

spa–ita 37.88% 108 76.05% 53 32.31% 47 19.34%

spa–por 54.72% 353 78.97% 131 38.98% 31 19.62%

Table 15

Recall vs. BWR when comparing predictions using the large set with MUSE dictionaries

Lang. pair Recall BWR

eng–spa 7.05% 53.24%

eng–cat 8.84% 49.81%

epo–eng 8.76% 59.69%

fra–cat 0.97% 7.94%

oci–fra 2.63% 23.51%

Table 16

Accuracy of additional translations based on human evaluation

Lang. pair Sample size Precision

eng–spa 133 78.94%

eng–cat 67 77.61%

epo–eng 146 80.13%

fra–cat 130 69.23%

oci–fra 134 84.32%

dictionary instead of MUSE. This shows that the BWR is relatively insensitive to the dataset distributions and thus
a robust metric for evaluation.

Finally, we report accuracy for the additional translations predicted during the large experiment on the human
evaluation sets in Table 16. The precision obtained is encouraging, confirming that our procedure works well for
enrichment. Note that the varying sample size is due to the dataset difference and intersection taken explained in
Section 9.4.29

10.4. Recommending the use of BWP and BWR

BWR should be used as a valuable test metric when the same input dataset is used, particularly by creators when
tuning and improving a particular algorithm. It also signifies the data-effectiveness of any proposed algorithm. It
gives a clear picture of the optimization landscape, growing more consistently than recall as the prediction set
becomes more liberal, as shown in Table 8.

BWP can be used for comparison across systems to make evaluation of translation inference pipelines more
accurate. A natural usage scenario for this metric is the TIAD shared task. In particular, the evaluation procedure
in TIAD (until the 2020 edition) modified traditional precision metrics in the same direction as in this paper by
limiting the output set for precision to translations for which the word in the source language is in the evaluation
set. This is somewhat what we could call one-word-precision, but the key drawback is that it is asymmetric. The
precision computed for language pair A → B can be different from language pair B → A, even though the choice

29The small sample for eng–cat is potentially due to some substantial difference in the Apertium bilingual dictionaries and the Apertium
RDF version we use, analysing which is beyond the scope of this paper.
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of source and target is actually arbitrary. Moreover, as shown in Table 14, additional translations missed by one-
word-precision are correct far more often than those missed by BWP. In fact, past TIAD results show relatively
low precision values (up to a maximum of 0.7) [19], making bilingual dictionary inference seem a harder problem
than it actually is. This is unlike our symmetric definition, which makes the evaluation process simpler and directly
conveys an indicator of the performance of the algorithm that is independent of the setting.

11. Use cases

In this section we give more details on the application of the cycle density algorithm to support generation and
enrichment of dictionaries in the Apertium framework, and introduce another use case, which is the discovery of
synonym words in the same language.

11.1. Apertium

As mentioned above, Apertium30 [8] is a free/open-source rule-based machine translation system; that is, the
information it needs to translate from one language to another is provided in the form of dictionaries and rule sets.
Bilingual dictionaries are, therefore, a key component of the data used for a language pair. Apertium language data
is all released using the GNU General Public Licence,31 a free/open-source licence. This has, in particular, made
it easy for derivatives of Apertium bilingual dictionaries to be published such as lexical-markup framework (LMF)
dictionaries,32 and the RDF dictionaries mentioned in this paper [11,13]. Methods like ours can be used to extend
or create Apertium bilingual dictionaries.

It has to be noted though that the LMF and RDF dictionaries do not contain all the information present in the
Apertium bilingual dictionaries, but just the orthographic representation (spelling) of the lemma and the POS;
Apertium dictionaries may contain additional information, for instance, to inform of the fact that the gender of
a word changes (so that, for instance, target-side gender agreement with adjectives is ensured by an appropriate
rule), as in this Spanish–Catalan entry,

<e a="gema">
<p>

<l>almohada<s n="n"/><s n="f"/></l>
<r>coixí<s n="n"/><s n="m"/></r>

</p>
</e>

where in addition of the fact that the Spanish (left, l) lemma almohada (‘pillow’) is a noun (n) corresponding to
the Catalan (right, r) lemma coixí with the same part of speech, the entry also encodes the fact that almohada is
a feminine (f) noun and coixí is a masculine (m) noun. In entries where the gender does not change, this is usually
not indicated. Therefore, some of the bilingual correspondences predicted by our tool in its current form may need
to be completed after being validated by an Apertium expert. Work is in progress to add this information to the
RDF graphs and to improve the method described here to be able to transfer morphological information to predicted
entries directly.

When Apertium experts process each predicted dictionary entry, they first validate its usefulness and then either
discard it or adopt it, perhaps adapting it by inserting additional information (like gender), before adding it to the
dictionary. The actual time required to do these operations may be used to inform the weight β that should be
given to recall in an Fβ indicator, which can in turn be used to determine the confidence threshold. On one hand, if
validating and discarding is much faster than validating, adopting and adapting, perhaps one could sacrifice precision

30http://www.apertium.org
31Versions 2 (https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html) and 3 (https://www.gnu.org/licenses/gpl-3.0-standalone.

html).
32Such as the LMF Apertium dictionaries in https://repositori.upf.edu/handle/10230/13034 and https://github.com/apertium-lmf.

http://www.apertium.org
https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
https://www.gnu.org/licenses/gpl-3.0-standalone.html
https://www.gnu.org/licenses/gpl-3.0-standalone.html
https://repositori.upf.edu/handle/10230/13034
https://github.com/apertium-lmf
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Table 17

Human evaluation of predicted synonym pairs. κ denotes the Cohen Kappa as a measure of inter-annotator agreement between the 2 annotators
for each language

Language Prediction set (# pairs) Precision κ

English 9,652 76% 0.4291

Spanish 7,664 88.66% 0.5574

Catalan 10,254 87.33% 0.1581

to improve recall, selecting a higher value for β.33 On the other hand, having to discard a deluge of useless entries
may have a fatigue effect that reduces the expert’s productivity, so β cannot be too high either. Determining an
optimal value of β would require extensive measuring of actual expert work, which has not been attempted so far in
the literature.

11.2. Discovering synonyms

We have until now discussed the usage of our algorithm for creating bilingual dictionaries. The same cycle
density procedure however can also be used to generate edge predictions between words in the same language, that
is, synonyms. This allows extending from generating just dictionaries to even creating thesauri.

In fact, some popular translation engines like Google Translate also provide synonyms to end users, unlike Aper-
tium. Automatic synonym generation from Apertium data could thus help create a useful feature. Synonymy rela-
tions may also be useful represented as linguistic linked data.

The confidence score obtained in our method can also possibly be used as a measure for conceptual similarity.
Traditional methods based on word co-occurrence suffer from several issues for this task, requiring further aug-
mentation [24]. In-fact, it has even been shown that having translation information is one way to improve their
performance [14]. Our method takes that hypothesis to the extreme, relying purely on translation graphs over docu-
ments. Some advantages of this are as follows:

– Our method does not need large corpora, which can be hard to obtain for under-resourced languages. Besides,
it does not require complex augmentation procedures and is interpretable as the subgraph that leads to each
prediction can be identified.

– Since antonyms often occur in similar contexts in sentences, they are assigned high similarity by co-occurrence
based methods. Our method does not appreciably suffer from such problems.

– Co-occurrence based methods ignore polysemy. They are known [23] to perform suboptimally when finding
synonyms for polysemous words because they aggregate statistics across the different semantic senses [2]. On
the other hand, our approach is explicitly polysemy-aware.

We demonstrate here a preliminary experiment. We produce synonym pairs for English, Spanish and Catalan
using the large set of 27 language pairs as input. Random samples of 150 words drawn from the 3 prediction sets
are evaluated by 2 human annotators each, and we report the results in Table 17. To the evaluators, we pose a similar
question as before: “Is there a context where the two words are replaceable?”.

Note that we took the same hyperparameters and confidence threshold as the translation setting (see 8.2). Modi-
fications specific to synonym generation might be required for optimal results. The results demonstrated are just a
proof of concept, more detailed studies and exact comparisons with existing methods are left for future work.

12. Conclusions and future work

This paper has explored techniques that exploit the graph nature of openly available bilingual dictionaries to infer
new bilingual entries. We leverage the knowledge that independent Apertium developers have separately encoded

33Note that validating and adopting may be done faster than validating and rejecting, as to do the latter operation safely one would need to
think harder about possible contexts.
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in different language pairs. The techniques build upon the cycle density method of [34], which has been modified
(taking advantage of graph-theoretical features of the dictionary graphs) so that it is faster and has less hyperparam-
eters to adjust when applying it to a task. We release our tool as a free/open-source software which can be applied
to RDF graphs but also directly to Apertium dictionaries.

We further show that existing automatic evaluation metrics for dictionary inference have limitations. To this
end, we propose two metrics for automatic evaluation of the dictionary inference task, both-word precision and
both-word recall, and show extensively how they help to compare and improve existing dictionary algorithms. The
notion of such metrics could have been used implicitly in earlier work, but we provide a formal definition, as well
as an extensive analysis and comparison with traditional metrics.

We experiment with a large portion of the Apertium RDF graph on two bilingual dictionary development scenar-
ios: dictionary creation for a new language pair, and dictionary enrichment. The results show how the progressive
enrichment of the translation graph leads to better results with the cycle density method, and confirm its superiority
with respect to transitive-based baselines. Moreover, our evaluations based on external dictionaries (MUSE) and
human assessment show that a significant amount of additional translations, not initially found in the graph, are
correct. We also illustrate that the algorithm can be used to infer synonyms, unlike pivot-based methods, and report
a human-based evaluation on this.

We highlight the following opportunities for future work:

– Enrich the cloud of linguistic linked data by applying the method to other datasets, and connect the Apertium
RDF with other families of dictionaries on the Web.

– Exploit the fine-grained morphological information, beyond POS, that is sometimes present in Apertium bilin-
gual entries.

– Improve the performance of the synonym generation through more elaborate evaluation and include it as a
feature in Apertium.

– Explore the ability of k-connectedness (for k > 2) to automatically partition the graph into multilingual synsets.
– Use topological methods like the ones highlighted here to study polysemy from the perspective of linguistic

typology and connect it with studies in cognitive science that use translation graphs to study semantic mapping
across languages [37].

– Study the feasibility of an iterative approach in which validated predictions are fed back in each round to
produce additional predictions.

– Explore more optimal methods that directly find the maximum density cycles under additional constraints
posed by our hyperparameters without having to compute all cycles within a certain length, perhaps with
inspiration from maximum density subgraph methods [20].

– Study how language pair developers use our tool to understand their preferences in the precision–recall trade-
off, using these insights to improve evaluation metrics.

– Participate in upcoming editions of the TIAD task for more direct comparisons with other systems.
– Explore the complementary use of cycle based techniques with pivot-based ones like OTIC.
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Appendix. Pseudocode of the algorithm
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