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Abstract. Getting complete results when processing aggregate queries on public SPARQL endpoints is challenging, mainly
due to the application of quotas. Although Web preemption supports processing of aggregate queries online, on preemptable
SPARQL servers, data transfer is still very large when processing count-distinct aggregate queries. In this paper, it is shown that
count-distinct aggregate queries can be approximated with low data transfer by extending the partial aggregation operator with
HyperLogLog++ sketches. Experimental results demonstrate that the proposed approach outperforms existing approaches by
orders of magnitude in terms of the amount of data transferred.
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1. Introduction

Context and motivation: Processing SPARQL aggregate queries on public SPARQL endpoints is challenging,
mainly due to the fair-use policies of public endpoints that stop queries before termination [8,19]. For instance, a
SPARQL query that computes the number of distinct objects per class, for all available classes, cannot be executed
online on Wikidata or DBPedia. On both SPARQL endpoints, the query hits the quotas. Consequently, no results
are delivered.

Related works: A common workaround for computing such queries relies on dataset dumps, but re-ingesting
large dumps is very costly and time-consuming. Approximate Query Processing is a well-known approach for com-
puting aggregations and can be updated to support fair-use policies [19], but requires to accept a trade-off between
accuracy and response time. Restricted SPARQL servers such as TPF [23], Web preemption [14] or SmartKG [2]
ensure termination of a restricted set of SPARQL operations, while preserving the responsiveness of the restricted
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server. Unfortunately, aggregate functions are not supported by the restricted SPARQL servers. Processing aggre-
gate queries requires materializing the query mappings on the client-side before computing aggregates locally. Even
if the processing is guaranteed to terminate, the size of the data transfer may be prohibitive.

In a previous work [7], we demonstrated that a partial aggregation operator is preemptable. Computing partial
aggregations on a preemptable server drastically reduces data transfer for most aggregate queries, while ensuring
complete results. However, count-distinct aggregate queries still generate a large data transfer, even with a partial
aggregation operator. Computing the exact cardinality of a multiset requires a data transfer proportional to the size
of the multiset, which is impractical for very large datasets.

Approach and Contributions: To improve the evaluation of count-distinct aggregate queries, the approach pro-
posed in [7] is extended with HyperLogLog++ sketches. HyperLogLog++ is a probabilistic algorithm that can
estimate the cardinality of large sets with a small amount of memory and strong guarantees on the error rate. As
HLL++ supports the decomposability property of aggregate functions, it can be integrated into the partial aggrega-
tions framework promoted in [7]. Compared to related Approximated Query Approaches [19], this approach ensures
to find all GroupKeys in a single pass, with a pre-defined and bounded error rate for all values. The contributions of
the paper are the following:

– An extension of the partial aggregation operator presented in [7]. This extension allows estimating the result of
a count-distinct query with a bounded error rate.

– Additional experimental results that compare the performance of the extended operator and the previous oper-
ator [7]. Experimental results demonstrate that relying on estimates does not improve the execution time, but
significantly reduces the data transfer for count-distinct queries, and in the general case, show that the proposed
approach outperforms existing approaches used for processing aggregate queries.

The remainder of this paper is structured as follows. Section 2 summarizes related works. Section 3 introduces
SPARQL aggregate queries and the Web preemption model. Section 4 presents the approach for processing aggre-
gate queries using a preemptive SPARQL server. Section 5 introduces HyperLogLog++ and its integration in the
partial aggregation operator. Section 6 presents the different algorithms used to implement the proposed approach.
Section 7 presents our experimental results. Section 8 discusses the limitations of the current proposal. Finally,
conclusions and future work are outlined in Section 9.

2. Related works

Aggregate queries on public SPARQL endpoints Public endpoints such as DBPedia or Wikidata support any
SPARQL aggregate queries. However, such queries are often long-running queries that require a lot of CPU and
memory resources to terminate. To ensure stable and responsive services to the user community, public SPARQL
endpoints set up quotas on the maximum number of results returned, execution time, and arrival rate. Consequently,
many aggregate queries cannot be executed online, simply because they reach the quotas of the fair-use policies
[3,14,19].

Use of dumps A common workaround for quota limitations relies on dumps of datasets. Datasets dumps have to be
first re-ingested on local resources before executing aggregate queries [1,16]. As datasets become bigger and bigger,
re-ingesting large datasets is very costly, time-consuming, and raises freshness issues. Re-ingesting data dumps can
be profitable only if a high number of aggregate queries have to be executed. The purpose of this paper is to process
aggregate queries online, i.e. without moving the data.

Decomposition of queries Another well-known approach to overcome quotas is to decompose a query into smaller
subqueries that can be evaluated under quotas. Query results are then recombined on the client-side [3]. Such a
decomposition requires a smart client that performs the decomposition and recombines the intermediate results.
However, ensuring that subqueries can be completed under quotas remains hard [3].
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Restricted SPARQL server approaches Restricted SPARQL servers such as TPF [23], Web preemption [14] or
SmartKG [2] ensure termination of a restricted set of SPARQL operations, while preserving the responsiveness of
the restricted SPARQL servers.

The Triple Pattern Fragments restricted server (TPF) [23] only supports triple pattern queries but ensures termina-
tion. To avoid server congestion, query results are paginated so that a page of results can be obtained in bounded time
(a few milliseconds in practice). Thus, the server does not need quotas to be fair. However, as the TPF server only
processes triple pattern queries, joins and aggregates are evaluated on a smart TPF client. This requires transferring
all the intermediate results from the server to the client to perform joins, and then computing aggregate functions
locally. Such an evaluation leads to poor query execution performance.

Web preemption [14] is another approach to process SPARQL queries on a public server without quota enforce-
ment. Web preemption allows a Web server to suspend a running SPARQL query after a quantum of time and resume
the next waiting query. Suspended queries are returned to users that can re-submit them to continue the execution
for another quantum of time. Web preemption provides a fair allocation of server resources, a better average query
completion time, and a better time for first results. However, if Web preemption allows processing projections and
joins on the server-side, aggregate functions are not supported by the restricted preemptable SPARQL server. Pro-
cessing aggregate queries requires materializing mappings on the client-side before performing local aggregations.
Therefore, the data transfer may be intensive, especially for aggregate queries.

In our previous work [7], we demonstrated that a preemptable server supports partial aggregations. Combined
with a smart client that can merge partial aggregations, it is possible to compute any aggregate queries online
and ensure complete results. Partial aggregations drastically reduce data transfer for almost all aggregate queries,
except those using the distinct modifier. Indeed, counting the number of distinct elements in a multiset requires a
data transfer proportional to the size of the multiset. Such an approach is not tractable for large datasets. This is
especially a problem since queries that count the number of distinct elements are common queries for many useful
statistics.

Approximate query processing Approximate query processing is a well-known approach to speed up the process-
ing of aggregate queries. Different approaches provide different trade-offs among the accuracy, response time, space
budget, and supported queries [12]. The sampling approach proposed in [19] aims to explore large federations of
SPARQL endpoints, while being compatible with SPARQL endpoint fair-use policies. Given an aggregate query, the
approach ensures that results converge to exact results as more samples are collected. However, this approach does
not detail how to handle count-distinct aggregate queries and how SPARQL endpoints can answer probe queries
with high offsets without being interrupted by fair-use policies. Moreover, the number of samples we need to collect
to ensure that the algorithm converges could be greater than the number of triples in the datasets. The error-bound is
also hard to estimate during processing. This paper explores a different trade-off: using probabilistic data structures
to approximate the result of a count-distinct query in a single pass, with strong guarantees on the error rate.

Count-distinct aggregate queries can be computed with probabilistic cardinality estimators [13] such as Hyper-
LogLog or Count-Min sketches. These algorithms approximate the number of distinct elements in a multiset with
a bounded error rate and bounded memory. For instance, the HyperLogLog algorithm can estimate cardinalities
greater than 109 with a typical error rate of 2%, using only 1.5 KBytes of memory. HyperLogLog and its variant
HyperLogLog++ are implemented and used for cardinality estimation by Google, Redis, Amazon, etc. For more
information on cardinality estimation algorithms, the reader can refer to the review [18]. In this paper, the mergeabil-
ity property of HyperLogLog++ counters is used to extend the preemptable partial aggregation operator introduced
in [7].

3. Preliminaries

3.1. SPARQL aggregate queries

This paper uses the semantics of aggregates as defined in [11]. The important definitions to understand the pro-
posal are recalled here. According to [11,15,17], let us consider three disjoint sets I (IRIs), L (literals) and B (blank
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nodes). Let T be the set of RDF terms such that T = I ∪L∪B. An RDF triple (s, p, o) ∈ (I ∪B)× I ×T connects
a subject s through a predicate p to an object o. An RDF graph G is a finite set of RDF triples. Let us assume the
existence of an infinite set V of variables, disjoint with previous sets. A mapping μ from V to T is a partial function
μ : V → T where the domain of μ, denoted dom(μ), is the subset of V where μ is defined. A SPARQL graph
pattern expression P is defined recursively as follows:

– A tuple from (I ∪ L ∪ V ) × (I ∪ V ) × (I ∪ L ∪ V ) is a triple pattern.
– If P 1 and P 2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2) and (P1 UNION P2) are graph

patterns (a conjunctive graph pattern, an optional graph pattern and an union graph pattern, respectively).
– If P is a graph pattern and R is a SPARQL built-in condition, then the expression (P FILTER R) is a graph

pattern (a filter graph pattern).

The evaluation of a graph pattern P over an RDF graph G denoted by �P �G produces a multiset of solution mappings
� = (S�, card�), where S� is the base set of mappings and card� is the multiplicity function which assigns a
cardinality to each element of S�. For simplicity, μ ∈ S� is often written μ ∈ �.

The SPARQL 1.1 language [20] introduces new features for supporting aggregate queries: i) A collection of
aggregate functions for computing values, like COUNT, SUM, MIN, MAX and AVG. ii) GROUP BY and HAVING.
HAVING restricts the application of aggregate functions to groups of solutions satisfying certain conditions.

Both groups and aggregates deal with lists of expressions 〈E1, . . . , En〉, which are evaluated to v-lists, i.e. lists
of values in T ∪ {error}. More precisely, the evaluation of a list of expressions E = 〈E1, . . . , En〉, according to a
mapping μ, is defined as: �E�μ = 〈�E1�

μ, . . . , �En�
μ〉. For simplicity, lists of expressions are restricted to lists of

variables. According to [11] this restriction does not reduce the expressive power of aggregates. Every query that
uses lists of expressions can be rewritten into a query where grouping is only allowed over lists of variables. Inspired
by [11,20], we formalized Group and Aggregate as follows.

Definition 1 (Group). A group is a construct G(E,P ) with E a list of expressions and P a graph pattern. The
evaluation �G(E,P )�G of a group G(E,P ) over an RDF graph G produces a set of partial functions from v-list
keys (called GroupKeys) to multisets of mappings as follows:

�G(E,P )�G = {
GroupKey �→ {

μ′ | μ′ ∈ �P �G, �E�μ′ = GroupKey
}}

Definition 2 (Aggregate). An aggregate is a construct γ (F, f, P ) with F a list of expressions, f an aggregate
function and P a graph pattern. Let {k1 �→ ω1, . . . , kn �→ ωn} be the set of partial functions produced by the
evaluation of �G(E,P )�G over an RDF graph G where 〈k1, . . . , kn〉 are GroupKeys and 〈ω1, . . . , ωn〉 are multisets
of mappings. The evaluation of �γ (F, f, P )�G maps each GroupKey to a single value as follows:

�γ (F, f, P )�G = {
ki �→ f (�), � = {

�F �μ′ | μ′ ∈ ωi

}}

To illustrate, consider the query Q1 of Fig. 1(b), which returns the total number of objects per class, for subjects
connected to the object o1, through the predicate p1. PQ1 = { ?s :a ?c. ?s ?p ?o. ?s :p1 :o1.} is the

Fig. 1. Aggregate queries Q1 and Q2 over G1.
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graph pattern of Q1. According to Definition 1, we have:

�G
(〈?c〉, PQ1

)
�G1

= {: c3 �→ {: c3, : c1, : c2, : o1, : c3, : o1},
: c1 �→ {: o1, : c3, : c1},
: c2 �→ {: o1, : c3, : c2}}

where 〈?c〉 is the list of expressions E used by the GROUP BY operator. As we can see, this query returns 3
different GroupKeys, i.e. :c1, :c2 and :c3. For simplicity, for each GroupKey, only the value of the variable ?o is
represented as ?o is the only variable used by the COUNT function. Then, according to Definition 2, the query Q1
is evaluated as:

�γ
(〈?o〉,COUNT, PQ1

)
�G1

= {: c3 �→ 6, : c1 �→ 3, : c2 �→ 3}

where COUNT is the aggregate function f and 〈?o〉 is the list of expressions F used by f .

3.2. Web preemption and SPARQL aggregate queries

Web preemption [14] is the capacity of a web server to suspend a running SPARQL query after a fixed quantum
of time and resume the next waiting query. When suspending a query Q, a preemptable server saves the internal
state of all operators of Q in a saved plan Qs that is sent to the client. The client can continue the execution of Q by
sending Qs back to the server. When reading Qs , the server restarts the query Q from where it has been stopped. As
a preemptable server can restart queries from where they have been stopped and makes a progress at each quantum,
it eventually delivers complete results after a bounded number of quanta.

However, Web preemption comes with overheads. The time taken by the suspend and resume operations repre-
sents the overhead in time of a preemptable server. The size of Qs represents the overhead in space of a preemptable
server and may be transferred over the network each time a query is suspended by the server. To be tractable, a
preemptable server has to minimize these overheads.

For this purpose, a preemptable server only implements SPARQL operators that can be saved and resumed in
constant time, i.e. preemptable operators. Based on the definition of tuple-at-a-time and full-relation operators [6],
SPARQL operators can be classified into two groups: mapping-at-a-time and full-mappings operators.

Mapping-at-a-time operators such as SCAN, JOIN, UNION or BIND are implemented on the server. As they just
need to manage one mapping at a time [6], these operators can be saved and resumed in constant time.1 Queries that
can be evaluated using only mapping-at-a-time operators are supported by the preemptable server.

On the other hand, full-mappings operators require “seeing all or most of the mappings in memory at once” [6].
Consequently, they cannot be saved and resumed in constant time and are implemented on the client. For example,
the ORDER BY is a full-mappings operator when the server has no choice but to materialize all the mappings before
sorting them. This case typically arise when the ORDER BY operator is not combined with a LIMIT k operator,
and the server has not the required sorted indexes. To evaluate a query that contains full-mappings operators, the
client must decompose it into a set of subqueries supported by the server, evaluate each subquery separately, and
recombine the intermediate results to produce the final query result. Such a decomposition can be extremely costly
in terms of data transfer, number of calls to the server, and execution time.

Unfortunately, aggregate queries require a server-side operator that belongs to the full-mappings operators [6].
Consequently, there is no support on the server and aggregate queries must be decomposed.

Figure 2 illustrates how Web preemption processes the query Q1 of Fig. 1 over the dataset D1. First, the smart
client sends the BGP of Q1 to the server, i.e. the query Q′

1 = SELECT ?c ?o WHERE { ?s :a ?c; ?p ?o;
:p1 :o1 }. Let us suppose that the query Q′

1 requires six quanta to complete. At the end of each quantum qi ,
the client receives the mappings ωi and asks for the next results (next link). Then, when all mappings are obtained,

1A SCAN can be resumed in O(log(|D|)) with B-Tree indexes on SPO, POS and OSP, where |D| is the size of the dataset D.
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Fig. 2. Evaluation of Q1 on G1 with regular web preemption [14].

the smart client computes γ (〈?o〉,COUNT,
⋃

i ωi). As a result, to compute the three mappings {: c3 �→ 6, : c1 �→
3, : c2 �→ 3}, the server transferred 6 + 3 + 3 = 12 mappings to the client.

In a more general way, to evaluate �γ (F, f,�)�G , the smart client first asks a preemptable web server to evaluate
�P �G = �. Then the server transfers incrementally �, and finally, the client evaluates γ (F, f,�) locally. The main
problem with this evaluation is that the size of � is usually much bigger than the size of γ (F, f,�).

Reducing data transfer requires reducing |�P �G | which is impossible without deteriorating the completeness of
the answer. Therefore, the only way to reduce data transfer when processing aggregate queries is to process the
aggregates on the preemptable server. However, in the worst case, the operator we need to evaluate SPARQL aggre-
gates is a full-mappings operator, as it requires to materialize |�P �G |, hence it cannot be suspended and resumed in
constant time.

Problem Statement: Define a preemptable aggregation operator γ such that the complexity in time and space of
suspending and resuming γ is bounded in constant time.2

4. Computing partial aggregations with web preemption

To build a preemptable evaluator for SPARQL aggregates, the presented approach relies on two key ideas: (i) First,
Web preemption naturally creates a partition of mappings over time. Thanks to the decomposability of aggregate
functions [26], partial aggregations can be computed server-side on each partition of mappings and recombined
on the client. (ii) Second, to control the size of partial aggregations, the size of the quantum can be adjusted for
aggregate queries.

In the following, the decomposability property of aggregate functions is presented, as well as how this property
is used in the context of Web preemption.

4.1. Decomposable aggregate functions

Traditionally, the decomposability property of aggregate functions [26] ensures the correctness of the distributed
computation of the aggregates [10]. This property is adapted for SPARQL aggregate queries in Definition 3.

2In this paper, for simplicity, only aggregate queries with Basic Graph Patterns and no OPTIONAL clauses are considered.
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Table 1

Decomposition of SPARQL aggregate functions with and without the DISTINCT modifier

(a) Aggregate functions without the DISTINCT modifier

SPARQL Aggregate functions

COUNT SUM MIN MAX AVG

f1 COUNT SUM MIN MAX SaC

v 	 v′ v + v′ min(v, v′) max(v, v′) v ⊕ v′
h Id (x, y) �→ x/y

(b) Aggregate functions with the DISTINCT modifier

SPARQL Aggregate functions

COUNTD SUMD AVGD COUNTε
D

f1 CT HLLε
add

v 	 v′ v ∪ v′ HLLε
merge

h COUNT SUM AVG HLLε
count

Definition 3 (Decomposable aggregation function). An aggregate function f that used a list of expressions F is
decomposable if for all non-empty multisets of solution mappings �1 and �2, there exists a (merge) operator 	, a
function h and an aggregate function f1 such that:

γ (F, f,�1 � �2) = {
GroupKey �→ h(v1 	 v2) |

GroupKey �→ v1 ∈ γ (F, f1,�1),

GroupKey �→ v2 ∈ γ (F, f1,�2)
}

In Definition 3, � denotes the multiset union as defined in [11]. Abusing the notation, we use a multiset of solution
mappings � instead of the graph pattern P in Definition 2. Table 1 gives the decomposition of all SPARQL aggregate
functions, where Id denotes the identity function and ⊕ is the point-wise sum of pairs, i.e. (x1, y1) ⊕ (x2, y2) =
(x1 + x2, y1 + y2).

To illustrate, consider the function f = COUNT with F = 〈?c〉 and an aggregate query γ (F, f,�1 � �2) such
as γ (F, f,�1) = {: c1 �→ 2} and γ (F, f,�2) = {: c1 �→ 5}. The intermediate aggregation results for the COUNT
function can be merged using an arithmetic addition operation, i.e. {: c1 �→ 2 	 5 = 2 + 5 = 7}.

Decomposing SUM, COUNT, MIN and MAX is relatively simple, as partial aggregation results only need to
be merged to produce the final query results. However, decomposing AVG and aggregate functions that use the
DISTINCT modifier are more complex. Two auxiliary aggregate functions have been introduced, called SaC
(SUM-and-COUNT) and CT (Collect), respectively. The SaC function collects the information required to com-
pute an average, while the CT function collects a set of distinct values. They are defined as follows: SaC(X) =
〈SUM(X),COUNT(X)〉 and CT(X) is the base set of X as defined in Section 3. For instance, the aggregate function
of the query Q = γ (〈?o〉,COUNTD,�1��2) is decomposed as Q′ = COUNT(γ (〈?o〉,CT,�1)∪γ (〈?o〉,CT,�2)).

4.2. Partial aggregation with web preemption

Using a preemptive web server, the evaluation of a graph pattern P over G naturally creates a partition of map-
pings ω1, . . . , ωn over time, where ωi is produced during the quantum qi . Intuitively, a partial aggregation Ai ,
formalized in Definition 4, is obtained by applying an aggregate function on the partition of mappings ωi .

Definition 4 (Partial aggregation). Let F be a list of expressions, f an aggregate function and ωi ⊆ �P �G such that
�P �G = ⋃i=n

i=1 ωi where n is the number of quanta required to complete the evaluation of P over the RDF graph G.
A partial aggregation Ai is defined as Ai = γ (F, f, ωi).

Because a partial aggregation operates on ωi , partial aggregations can be implemented on the server-side as a
mapping-at-a-time operator. Suspending the evaluation of aggregate queries using partial aggregations does not
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Fig. 3. Evaluation of Q1 and Q2 on the RDF graph G1 with a partial aggregation operator.

require to materialize intermediate results on the server. Finally, to process a SPARQL aggregate query, the smart
client computes �γ (F, f, P )�G = h(A1 	 A2 	 · · · 	 An).

Figure 3(a) illustrates how a smart client computes Q1 over D1 using partial aggregations. Suppose that Q1 is
executed over six quanta q1, . . . , q6 that produce two mappings each. At each quantum qi , two new mappings are
produced in ωi and the partial aggregation Ai = γ (〈?o〉,COUNT, ωi) is sent to the client. The client merges all Ai

thanks to the 	 operator and then produces the final results by applying h. Figure 3(b) describes the execution of Q2

with partial aggregations under the same conditions. As we can see, the DISTINCT modifier requires to transfer
more data, however a reduction in data transfer is still observable compared with transferring all ωi for q1, q2, q3,
q4, q5 and q6.

The duration of the quantum seriously impacts query processing using partial aggregations. Suppose that instead
of six quanta of two mappings in Fig. 3(a), the server requires twelve quanta that produce one mapping each,
therefore partial aggregations are useless. If the server requires two quanta that produce six mappings each, then
only two partial aggregations A1 = {: c3 �→ 3, : c1 �→ 3} and A2 = {: c3 �→ 3, : c2 �→ 3} are sent to the client
and data transfer is reduced. If the quantum is infinite, then the whole aggregation is produced on the server-side,



J. Aimonier-Davat et al. / Online approximative SPARQL query processing for COUNT-DISTINCT queries 743

and data transfer is optimal. Overall, for a SPARQL aggregate query, the larger the quantum, the smaller the data
transfer and execution time.

5. Count-distinct SPARQL aggregate queries

Count-distinct aggregate queries count the number of distinct elements in the multisets obtained after grouping.
Query Q2 of Fig. 1(c) is an example of a count-distinct aggregate query.

As illustrated in Fig. 3(b), processing count-distinct aggregate queries requires transferring all elements from the
server to the client before counting them. Moreover, these elements could be transferred several times if the query
is processed over several quanta. For example, : o1 and : c3 for the GroupKey : c3 in Fig. 3(b). Consequently,
computing an exact count for a GroupKey requires an amount of memory, and thus data transfer, proportional to the
cardinality of the multiset of the GroupKey. Such a data transfer is prohibitive and does not scale to large datasets.

To address this issue, we propose to estimate the number of distinct elements in a multiset rather than computing
the exact count. Several probabilistic algorithms have been proposed [5,13,24] to estimate large cardinalities with
a bounded memory. According to [9], the LinearCounting algorithm [24] achieves good accuracy, regardless of the
cardinality. However, this algorithm is not attractive for large cardinalities, as it requires too much memory for an
accurate estimate. Compared to the LinearCounting algorithm, the HyperLogLog (HLL) algorithm [13] is efficient
for large cardinalities, both in terms of space complexity and accuracy. For instance, HLL can estimate cardinalities
greater than 109 with a typical error rate of 2%, using only 1.5 KBytes of memory. However, HLL fails to estimate
the cardinality of small sets. Moreover, the HLL algorithm is not memory efficient. No matter if the cardinality to
be estimated is small, it uses the maximum amount of memory specified by the user, e.g. 1.5 KBytes for an error
rate of 2%.

In the context of SPARQL aggregate queries, a good estimator must be accurate on both small and large cardi-
nalities, and adapt its memory usage to cardinality. Indeed, aggregate queries deal with GroupKeys that may have
millions of distinct values as well as just a few. To fit these criteria, we use HyperLogLog++ (HLL++) [9], an
adaptive counting algorithm that combines the HLL and the LinearCounting algorithms. Because the LinearCount-
ing algorithm is more efficient for small cardinalities than HLL, HLL++ relies on it to estimate small cardinalities,
and automatically switches to HLL for larger cardinalities. Finally, HLL++ supports the decomposability property
of aggregate functions. Consequently, it can be used to extend the partial aggregation operator proposed in [7].
A smart client merging partial aggregations based on HLL++ can now compute the number of distinct elements
with a bounded error rate and bounded data transfer for each GroupKey.

5.1. HyperLogLog++

HLL++ is a probabilistic data structure that behaves like a set with two main operations:

1. HLLε
add for adding a new element e to the set.

2. HLLε
count for estimating the cardinality of the set with a fixed error rate ε.

The payload of a HLL++ set Hε is an array R of m registers denoted R[1], . . . , R[m] where ε is the error rate.
According to [9,13], m is equal to (1.04/ε)2, which is the number of registers required to ensure an error rate ε. To
add an element e into Hε , e is first mapped to a 64 bit hash value h(e). The first p = log2(m) bits of h(e) represents
the index i of R to update. The number of leading zeros k located just after the first p bits are stored in R[i], if
k > R[i].

To compute the cardinality of Hε , HLL++ relies both on the HyperLogLog and the LinearCounting algorithms.
It first uses HLL to estimate the cardinality of Hε . If the estimated cardinality is greater than a threshold defined
in [13], HLL++ uses the HyperLogLog algorithm, otherwise the LinearCounting algorithm is used.

To estimate the cardinality of Hε , the HyperLogLog algorithm relies on the idea that, in a uniformly distributed
multiset of 64 bit hash values, long runs of leading zeros are less likely and indicate a larger cardinality. Based on
this observation, if the maximum number of leading zeros k is known, a good estimation of the number of distinct
values is 2k+1. Because a single measurement has a large variability, HLL divides the elements into m registers
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Fig. 4. Approximate count-distinct for the GroupKey :c3 of query Q2, on the RDF graph G1, using HLL++ with an error rate of 26%.

and then computes the cardinality estimate as the average of the m registers. This technique known as stochastic
averaging operates as a variance reduction device [13], which increases the quality of estimates.

On its side, the LinearCounting algorithm relies on the fraction of empty registers (R[i] = 0) to estimate the
cardinality of Hε . According to [24], an estimate of the cardinality of Hε is given by the equation −m × ln(V )

where V is the number of empty registers divides by the total number of registers m.
To illustrate how HLL++ works, consider the example of Fig. 3(b) where the GroupKey :c3 is incrementally

filled with elements :o1, :c3, :c1, :o1, :c3 and :c2 to finally obtain 4 distinct elements. In Fig. 4, the same
elements are added to an HLL++ set H 0.26

c3 where the error rate ε = 26% and the number of registers m =
(1.04/0.26)2 = 16. Each element is mapped to a 64 bit hash value. The first p = log2(16) = 4 bits are represented
in blue and used for identifying the register R[i] to update. The number of leading zeros k after the first p = 4
bits are highlighted in red and used to update R[i], if k > R[i]. Once all the elements are inserted in H 0.26

c3 ,
HLL++ estimates the number of distinct elements for the GroupKey :c3 using either the HLL or the LinearCounting
algorithm. According to [9], in our example, the LinearCounting algorithm is used and the cardinality is estimated
as −16 × ln(12/16) ≈ 4.60.

5.2. Partial aggregations and HLL++

To estimate the number of distinct elements in a multiset, with a fixed error rate ε, we introduced a new aggregate
function COUNTε

D (cf Table 1). To follow the partial aggregations model, COUNTε
D has to provide an aggregate

function f1, a merge operator 	 and a function h as defined in Definition 3. Functions f1, 	 and h of COUNTτ
D are

respectively mapped to HLLε
add, HLLε

merge and HLLε
count, where HLLε

merge merges two HLL++ sets Hε
1 and Hε

2 of m

registers into a new HLL++ set Hε
3 such as Hε

3 .R[i] = max(Hε
1 .R[i],Hε

2 .R[i]) for i ∈ 1..m.
Figure 5(a) illustrates how a smart client computes Q2 over D1 with a fixed error rate ε = 26% using COUNT0.26

D .
At each quantum qi , two new mappings are produced in ωi . For each GroupKey in ωi , the server creates a HLL++
set. During the first quantum, two mappings with two different objects :o1 and :c3 are produced for the GroupKey
:c3. Using the HLL0.26

add operation, :o1 and :c3 are assigned to registers 13 and 8, respectively. Both R[13] and
R[8] are updated from 0 to 2 because both :o1 and :c3 hash values have two leading zeros. At the end of the
quantum, registers are sent to the client.

Compared to the HyperLogLog algorithm, HLL++ does not necessarily send all the registers to the client. To fit
the memory efficiency criteria, HLL++ can store the array R using either a sparse or a full representation [9]. The
sparse representation is used when most of the registers are empty and avoid transferring all registers to the client.
Thus, for an error rate of 2%, the 1.5 KBytes per GroupKey is just a worst-case space complexity for HLL++.
Typically, for small sets, the data transfer will be at most equivalent to transferring the sets.

To go back to our example, when the client receives the registers, it uses the HLL0.26
merge operation to merge the

incoming registers with the local ones. The client repeats the same process for all quanta until the query complete.
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Fig. 5. Evaluation of the query Q2 on the RDF graph G1, u sing HLL++ with an error rate of 26%.

When the query completes, the client uses the HLL0.26
count operation to estimate the number of distinct elements per

GroupKey.
The duration of the quantum has a significant impact on the data transfer. Long quanta reduce data transfer as

HLL++ sets are better used. However, long quanta are also likely to gather many GroupKeys that require each to
store a HLL++ set. Even if HLL++ is efficient in terms of space complexity and can adapt its memory usage,
gathering many GroupKeys may exhaust the memory of the server. This issue is already pointed out as the many-
distinct count problem [22]. In the context of Web preemption, this issue can be avoided by limiting the memory
dedicated to the aggregation results, so that a quantum only deals with a bounded number of GroupKeys. Once the
limit is reached, even if the quantum is not exhausted, the query is suspended and partial results are returned to the
client. Of course, such an approach just moves the many-distinct count problem to the client. However, the client
memory is not a shared resource.

6. Implementing decomposable aggregate functions

Algorithm 1 presents the general algorithm to compute partial aggregates on a preemptable server. To evaluate an
aggregate query Q, the algorithm starts by building the physical plan of Q, i.e. a pipeline of preemptable iterators
(Lines 2–5), that will be consumed by Algorithm 1. Algorithm 2 defines a new preemptable aggregates iterator
for computing aggregate functions. When the GetNext() method is called, the new iterator consumes a solution
mapping μ from its predecessor (Line 3), and computes aggregate functions on μ (Line 5). As aggregate functions
are computed one mapping at a time, this iterator is preemptable, i.e. it can be saved and resumed in constant time.
During a quantum, Algorithm 1 consumes solution mappings from the pipeline of iterators, and merges them into
� (Lines 10–18), using the Merge operation defined in Algorithm 3.

The Merge(E,A,X,Y) operation merges two sets of solution mappings X and Y . For each μ ∈ X, it finds a μ′ ∈ Y

that has the same GroupKey as μ (Line 3). Then, Algorithm 3 iterates over all aggregation results in μ′ (Lines 4–16)
to merge them with their equivalent in μ, using the different merge operators defined in Table 1.



746 J. Aimonier-Davat et al. / Online approximative SPARQL query processing for COUNT-DISTINCT queries

Algorithm 1: Server-side evaluation of partial aggregates
Require:

quantum: Duration of a quantum
pageSize: Maximum size of a result page

Input: Q: SPARQL aggregate query

1 Function EvalQuery(Q):
2 if Q is suspended query then
3 iterator ← Resume(Q)

4 else
5 iterator ← ParseQuery(Q)

6 E ← GROUP BY expressions of Q

7 A ← Aggregate functions of Q

8 � ← ∅ ; done ← False
9 try:

10 EvalQuantum( quantum ):
11 repeat
12 μ ← iterator.GetNext()
13 non interruptible
14 if μ �= nil then
15 Merge(E,A, �, {μ})
16 μ ← nil

17 else done ← True

18 until done ∨ Size(�) � pageSize

19 catch QuantumExhausted:
20 if μ �= nil then
21 Merge(E,A, �, {μ})
22 finally:
23 if done then Qs ← nil
24 else Qs ← Suspend(iterator)
25 return (�, Qs)

When the quantum is exhausted, the server waits for the non-interruptible section of Algorithm 1 to complete.
Thus, no solution mappings are discarded, and the merge operation is guaranteed to be applied to every solution
mapping. The non-interruptible section can block the program for at most the time to merge a single solution map-
ping in �, which can be done in constant time. Then, Algorithm 1 suspends the query Q, and sends the suspended
query Qs and the partial aggregates � to the client (Lines 23–25).

To avoid the many-count distinct problem, i.e. exhaust the server memory, the size of � is bounded to a predefined
constant PageSize. If the size of � exceeds PageSize, Algorithm 1 stops computing new aggregation results (Line 11)
and the query is suspended.

The evaluation of SPARQL aggregates on the server requires defining different parameters: the duration of a
quantum, the maximum space allocated to the aggregation results, and the error rate ε when the COUNTε

D function
is used. Defining these parameters is left to the server administrator.

As the server computes only partial aggregates, it relies on the client to compute SPARQL aggregates, as shown
in Algorithm 4. To execute a SPARQL aggregate query Q, the client first decomposes Q into Q′ to replace the
AVG aggregate function and the DISTINCT modifier as described in Section 4.2. Then, the client submits Q′ to
the SAGE server S, and follows the next links sent by S to fetch and merge all query results, following the Web
preemption model (Lines 6–9). Finally, the client transforms the set of partial aggregation results returned by the
server to produce the final aggregation results (Line 10). For each solution mapping μ ∈ �, the client applies the
appropriate h function for each of the aggregate functions, as defined in Table 1.
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Algorithm 2: Server-side preemptable SPARQL aggregates iterator
Require:

Ip : predecessor in the pipeline of iterators
E: list of expressions used by the GROUP BY
A: set of 3-tuple (F , f , v) where f is an aggregate function,

F a list of expressions and v a variable to bind the result of f

Data: μc: the last element read from Ip

1 Function GetNext():
2 if ∀(F, f, v), v ∈ dom(μc) then return μc

3 μc ← Ip.GetNext()
4 if μc �= nil then
5 ComputeAggregates(E, A,μc)

6 return μc

7 else return nil

8 Procedure ComputeAggregates(E, A, μ):
9 foreach (F, f, v) ∈ A do

10 � ← γ (F, f, {μ}) ; μ[v] ← �[�E�μ]
11 Function Save():
12 return μc

13 Procedure Load(μ):
14 μc ← μ

15 if μc �= nil then
16 ComputeAggregates(E, A,μc)

Algorithm 3: Merge two sets of solution mappings, Y into X

Input:
E: list of expressions used by the GROUP BY
A: set of 3-tuple (F , f , v) where f is an aggregate function,

F a list of expressions and v a variable to bind the result of f

X, Y : two sets of solution mappings

1 Procedure Merge(E, A, X, Y ):
2 foreach μ ∈ X do

3 foreach μ′ ∈ Y with �E�μ = �E�μ
′

do
4 foreach (F, f, v) ∈ A do
5 if f ∈ {COUNT,SUM} then
6 μ[v] ← μ[v] + μ′[v]
7 else if f = SaC then
8 μ[v] ← μ[v] ⊕ μ′[v]
9 else if f = MIN then

10 μ[v] ← Min(μ[v], μ′[v])
11 else if f = MAX then
12 μ[v] ← Max(μ[v], μ′[v])
13 else if f = COUNTε

D
then

14 μ[v] ← HLLε
merge(μ[v], μ′[v])

15 else
16 μ[v] ← μ[v] ∪ μ′[v]

17 foreach μ′ ∈ Y , �μ ∈ X, �E�μ = �E�μ
′

do
18 X ← X ∪ {μ′}
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Algorithm 4: Client-side evaluation of partial aggregates
Input:

Q: SPARQL aggregate query
S: SAGE server URL

1 Function EvalQuery(Q, S):
2 E ← GROUP BY expressions of Q

3 A ← Aggregate functions of Q

4 Q′ ← DecomposeQuery(Q)

5 � ← ∅
6 repeat
7 (�′,Q′) ← Evaluate Q′ at S

8 Merge(E, A, �, �′)
9 until Q′ = nil

10 ComputeAggregates(�, A)
11 return �

12 Procedure ComputeAggregates(�, A):
13 foreach μ ∈ � do
14 foreach (F, f, v) ∈ A do
15 if f = AVG then
16 (s, c) ← μ[v] ; μ[v] ← s/c

17 else if f = SUMD then
18 μ[v] ← SUM(μ[v])
19 else if f = AVGD then
20 μ[v] ← AVG(μ[v])
21 else if f = COUNTD then
22 μ[v] ← |μ[v]|
23 else if f = COUNTε

D
then

24 μ[v] = HLLε
count(μ[v])

7. Experimental study

The purpose of the experimental study is to answer the following questions: (1) What is the data transfer reduction
obtained with partial aggregations? (2) What is the speed up obtained with partial aggregations? (3) What is the
impact of quantum on data transfer and execution time? (4) Does estimating the result of count-distinct queries
reduce data transfer? (5) Does the observed error rate matches the theoretically guarantees provided by the HLL++
algorithm?

The partial aggregations approach has been implemented as an extension of the SAGE query engine.3 The SAGE

server has been extended with the new operator described in Algorithm 2. Python SAGE-agg and SAGE-approx
clients have been extended with Algorithm 4. SAGE-agg uses the COUNTD function to compute count-distinct
queries, while SAGE-approx uses the COUNTε

D function. The source code of the experimental study as well as all
configuration files are available in the project repository at https://github.com/JulienDavat/sage-agg-experiments.

Dataset and queries The workload (SP) used in the experimental study is composed of 18 SPARQL aggregate
queries extracted from the SPORTAL queries [8] (queries without ASK and FILTER). Most of the extracted queries
use the DISTINCT modifier. SPORTAL queries are challenging because they aim to build VoID descriptions of RDF
datasets.4 As reported in [8], most of the queries cannot complete over the DBpedia public server because of the
quotas. Moreover, as depicted in Fig. 6, the SPORTAL queries return GroupKeys with different numbers of distinct
values; from one to several million on the DBPedia dataset. Having different number of distinct values is important
to demonstrate that HLL++ is accurate for both small and large cardinalities when the COUNTε

D function is used.

3https://sage.univ-nantes.fr
4https://www.w3.org/TR/void/

https://github.com/JulienDavat/sage-agg-experiments
https://sage.univ-nantes.fr
https://www.w3.org/TR/void/
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Fig. 6. Number of GroupKeys for the SPORTAL queries on DBPedia according to the number of distinct values.

Table 2

Statistics of RDF datasets used in the experimental study

RDF dataset # Triples # Subjects # Predicates # Objects # Classes

BSBM-10 4 987 614 40 1 920 11

BSBM-100 40 177 4 174 40 11 012 22

BSBM-1k 371 911 36 433 40 86 202 103

DBpedia 3.5.1 100M 2 835 701 35 168 26 840 695 342

To study the impact of the DISTINCT modifier on the aggregate queries execution, a new workload, denoted
SP-ND, is defined by removing the DISTINCT modifier from the queries of SP.

Both the SP and the SP-ND workloads are run on synthetic and real-world datasets. For the synthetic datasets, the
Berlin SPARQL Benchmark (BSBM) is used to generate three datasets of increasing size: BSBM-10, BSBM-100
and BSBM-1k. For the real-world dataset, a fragment of DBpedia v3.5.1 is used. The statistics of each dataset is
detailed in Table 2.

Approaches The following approaches are compared:

– SaGe: corresponds to the SAGE query engine as defined in [14]. The SAGE server is configured with a maxi-
mum PageSize set to 10 MBytes. The data are stored in a SQLite database, with Btree indexes on (SPO), (POS)
and (OSP).

– SaGe-agg: corresponds to the proposal defined in [7]. To be fairly compared with SAGE, SAGE-agg is config-
ured as SAGE.

– SaGe-approx: corresponds to the extension of [7] defined in this paper. To be fairly compared with SAGE and
SAGE-agg, SAGE-approx is configured as SAGE. To compute count-distinct queries, SAGE-approx uses an
error rate ε = 2%.

– TPF: corresponds to the TPF query engine [23]. The TPF server is configured with a page size of 10000 map-
pings and without Web caches. Data are stored using the HDT format. The TPF smart client is Comunica [21]
(v1.9.4).

– Virtuoso: corresponds to the Virtuoso SPARQL endpoint [4] (v7.2.4). Virtuoso is configured without quotas
and with a a single thread so that Virtuoso delivers complete results and can be fairly compared with other
engines.

Servers configurations All experiments have been run on the Google Cloud Platform, on a n2-highmem-4 ma-
chine with 4 vCPU, 32 GBytes of RAM and a SSD local disk of 375 GBytes.

Evaluation metrics Presented results correspond to the average of three successive executions of the query
workloads. (i) Data transfer: is the number of bytes transferred to the client when evaluating a query. (ii) Ex-
ecution time: is the time between the start of the query and the production of the final results by the client.
(iii) Error rate: is defined as the difference between the real cardinality c and the estimated cardinality ĉ:
(1 − (min(c, ĉ)/ max(c, ĉ))) × 100.
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Fig. 7. Data transfer and execution time for BSBM-10, BSBM-100 and BSBM-1k, when running the SP (left) and SP-ND (right) workloads.

7.1. Experimental results

7.1.1. Data transfer and execution time over BSBM datasets
Figure 7 presents the data transfer and the execution time over BSBM-10, BSBM-100 and BSBM-1k. In this

experiment, the SAGE server is configured with a time quantum of 150 ms. The plots on the left detail the results
for the SP workload, while the plots on the right detail the results for the SP-ND workload.

As expected, Virtuoso without quota performs the best in terms of data transfer and execution time. On the other
hand, TPF offers the worst performance as it does not support projections nor joins on the server-side. As a result,
TPF transfers a large number of intermediate results and sends many HTTP requests to the server, which has a
significant impact on query execution time. Although both SAGE and TPF evaluate SPARQL aggregate queries on
the client-side, SAGE delivers better performance than TPF because it supports projections and joins on the server.

Compared to SAGE, SAGE-agg and SAGE-approx drastically reduce data transfer but do not improve the ex-
ecution time, because partial aggregations do not increase the scanning speed on the disk. When comparing the
performance of SAGE-agg and SAGE-approx on the two workloads, we can observe that query processing without
the distinct modifier (on the right) is much more efficient in terms of data transfer than with the distinct modifier
(on the left).

Without the distinct modifier, SAGE-agg and SAGE-approx are equivalent and transfer only one number per
GroupKey, per quantum. Consequently, they can achieve performances that are close to Virtuoso. Note that if the
data transfer for Virtuoso is a bit larger than SAGE-agg and SAGE-approx, it is only because of the output format
used by the different endpoints. In the best case, SAGE-agg and SAGE-approx can only be as good as Virtuoso.

For queries that use the distinct modifier, SAGE-agg has to transfer all terms observed during a quantum. The
only optimization that can be done to reduce data transfer is to remove the duplicates observed during the same
quantum. However, those observed during different quanta cannot be removed. Compared to SAGE-agg, SAGE-
approx significantly improves the evaluation of count-distinct queries in terms of data transfer. For each GroupKey,
the HLL++ algorithm transfers at most its m registers (integers). For an error rate of 2%, HLL++ uses m = 4096
registers, which represents a worst-case data transfer of 1.5 KBytes [9]. For GroupKeys that return a very large
number of different terms, 1.5 KBytes is not much compared to what it would cost to send all the terms to the client.
For GroupKeys that return a small number of different terms, HLL++ transfers only the used registers. For instance,
if a GroupKey returns 10 different terms, HLL++ will only transfer at most 10 registers.
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Fig. 8. Performance obtained in terms of execution time and data transfer with the SP workload on the DBpedia dataset.

7.1.2. Data transfer and execution time over DBPedia
To confirm the results observed on the synthetic datasets, we ran the SP workload on a fragment of DBpedia,

using both SAGE-agg, SAGE-approx and Virtuoso. The quantum for SAGE-agg and SAGE-approx has been set to
30 seconds. The results are shown in Fig. 8, where the queries (Q2, Q3, Q4, Q5, Q7, Q8, Q9, Q10, Q12, Q13, Q15,
Q16) labeled in blue are the ones that use the distinct modifier.

As expected, Virtuoso delivers the best performance in terms of data transfer and execution time. In terms of
execution time, the differences between Virtuoso and both SAGE-agg and SAGE-approx are mainly due to a lack of
query optimizations in the SAGE-agg and SAGE-approx implementations; no projection push-down, no merge-joins,
etc. In terms of data transfer, Virtuoso is optimal as it computes the full aggregations on the server-side and transfers
only the final results. Compared to Virtuoso, SAGE-agg and SAGE-approx perform only partial aggregations on
the server-side. Nevertheless, Virtuoso cannot ensure that all queries terminate under quotas. The red dotted line in
Fig. 8 corresponds to a quota of 60 s. As we can see, queries Q5, Q6, Q8, Q10, Q12, Q13, Q14, Q15, Q16, Q17 and
Q18 do not terminate, i.e. two thirds of the queries are interrupted after 60 s and return no results.

Compared to Virtuoso, the SAGE server does not interrupt queries. The queries are just suspended after a time
quantum and resumed later. Consequently, both SAGE-agg and SAGE-approx ensure termination of all queries.
Finally, as expected, SAGE-approx drastically improves performance in terms of data transfer on large RDF
datasets.
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Fig. 9. Average error rate for the GroupKeys of the SP workload queries on DBpedia according to the number of distinct values.

Fig. 10. Quantum impact on the execution of SP (left) and SP-ND (right) workloads on the BSBM-1k dataset.

7.1.3. Error rates over DBpedia
SAGE-approx approximates the result of count-distinct queries and hence, there is a potential for error. To ensure

that the theoretical guarantees on the error rate holds in practice, we measured the error rate for each GroupKey
returned by the queries of the SP workload on DBpedia. To compute the error rate, we used SaGe-agg as the
ground-truth. In Fig. 9, GroupKeys are grouped according to the number of distinct values returned, and the average
error rate is computed for each group. As expected, although HLL is a very powerful approximate algorithm on
large cardinalities, it fails on small cardinalities. Compared to HLL, HLL++ is a good estimator for the result of
SPARQL count-distinct queries. By adapting the algorithm used to compute the estimate according to the cardinal-
ities, HLL++ achieves an error rate lower than 2% for both small and large cardinalities.

7.1.4. Impact of time quantum
To study the impact of the quantum on data transfer and query execution time, the two workloads have been run

with different time quantum. Figure 10 reports the results of running SAGE, SAGE-agg, SAGE-approx and Virtuoso
with a quantum of 75 ms, 150 ms, 1.5 sec and 15 sec on BSBM-1k. The plots on the left detail the results for the SP
workload and on the right the SP-ND workload.

As we can see, increasing the quantum does not significantly improve the execution time. The speed of scans
does not change whatever the value of the quantum. However, increasing the quantum reduces the data transfer
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for SAGE-agg and SAGE-approx on both workloads. Indeed, increasing the quantum allows a better use of partial
aggregations. The less often a query is interrupted, the less likely it is to transfer the same GroupKeys multiple times.
That is why there is a significant drop between 150 ms and 1.5 sec in Fig. 10. With a quantum of 1.5 sec, queries
are interrupted 10 times less often than with a quantum of 150 ms. Between 75 ms and 150 ms, queries are only
interrupted half as often, consequently, the improvement is not as important as between 150 ms and 1.5 sec. Finally,
with a quantum of 15 sec, data transfer is optimal as all queries terminate between 1.5 and 15 seconds.

Finally, we can observe that SAGE-agg is less impacted by the quantum duration than SAGE-approx. Even if
higher quanta allow to deduplicate more terms, the number of elements transferred by SAGE-agg remains important
and dominates the data transfer.

8. Discussion

The results show that using probabilistic data structures to compute count-distinct queries significantly reduces
data transfer. However, the current implementation still has poor performance in terms of execution time, which
limits its application to very large knowledge graphs such as Wikidata or DBpedia. As mentioned in the experimental
study, these performance issues are due to a lack of query optimizations on the SAGE server. The simple application
of state-of-art optimization techniques, including filter and projection push-down, aggregate push-down or merge-
joins should significantly improve performance.

Moreover, the current approach only proposes to improve the evaluation of count-distinct queries. To evaluate
avg-distinct and sum-distinct queries, the server still has to transfer all the elements to the client. Unfortunately, to
the best of our knowledge, there is currently no probabilistic data structure that supports estimating a distinct sum.

Finally, to avoid the many-count distinct problem, we currently rely on Web preemption. By limiting the memory
dedicated to the aggregation results, we ensure that a quantum only processes a limited number of GroupKeys. Such
a solution has several drawbacks. First, it prevents us from using large quantum. Indeed, queries that return a large
number of GroupKeys will reach the memory limit before reaching the end of the quantum. As a result, the HLL++
sets will be less well utilized, queries will require more quanta to complete, which means more HTTP calls, more
data transfer and therefore worse execution time. Secondly, it just shifts the problem on the client-side. To address
the many-count distinct problem, different approaches [22,25] propose to make many HLL sketches share the same
registers. By sharing registers, the server could deal with more GroupKeys before exhausting its memory, but none
of these approaches propose solutions to handle HLL++ sketches. However, as HLL++ sketches rely both on HLL
and the LinearCounting algorithm, it could be possible to adapt the HLL++ algorithm so that HLL registers are
shared between different HLL++ sketches.

9. Conclusion and future works

In this paper, we have extended the partial aggregation operator presented in [7] in order to improve the evaluation
of count-distinct aggregate queries. We have shown how the decomposability property of the HyperLogLog++ algo-
rithm can be used to integrate HyperLogLog++ sketches in our framework. We have demonstrated experimentally
that using HyperLogLog++ sketches drastically reduce data transfer for SPARQL count-distinct queries. Compared
to related approaches, the presented solution ensures that all GroupKeys are discovered in a single pass with strong
guarantees on the error rate.

The next step is to extend this approach to handle large knowledge graphs. One way to scale up is to parallelize the
evaluation of SPARQL aggregate queries. Currently, Web preemption does not support intra-query parallelization
techniques. Defining how to suspend and resume parallel scans is clearly part of our research agenda. Finally,
addressing the many-count distinct problem on the server-side could reduce the data transfer, and the memory
consumption on both the server and the client.
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