
Semantic Web 13 (2022) 379–398 379
DOI 10.3233/SW-210452
IOS Press

Discovering alignment relations with Graph
Convolutional Networks: A biomedical case
study
Pierre Monnin a,b,*, Chedy Raïssi a,c, Amedeo Napoli a and Adrien Coulet a,d,e

a Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
E-mails: pierre.monnin@loria.fr, chedy.raissi@inria.fr, amedeo.napoli@loria.fr, adrien.coulet@inria.fr
b Orange, Belfort, France
c Ubisoft, Singapore
d Inria Paris, F-75012 Paris, France
e Centre de Recherche des Cordeliers (UMR1138 Inserm, Université de Paris, Sorbonne Université), F-75006
Paris, France

Editors: Mehwish Alam, FIZ Karlsruhe – Leibniz Institute for Information Infrastructure, Germany; Davide Buscaldi, LIPN,
Université Sorbonne Paris Nord, France; Michael Cochez, Vrije University of Amsterdam, the Netherlands; Francesco Osborne,
Knowledge Media Institute, (KMi), The Open University, United Kingdom; Diego Reforgiato Recupero, University of Cagliari, Italy;
Harald Sack, FIZ Karlsruhe – Leibniz Institute for Information Infrastructure, Germany
Solicited reviews: Matthias Samwald, Medical University of Vienna, Austria; Ernesto Jiménez-Ruiz, City, University of London,
United Kingdom and University of Oslo, Norway; One anonymous reviewer

Abstract. Knowledge graphs are freely aggregated, published, and edited in the Web of data, and thus may overlap. Hence, a key
task resides in aligning (or matching) their content. This task encompasses the identification, within an aggregated knowledge
graph, of nodes that are equivalent, more specific, or weakly related. In this article, we propose to match nodes within a knowledge
graph by (i) learning node embeddings with Graph Convolutional Networks such that similar nodes have low distances in the
embedding space, and (ii) clustering nodes based on their embeddings, in order to suggest alignment relations between nodes of
a same cluster. We conducted experiments with this approach on the real world application of aligning knowledge in the field of
pharmacogenomics, which motivated our study. We particularly investigated the interplay between domain knowledge and GCN
models with the two following focuses. First, we applied inference rules associated with domain knowledge, independently
or combined, before learning node embeddings, and we measured the improvements in matching results. Second, while our
GCN model is agnostic to the exact alignment relations (e.g., equivalence, weak similarity), we observed that distances in the
embedding space are coherent with the “strength” of these different relations (e.g., smaller distances for equivalences), letting us
considering clustering and distances in the embedding space as a means to suggest alignment relations in our case study.

Keywords: Knowledge graph, matching, embedding, Graph Convolutional Network, ontology, clustering

1. Introduction

The Semantic Web [3] offers tools and standards that facilitate the construction of knowledge graphs [17] that may
aggregate data and elements of knowledge of various provenances. The combined use of these scattered elements

*Corresponding author. E-mail: pierre.monnin@loria.fr.

1570-0844 © 2022 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:pierre.monnin@loria.fr
mailto:chedy.raissi@inria.fr
mailto:amedeo.napoli@loria.fr
mailto:adrien.coulet@inria.fr
mailto:pierre.monnin@loria.fr
https://creativecommons.org/licenses/by/4.0/

380 P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study

of knowledge allows access to a larger extent of the available knowledge, which is beneficial to many applications,
such as fact-checking or query answering. For this conjoint use to be possible, one crucial task lies in matching units
across knowledge graphs or within an aggregated knowledge graph, i.e., finding alignments or correspondences
between nodes, edges, or subgraphs. This task is well-studied in the Ontology Matching research field [12] and
is challenging since knowledge graphs differ in quality, completeness, vocabularies, and languages. Consequently,
different alignment relations may hold between units: some may indicate that two units are equivalent, weakly
related, or that one is more specific than the other.

In the present work, we focus on matching specific nodes within an aggregated knowledge graph represented
within Semantic Web standards. We view such a knowledge graph as a directed and labeled multigraph in which
nodes represent entities of a world – also named individuals – (e.g., places, drugs), literals (e.g., dates, integers),
or classes of individuals (e.g., Person, Drug). It should be noted that we discard litterals from the scope of the
present work. Nodes are linked together through edges defined as triples 〈subject,predicate,object〉 in the
Resource Description Framework (RDF) format language, where the predicate qualifies the relationship holding
between the subject and the object (e.g., has–side–effect, has-name). Entities, classes, and predicates
are identified by Uniform Resource Identifiers (URIs). Knowledge graphs can be associated with ontologies, i.e.,
formal representations of a domain [14], in which classes and predicates are organized in two distinct hierarchies.

We propose to match specific individuals that represent n-ary relationships through an approach that combines
graph embedding and clustering, outlined in Fig. 1. Graph embeddings are low-dimensional vectors that repre-
sent graph substructures (e.g., nodes, edges, subgraphs) while preserving as much as possible the properties of the
graph [5]. More precisely, we learn node embeddings with Graph Convolution Networks (GCNs) [20,29] such that
similar nodes have a low distance between their embeddings. We employ graph embeddings since their continuous
nature may provide the needed flexibility to cope with the heterogeneous representations of nodes to match [15].
GCNs compute the embedding of a node by considering the embeddings of its neighbors in the graph. Hence,

Fig. 1. Outline of our approach. Gold clusters are computed from existing alignments between the nodes to match in the knowledge graph (e.g.,
owl:sameAs, skos:broadMatch, skos:related, etc.). These alignments are then removed and various inferences rules associated with
domain knowledge are applied on the knowledge graph. Embeddings of nodes are learned with Graph Convolutional Networks (GCNs) and the
Soft Nearest Neighbor (SNN) loss. Clustering algorithms are then applied on the embedding space and the resulting clusters are evaluated with
regard to the gold clusters. A distance analysis is also performed for each alignment relation.

P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study 381

nodes with similar neighborhoods will have similar embeddings, what is well-adapted to a structural and relational
matching approach [26,33].

To suggest alignment relations from node embeddings, we apply a clustering algorithm on the embedding space
and consider nodes that belong to the same cluster as similar. The resulting clusters are evaluated by compari-
son with gold clusters, i.e., reference clusters that we aim to reproduce. We define these gold clusters as groups
of nodes linked directly or indirectly by preexisting alignments we obtained from a rule-based method previously
published [21]. These pre-existing alignments use five different alignment relations. For example, nodes may be
identical (owl:sameAs links), one may be more specific than the other (skos:broadMatch links), or weakly
similar (skos:related links). Hence, our approach is supervised and requires the preexistence of such align-
ments.

Within our approach, we particularly investigated the interplay between GCNs and domain knowledge through
the two following aspects. First, similarly to existing works with different embedding models [18], we applied
various inference rules associated with domain knowledge (e.g., class and predicate hierarchies, symmetry and
transitivity of predicates), independently or combined, before learning node embeddings, and we measured the
improvements or declines in matching results. Second, we explored how embeddings can differentiate between
different types of alignment relations. We made our GCN model agnostic to these exact relations during learning.
However, we observed that distances between the embeddings of similar nodes are different and coherent with the
type and “strength” of each alignment relation (e.g., smaller distances for equivalences, larger distances for weak
similarities). Such results allow us to think that distances in the embedding space can be used to suggest alignment
relations to connect nodes, in respect with distinct types of similarities. To the best of our knowledge, our approach
is the first one to investigate these aspects in a matching task, combining GCNs and clustering.

Our approach based on GCNs was motivated by the need to align pharmacogenomic (PGx) knowledge that we
previously aggregated in a knowledge graph named PGxLOD [22]. The biomedical domain of PGx studies the
influence of genetic factors on drug response phenotypes. As an example, Fig. 2 depicts the relationship pgr_1,
which states that patients treated with warfarin may experience vascular disorders because of variations in the
CYP2C9 gene. PGx knowledge originates from distinct sources: reference databases such as PharmGKB [34],
biomedical literature, or the mining of Electronic Health Records of hospitals. Consequently, there is an interest
in matching these sources to obtain a consolidated view of the PGx knowledge. Such a view would certainly be
beneficial to precision medicine, which aims at tailoring drug treatments to patients to reduce adverse effects and
maximize drug efficacy [6,9]. Elements of PGx knowledge consist of n-ary relationships between drugs, genomic
variations, and phenotypes, whereas only binary relations exist in Semantic Web standards. Thus, PGx relationships
in PGxLOD are reified as individual nodes whose neighbors are the involved drugs, genetic factors, and phenotypes
(see Fig. 2) [25]. In this context, matching PGx relationships reduces to matching the nodes resulting from their
reification. By using GCNs, we hope that nodes representing PGx relationships that involve similar drugs, genetic
factors, and phenotypes will have similar embeddings since they have similar neighborhoods.

The remainder of this paper is organized as follows. In Section 2, we outline some works related to node matching
in knowledge graphs and graph embeddings. We detail the core of our matching approach (node embeddings and
clustering) in Section 3, and how inference rules associated with domain knowledge are considered in Section 4. In
Section 5, we conduct experiments with this approach on PGxLOD, a large knowledge graph we built that contains
50,435 PGx relationships [22]. Finally, we discuss our results and conclude in Section 6 and 7.

Fig. 2. Representation of a PGx relationship between gene CYP2C9, drug warfarin and phenotype vascular_disorders. This relation-
ship is reified through the individual pgr_1, connecting its components through the causes predicate.

382 P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study

2. Related work

2.1. Matching

Numerous papers exist about knowledge graph matching. The interested reader could refer to the book of Euzenat
and Shvaiko [12] for a formalization of the matching task, and a detailed presentation of the main methods. In the
following, we focus on graph embedding techniques. Such techniques have been successfully applied on knowledge
graphs for various tasks such as node classification, link prediction, or node clustering [5,32]. Interestingly, the
task of matching nodes can be alternatively tackled as a link prediction task (i.e., predicting alignments between
nodes) or as a node clustering task (i.e., grouping similar nodes into clusters). Here, we choose the node clustering
approach.

2.2. Graph embedding

Existing papers about graph embedding differ in the considered type of graphs (e.g., homogeneous graphs, hetero-
geneous graphs such as knowledge graphs) or in the embedding techniques (e.g., matrix factorization, deep learning
with or without random walk). The survey of Cai et al. [5] presents a taxonomies of graph embedding problems
and techniques. Hereafter, a few specific examples are detailed but a more thorough overview can be found in the
following surveys [5,24,32]. Some approaches are translational. For example, TransE [4] computes for each triple
〈s, p, o〉 of a knowledge graph, embeddings hs , hp, ho, such that hs + hp ≈ ho, i.e., the translation vector from
the subject to the object of a triple corresponds to the embedding of the predicate. This approach is adapted for
link prediction but, according to the authors, it is unclear if it can adequately model relations of distinct arities,
such as 1-to-Many, or Many-to-Many. Other approaches use random walks in the knowledge graph. For example,
RDF2Vec [28] first extracts, for each node, a set of sequences of graph sub-structures starting from this node. Ele-
ments in these sequences can be edges, nodes, or subtrees. Then, sequences feed the word2vec model that compute
embeddings for each element in a sequence by either maximizing the probability of an element given the other ele-
ments of the sequence (Continuous Bag of World architecture) or maximizing the probability of the other elements
given the considered element (Skip-gram architecture).

2.3. Graph Convolutional Networks (GCNs)

The approach adopted in this article is based on Graph Convolutional Networks (GCNs). GCNs have been intro-
duced for semi-supervised classification over graphs [20] and extended for entity classification and link prediction
in knowledge graphs [29]. In contrast with TransE and RDF2Vec that work at the triple and sequence levels, GCNs
compute the embedding of a node by considering its neighborhood in the graph. Hence, as aforementioned, we
believe GCNs are well-suited for our application of matching reified n-ary relationships since similar relationships
have similar neighborhoods. Other existing works rely on this assumption that similar nodes have similar neighbor-
hoods and use GCNs for their matching. For example, Wang et al. [33] propose to align cross-lingual knowledge
graphs by using GCNs to learn node embeddings such that nodes representing the same entity in different languages
have close embeddings. Pang et al. [26] use the same approach to align two knowledge graphs, but introduce an
iterative aspect. Some newly-aligned entities are selected and used when learning embeddings in the next iteration.
To avoid introducing false positive alignments, the newly-aligned entities are selected with a distance-based criteria
proposed by the authors. Interestingly, the two previous approaches take into account literals in the embedding pro-
cess and use the triplet loss, also used by TransE. On the contrary, in our work, we discard literals and use the Soft
Nearest Neighbor loss [13] to consider all positive and negative examples instead of sampling.1

1GCNs and the Soft Nearest Neighbor loss are further detailed in Section 3.2.

P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study 383

2.4. Graph embedding and domain knowledge

However, previous methods do not consider inference rules associated with domain knowledge represented in
knowledge graphs on the contrary of recent papers [27]. For example, Iana and Paulheim [18] evaluate the RDF2Vec
embedding model when inferred triples associated with subproperties, symmetry, and transitivity of predicates are
added to the knowledge graph. Interestingly, the addition of inferred triples seems to degrade the performance of
RDV2Vec embeddings in downstream applications (e.g., regression, classification). Instead of materializing inferred
triples into the knowledge graph, d’Amato et al. [10] propose to inject domain knowledge in the learning process
by defining specific loss functions and scoring functions for triples. Logic Tensor Networks [30] learn groundings
of logical terms and logical clauses. The grounding of a logical term consists in a vector of real numbers (i.e., an
embedding) and the grounding of a logical clause is a real number in the interval [0, 1] (i.e., the confidence in
the truth of the clause). The learning process aims at minimizing the satisfiability error of a set of clauses, while
ensuring the logical reasoning. This work can interestingly be compared to graph embeddings if knowledge graphs
are considered in their logical form, i.e., considering nodes as logical terms and edges linking two nodes as logical
formulae. Alternatively, Wang et al. [31] propose an hybrid attention mechanism named “Logic Attention Network”
(LAN) in embedding approaches for link prediction. LAN combines a mechanism based on logical rules and a neural
network mechanism. The rule-based mechanism weights neighbors by promoting those linked by a predicate that
has been found to strongly imply the predicate of the link to predict. Besides implications between predicates, more
complex logical rules can be associated with knowledge graphs through ontologies. That is why Gutiérrez-Basulto
and Schockaert [16] investigate how to ensure logical consistency through geometrical constraints on embedding
spaces and if classical embedding techniques respect such constraints. Similarly, OWL2Vec* [7] focus on embedding
complex logical constructors as well as the graph structure and literals.

These related works and our preliminary results [23] inspired the present work where we investigate how (i)
inference rules associated with domain knowledge can improve the performances in node matching and (ii) the
distance in the embedding space is representative of the type and “strength” of alignment relations, and thus can be
used to suggest the specific relation to use between matched nodes.

3. Matching nodes with Graph Convolutional Networks and clustering

3.1. Approach outline

Our approach is outlined in Fig. 1.
It takes as input an aggregated knowledge graph K and a set S of nodes to match, where S is a subset of the nodes

of K. This initial selection of the nodes to match is motivated by our biomedical application as we only intend to
match nodes that represent reified PGx relationships. We discard literals and edges incident to literals from K and S.
Hence, a node is either an entity or a class. We consider that we have at our disposal gold clusters, i.e., sets of nodes
from S that are already labeled as similar. These gold clusters can have uneven sizes. We propose to match nodes in
S as follows:

1. Learn embeddings for all nodes in K such that nodes in S labeled as similar (i.e., belonging to the same gold
cluster) have smaller distances between their embeddings (Section 3.2).

2. Apply a clustering algorithm only on the embeddings of nodes from S and consider nodes belonging to the
same cluster as similar (Section 3.3).

It should be noted that gold clusters can result from another automatic matching method or a manual alignment
by an expert. For example, in Section 5, our gold clusters are computed from alignments semi-automatically ob-
tained with rules manually written by experts [21]. These alignments can use different alignment relations (e.g.,
equivalence, weak similarity). We further detail in Section 5.1 how distinct relations are taken into account in our
experiments.

384 P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study

3.2. Learning node embeddings with Graph Convolutional Networks and the Soft Nearest Neighbor loss

To learn embeddings for all nodes in K, we propose to use Graph Convolutional Networks (GCNs) and the Soft
Nearest Neighbor loss. In the following, we adopt the model, notations, and definitions of Schlichtkrull et al. [29].
As such, R denotes the set of predicates in the considered knowledge graph K. Given a node i and a predicate
r ∈ R, we denote by N r

i the set of nodes reachable from i by an edge labeled by r .
Graph Convolutional Networks (GCNs) can be seen as a message-passing framework of multiple layers, in which

the embedding h
(l+1)
i of a node i at layer (l + 1) depends on the embeddings of its neighbors at level (l), as stated

in Eq. (1).

h
(l+1)
i = σ

(∑
r∈R

∑
j∈N r

i

1

ci,r

W(l)
r h

(l)
j + W

(l)
0 h

(l)
i

)
(1)

This convolution over the neighboring nodes j of i is computed with a specific weight matrix W
(l)
r for each predicate

r ∈ R and each layer (l). The convolution is regularized by a constant ci,r , that can be set for each node and
each predicate. Similarly to Schlichtkrull et al. [29], we use ci,r = |N r

i |. The weight matrix W
(l)
0 enables a self-

connection, i.e., the embedding of i at layer (l + 1) also depends on its embedding at layer (l). σ is a non-linear
function such as ReLU or tanh.

The number of predicates in K can lead to a high number of parameters W
(l)
r to optimize. To ensure the scalability

of our approach and reduce the number of parameters to optimize, we use the basis-decomposition proposed by
Schlichtkrull et al. [29]. Hence, each W

(l)
r is decomposed as follows:

W(l)
r =

B∑
b=1

a
(l)
rb V

(l)
b (2)

For each level (l), B matrices V
(l)
b ∈ R

d(l+1)×d(l)
and |R| × B coefficients a

(l)
rb ∈ R are learned, where d(l) and

d(l+1) denote the dimension of embeddings at level (l) and level (l + 1) respectively. Then, each W
(l)
r is computed

as a linear combination of matrices V
(l)
b and coefficients a

(l)
rb . As only these coefficients depend on predicates r , the

number of parameters to learn is reduced.
Recall that our objective is to cluster similar nodes, which differs from previous applications of GCNs (e.g., node

classification, link prediction [20,29,33]). Hence, we propose to train GCNs from scratch by minimizing the Soft
Nearest Neighbor (SNN) loss which, to the best of our knowledge, has never been used with GCN models before.
This loss was defined by Frosst et al. [13] and is presented in Eq. (3),

LSNN = − 1

|N |
∑
i∈N

log

(∑
j∈N
j �=i

Yi=Yj

e− ‖hi−hj ‖2

T

∑
k∈N
k �=i

e− ‖hi−hk‖2

T

)
(3)

The input of the SNN loss consists of:

– A set N of nodes belonging to the gold clusters (see Section 5.2).
– A set Y of labels for nodes in N . These labels corresponds to the assignments of nodes in N to the gold clusters.
– A temperature T .
– Embeddings h of nodes. These embeddings are the output of the last layer of the GCN model.

Minimizing the SNN loss corresponds to minimizing intra-cluster distances and maximizing inter-cluster distances
for the gold clusters of nodes in N . The temperature T determines how distances influence the loss. Indeed, distances

P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study 385

between widely separated embeddings are taken into account when T is large whereas only distances between close
embeddings are taken into account when T is small. To avoid T as an hyperparameter of the model, we adopt the
same learning procedure as Frosst et al. [13]: T is initialized to a predefined value and is optimized by learning 1

T

as a model parameter.
The computation of LSNN (Eq. (3)) considers all positive and negative examples from N . Indeed, distances be-

tween nodes with the same label are minimized (i.e., positive examples) whereas distances between nodes with
different labels are maximized (i.e., negative examples). However, it is noteworthy that K is based on the Open
World Assumption. Hence, nodes with different labels are regarded as dissimilar (i.e., negative examples) while
their (dis)similarity may only be unknown.

This step enables to learn embeddings for all nodes in K such that distances between embeddings of identified
similar nodes (in N in LSNN) are low. Note that, in this learning procedure, the semantics of relations in K is not
taken into account. We propose to take into account this semantics with a preprocessing step presented in Section 4.

3.3. Matching nodes by clustering their embeddings

After embeddings of all nodes in the graph have been output by the last layer of the GCN, we perform a clustering
on embeddings hi for all nodes i ∈ S, i.e., all nodes to check for matching. Nodes assigned to one same cluster are
considered as similar and connected with an alignment relation. Clusters are evaluated with regard to gold clusters.

We conduct comparative experiments with three distinct clustering algorithms presented in Table 1, in regards
with three classical metrics presented in Table 2. Within the large set of existing algorithms, our choice has been
guided by the constraints of our task that requires to handle an important number of clusters, potentially large, and
with uneven sizes (see Section 5.1 and Fig. 3 for the sizes of gold clusters computed on PGxLOD). We decided
to arbitrarily limit ourselves to three algorithms, but decided to opt for algorithms that cover some diversity in the
various family of algorithms. Our three algorithms differ in their parameters: in particular they require either the
number of clusters to find (Ward and Single) or the minimum size of clusters (OPTICS). We used our set of gold
clusters to set these parameters. Considering these distinct algorithms allows us to evaluate the influence of inference
rules in different settings (see Section 4).

Table 1

Clustering algorithms applied on the embeddings of nodes in S. Nodes that belong to the same predicted cluster are considered as similar

Algorithm Parameter Description

Ward Number of clusters to find Hierarchical clustering algorithm that successively merges clusters by minimizing the
variance of merged clusters

Single Number of clusters to find Hierarchical clustering algorithm that successively merges clusters whose distance between
their closest observations is minimal

OPTICS [1] Minimum size of clusters Algorithm that finds zones of high density and expand clusters from them

Table 2

Performance metrics used to compare the clusters predicted by the algorithms presented in Table 1 with gold clusters

Metric Abbr. Domain Description

Unsupervised
Clustering Accuracy

ACC [0, 1] Counts nodes whose predicted cluster label is the same as their gold cluster label divided by
the total number of nodes. As labels may be permuted between predicted and gold clusters,
the mapping with the best ACC is used.

Adjusted Rand Index ARI [−1, 1] Considers all pairs of nodes and counts those whose nodes are assigned to the same or
different clusters both in predicted and gold clusters. ARI is equal to 0 for a random labeling,
and equal to 1 for a perfect labeling (up to a permutation). ARI is adjusted for chance.

Normalized Mutual
Information

NMI [0, 1] Measures the mutual information between the predicted and gold clusters, normalized by the
entropy of both types of clusters. NMI is equal to 1 for a perfect labeling (up to a
permutation).

386 P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study

4. Evaluating the influence of applying inference rules associated with domain knowledge

Semantic Web knowledge graphs are represented within formalims such as Description Logics [2] that are
equipped with inference rules. Hence, we propose to evaluate the improvements in the results of our matching
approach (detailed in Section 3) when considering such inference rules, independently or combined. Here, we only
consider the inference rules associated with the following logic axioms: class and predicate assertions, equivalence
axioms between entities or classes, subsumption axioms between classes or predicates, and axioms defining predi-
cate inverses. We consider this limited set of inference rules because they are the only ones actionable in PGxLOD,
the knowledge graph that motivated our study. Accordingly, we generate six different graphs (G0–5) by running over
K these inference rules until saturation. This inference and saturation process is implemented in a Python script,
without the use of an inference engine in part because at this stage the graph is in the format of the GCN library
and in part because this facilitates the independent activation of inference rules that is required by our experiment.
Soundness and completeness of this inference and saturation process were carefully checked but scalability was not
tested on knowledge graphs larger than PGxLOD. We then test our approach on these six graphs that are summarized
in Table 3 and further described below.

G0 constitutes the baseline in which no inference rules are run and with the systematic addition of abstract in-
verses. Indeed, Schlichtkrull et al. [29] consider that for every predicate r ∈ R, there exists an inverse rinv ∈ R.
Thus, for every r ∈ R, we add an abstract inverse rinv ∈ R such that its adjacency matrix represents the inverse
of r . This addition of abstract inverses is performed in all other graphs, except when explicitly stated otherwise. G1
results from the contraction of owl:sameAs edges. Indeed, in K, several nodes representing the same entity can
co-exist. In this case, they may be linked (directly or indirectly) by owl:sameAs edges and should be considered
as one, which is enabled by this contraction. It is noteworthy that the standard transformation actually consists in

Table 3

Visual summary of the transformations of K to evaluate the influence of the application of inference rules associated with domain knowledge on
node matching. G0 is the baseline that corresponds to no inference rules being run and the systematic addition of abstract inverses

Graph Before After

G0

G1

G2

G3

G4

G5 All transformations from G1 to G4

P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study 387

propagating edges to equivalent nodes instead of merging them. However, in our case study, the merging transfor-
mation was prefered because it is aligned with the architecture of GCNs that corresponds to the topological structure
of the graph. In G2, we do not always add abstract inverses but consider definitions of inverses and symmetry of
predicates instead. That is to say:

(i) For a predicate r1 defined as symmetric (i.e., r1 ≡ r−1
1), we do not add an abstract inverse r1 inv and complete

its adjacency matrix to ensure its symmetry.
(ii) For a predicate r2 that has a defined inverse r3 (i.e., r3 ≡ r−1

2), we do not add an abstract inverse r2 inv and
complete their adjacency matrices to ensure they represent inverse predicates.

(iii) Otherwise, for a predicate r4 that neither is symmetric nor have a defined inverse, we add an abstract inverse
r4 inv such that its adjacency matrix represents the inverse of r4.

G3 takes into account the hierarchy of predicates. Indeed, if a predicate r1 is a subpredicate of r2 (i.e., r1 	 r2) and
a triple 〈i, r1, j 〉 exists, then we make sure the triple 〈i, r2, j 〉 also exists in the graph. This completion is performed
by considering the transitive closure of the subsumption relation 	. That is to say, if r1 	 r2 and r2 	 r3, we
also consider r1 	 r3. Similarly, G4 completes type edges based on the hierarchy of ontology classes defined
by subClassOf edges. Hence, if 〈i,type, j 〉 and 〈j,subClassOf, k〉 exist in the graph, then we ensure that
〈i,type, k〉 is also in the graph. Here again, subClassOf edges are considered by computing their transitive
closure. Finally, G5 is the graph resulting from all transformations from G1 to G4.

5. Experiments

We conducted experiments with PGxLOD,2 a large knowledge graph about pharmacogenomics (PGx) that we
previously built and that motivated this study [22]. Our approach is implemented in Python, using PyTorch and the
Deep Graph Library for learning embeddings, and scikit-learn for clustering. Our code is available on GitHub.3

5.1. Knowledge graph and gold clusters of similar nodes

PGxLOD presents several characteristics needed in the scope of our study. First, PGxLOD contains nodes whose
matching is well-adapted to a structure-based approach such as ours. Additionally, alignments are expected to be
found between these nodes. Indeed, PGxLOD contains 50,435 PGx relationships resulting from:

– an automatic extraction from the reference database PharmGKB;
– an automatic extraction from the biomedical literature;
– a manual representation of 10 studies made from Electronic Health Records of hospitals.

Alignments are expected to be found between such relationships since, for example, PharmGKB is manually curated
by experts after a literature review. Recall that PGx relationships are n-ary, and thus they are reified as nodes, as
illustrated in Fig. 2 [25]. Hence, nodes representing these relationships form our set S of nodes to match. The
reification process entails that neighbors of such nodes are the drugs, genetic factors, and phenotypes involved in
the relationships. Consequently, similar relationships have similar neighborhoods, which makes a structure-based
approach such as ours well-adapted for their matching.

Second, PGxLOD contains owl:sameAs edges (or equivalence axioms), which makes possible the transfor-
mation represented in G1. Indeed, PGxLOD integrates several Linked Open Data sets: ClinVar, DrugBank, SIDER,
DisGeNET, PharmGKB, and CTD. These LOD sets contain facts describing components of PGx relationships (i.e.,
drugs, phenotypes, and genetic factors). Several LOD sets may describe the same entities and we know it explicitly,
i.e., some nodes belonging to different LOD sets are linked with owl:sameAs edges. For example, this could be
the case of a drug represented both in PharmGKB and DrugBank. Thus, we can apply the owl:sameAs identifi-
cation.

2https://pgxlod.loria.fr
3https://github.com/pmonnin/gcn-matching

https://pgxlod.loria.fr
https://github.com/pmonnin/gcn-matching

388 P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study

Table 4

Alignment relations considered in each gold clustering to compute the gold clusters used in our experiments. We indicate whether a relation is
transitive (T or ¬ T) and symmetric (S or ¬ S)

owl:sameAs skos:closeMatch skos:relatedMatch skos:related skos:broadMatch

T, S T, S T, S ¬ T, S T, ¬ S

C0 × × × × ×
C1 × × × ×
C2 ×
C3 ×
C4 ×
C5 ×
C6 ×

Third, PGxLOD contains subsumption axioms between classes and between predicates, which makes possible
the transformations represented in G3 and G4. Indeed, PGxLOD includes the ATC, MeSH, PGxO, and ChEBI on-
tologies.

Fourth, some PGx relationships in S are already labeled as similar through alignments resulting from the applica-
tion of five matching rules previously published [21]. These alignments use the five following alignment relations:
owl:sameAs, skos:closeMatch, skos:relatedMatch, skos:related, and skos:broadMatch.
Alignments using owl:sameAs and skos:closeMatch indicate strong similarities, whereas skos:rela-
tedMatch and skos:related indicate weaker similarities. Alignments using skos:broadMatch indicate
that a PGx relationship is more specific than another. These alignments are removed before running inference rules
over K, learning embeddings, and clustering. However, they allow to compute gold clusters, i.e., sets of nodes that
are considered as similar since they are directly or indirectly connected through alignments. We propose the differ-
ent gold clusterings detailed in Table 4 (named C0 to C6). They variously consider the five alignment relations when
computing gold clusters to evaluate our approach in different settings (e.g., all the different alignment relations in
C0, only symmetric relations in C1, only equivalences in C2). For each gold clustering, gold clusters correspond
to the connected components computed by only considering the (undirected) alignments of the selected alignment
relations between nodes in S. Hence, all alignment relations are regarded as symmetric (undirected links) and tran-
sitive (connected components), which is coherent with the majority of alignment relations (see Table 4). Figure 3
presents the sizes of the resulting gold clusters. We notice that many gold clusters have a size lower or equal to 10,
and that considering skos:related or skos:broadMatch links increases the maximal size of gold clusters.
The availability of all these different alignment relations also allows to perform the distance analysis described in
Section 5.4 and indicated in Fig. 1.

5.2. Learning node embeddings

We experimented our approach with different pairs (Ci ,Gj) that were selected for their experimental interest. All
gold clusterings were experimented with graphs G0 and G5 to have a global view of the impact on performance of
applying inference rules associated with domain knowledge. All graphs were experimented with C0 to have a finer
evaluation of each inference rule on the most heterogeneous gold clustering. For each pair (Ci ,Gj), a 5-fold cross-
validation was performed as follows. For each Ci , S is split into five sets Si

k (k ∈ {1, 2, 3, 4, 5}). All Si
k contain the

same number of nodes for each gold cluster of Ci larger than 5 nodes. Each set Si
k is successively used as the test set

Stest, while set Si
(k+1) is used as the validation set Sval.4 Remaining sets form the train set Strain. This corresponds to

a random split of nodes to match with 60% train – 20% validation – 20% test.
An architecture formed by 3 GCN layers is used to learn node embeddings. The input layer consists of a feature-

less approach as in [20,29], i.e., the input is just a one-hot vector for each node of the graph. It should be noted that
this one-hot vector encoding can scale to relatively large knowledge graphs because (i) we use look-up mechanisms

4Si
1 is the validation set when Stest = Si

5.

P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study 389

Fig. 3. Number of gold clusters (y-axis) by size (x-axis) for each gold clustering. The max value is the maximum size of gold clusters (in terms
of number of nodes). The minimum size is 1 for every gold clustering. Only gold clusters larger than 10, 20, and 50 nodes are later used to
compute performance metrics. Gold clusterings are defined in Table 4.

in weight matrices based on node indices, and thus one-hot vectors are actually never stored in memory or used
in computations, and (ii) we use a basis-decomposition to limit the number of parameters. All three layers of our
architecture have an output dimension of 16. Therefore, output embeddings for all nodes in the knowledge graph
are in R

16. The activation function used on the input and hidden layers is tanh while the output layer uses a linear
function. We use a basis-decomposition of 10 bases and set ci,r = |N r

i | for all i and all r . Our architecture is similar
to the one used in [29] except for the dimension of the hidden layer and the activation function of the output layer.
In such a 3-layer architecture, it follows from Eq. (1) that only neighboring nodes up to 3 hops5 of nodes in S

will have an impact on their embeddings, output at layer 3. Thus, to save memory, we reduce graphs to such 3-hop
neighborhoods. Statistics about these reduced graphs are available in Table 5.

Only the embeddings of nodes in S (here, the PGx relationships) are considered in our clustering task. Hence,
only these embeddings are constrained in the SNN loss. However, in LSNN (Eq. (3)), each node needs at least one
other node assigned to the same gold cluster (i.e., having the same label). Thus, only gold clusters of size greater
or equal to 10 are used in the learning process since each Si

k contains at least 2 nodes of these clusters. This is

5The 3-hop neighborhood of a node n consists of all the nodes that can be reached with a breadth-first traversal that starts at n and traverses at
most 3 edges.

390 P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study

Table 5

Statistics of PGxLOD and its transformations as described in
Section 4. Statistics for PGxLOD discard literals and edges in-
cident to literals. As we use a 3-layer architecture, statistics for
all Gi only consider neighboring nodes up to 3 hops of nodes
in S (i.e., PGx relationships to match). # denotes “number of”

nodes # edges # predicates

PGxLOD 11,808,396 43,341,712 416

G0 3,758,814 39,956,844 689

G1 3,879,081 46,960,365 733

G2 3,758,814 22,085,701 347

G3 3,758,814 41,048,190 697

G4 3,758,928 42,691,984 701

G5 3,882,945 27,277,789 375

particularly needed for the validation and test losses but we chose to use the same constraint for the train loss for
homogeneity. We use the Adam optimizer [19] with a starting learning rate of 0.01. T is initialized to 1. We learn
during 200 epochs with an early-stopping mechanism: if the validation loss does not decrease of 0.0001 after 10
epochs, the learning process is stopped.

5.3. Clustering

Clustering algorithms are only applied on the embeddings of nodes in Stest since they are the nodes we aim to
match. Recall that the learning process only considers nodes belonging to gold clusters whose size is greater or equal
to 10. Accordingly, we apply the three clustering algorithms introduced in Table 1 and evaluate their performance
on embeddings of nodes in Stest that belong to gold clusters whose size is greater or equal to 50, 20, and 10. These
different sizes allow to evaluate the influence of inference rules in the performance of our matching approach when
considering only large or all gold clusters.

Results on all gold clusterings and graphs G0 and G5 are summarized in Table 6. Detailed results are available
Table 8, Table 9 and Table 10 in the Appendix. In these supplementary tables, gray cells indicate the best results
among clustering algorithms given a gold clustering, a graph, and a metric. For example, in Table 8, considering
C0 and G0, the best ACC is obtained with the Single clustering algorithm. Underlined values indicate the best
result between G0 and G5 given a gold clustering and a metric. For example, in Table 8, given C1, the best NMI
for Ward is obtained with G0 whereas the best ACC is obtained with G5. We notice in Table 6 that applying all
inference rules (i.e., G5) generally increases performance for C0 and C1 which are gold clusterings that mix different
alignment relations. Results for the other gold clusterings do not show such an homogeneous and important increase
in performance.

Results on C0 and all graphs are summarized in Table 7. Detailed results are available in Table 11, Table 12,
and Table 13 in the Appendix. In these tables, gray cells indicate the best result among clustering algorithms and
underlined values indicate the best result between graphs. For example, in Table 11, given G0, the best ACC is
obtained with the Single clustering algorithm. Given the Single algorithm, the best ARI is obtained with G3 and G5.
Here again, we notice that applying all inference rules (i.e., G5) leads to the best results. However, computing all
instantiations based on the transitive closure of the subsumption (i.e., G4) seems to degrade clustering performance.

5.4. Distance analysis

During learning and clustering, our model is unaware of the different alignment relations holding between similar
nodes. Indeed, the SNN loss only considers labels of gold clusters that do not indicate the alignment relations used
to compute these clusters. This is particularly relevant for gold clusterings C0 and C1 that mix different alignment
relations to compute the gold clusters. However, inspired by our preliminary results [23], we display in Fig. 4 the

P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study 391

Table 6

Summary of the results of clustering nodes for all gold clusterings
and graphs G0 and G5. For each gold clustering, a cross (×) indicates
whether the best results were obtained with G0 or G5. Detailed results
are available in Tables 8, 9, and 10 in the Appendix

Size of gold clusters Gold clustering G0 G5

�50 C0 ×
C1 ×
C2 ×
C3 × ×
C4 × ×
C5 ×
C6 ×

�20 C0 ×
C1 ×
C2 ×
C3 ×
C4 ×
C5 ×
C6 × ×

�10 C0 ×
C1 ×
C2 × ×
C3 ×
C4 ×
C5 × ×
C6 ×

Table 7

Summary of the results of our clustering for C0
and all graphs. Detailed results are available in Ta-
bles 11, 12, and 13 in the Appendix

Graph Performance

G0 Baseline

G1 Improvements

G2 Light deterioration

G3 Improvements

G4 Consistent deterioration

G5 Improvements – Best results

distributions of distances between similar nodes in the test set by alignment relation. This analysis is presented for
C0 and graphs G0 and G5. Interestingly, similarly to our preliminary results [23], such distributions of distances are
coherent with the “strength” of the alignment relations. Indeed, for example, nodes that are weakly similar tend to be
further apart than equivalent nodes. Only the skos:broadMatch relation presents different distance distributions
with regard to the distance distributions of the other relations across the different test sets. This could be explained
since this is the only non-symmetric relation (see Table 4).

392 P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study

Fig. 4. Distributions of distances between similar nodes by alignment relation for each test set, the C0 gold clustering and the two graphs G0
and G5. In each subpicture, links are from left to right: owl:sameAs, skos:closeMatch, skos:relatedMatch, skos:related, and
skos:broadMatch.

6. Discussion

6.1. Impact of inference rules

It appears that G5 (i.e., all inference rules) consistently increases performance for C0 and C1 (see Table 6). Other
gold clusterings (C2–C6) do not show such an homogeneous and important increase in performance between G0 and
G5. C0 and C1 mix different alignment relations, which leads to a more difficult matching task. This let us think that
inference rules associated with domain knowledge provide useful improvements when dealing with heterogeneous
similarities and clusters.

In C0 (clustering with all alignment relations) inference rules seem to improve results with most of the expended
graphes, except for G4 (see Table 7). In G4, class instantiation is satured. Consequently, “general” classes are directly
linked to entities that instantiate them instead of indirectly. Hence, when computing the embeddings of such entities,
embeddings of both general and specific classes are directly considered through the same predicate type, which
makes difficult for the GCN to weight these classes differently. As specific classes are more important than general
classes to discriminate similar and dissimilar nodes, their undifferentiated influence in G4 embeddings may explain
the decrease in performance. We notice that G5 performs best, which advocates for considering all inference rules
together. However, based on the degraded performance of G4 with regard to G0, one may want to test the progressive
addition of inference from G1, G2, and G3. We leave such additional experiment for future works.

6.2. Impact of clustering set-up

Clustering performances are generally better for gold clusterings C2 to C6 than C0 and C1 (see Table 8, Table 9,
and Table 10 in the Appendix). These two gold clusterings mix different alignment relations when computing gold
clusters, and thus their matching task is expected to be more difficult. We also notice that performances tend to
decrease when considering additional gold clusters (i.e., when decreasing their minimum size). Here again, such
a task is more difficult. Indeed, clustering algorithms need to find more clusters (for Ward and Single), or clusters
with a reduced minimum size (for OPTICS). However, this is not the case for C2, C3, and C4. This can be explained
because, for such gold clusterings, only few gold clusters have a size greater or equal to 50 or 20 (see Fig. 3), and
thus only few training examples are available. Hence, reducing the minimum size leads to consider more training
examples, and, despite the task being more difficult, improves performance.

Among the considered clustering algorithms, Single generally performs better than the others. For C0 and C1,
OPTICS is the second best algorithm. For the other gold clusterings, Single and Ward give the best performance.
In particular, we notice that OPTICS tends to have a decent ACC but reduced ARI and NMI. As this algorithm is

P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study 393

unaware of the number of clusters to find and only knows their minimum size, low ARI and NMI may indicate a
different clustering output in terms of both number and size of clusters. Indeed, ARI counts the pairs of nodes that
have similar of different assignments both in predicted and gold clusters and NMI measures the mutual information
between two different clusterings. On the contrary, ACC counts the number of nodes correctly assigned. Hence,
big gold clusters (partially) correctly assigned may increase the ACC value even between different clusterings.
Such a situation arises here since some of our gold clusterings lead to gold clusters with numerous nodes. For
example, Fig. 3 shows that a gold cluster in C0 contains 17,568 nodes. We noticed that in some cases Ward have
poor performances. The Ward algorithm minimizes the sum of squared differences within all clusters, whereas
Single minimizes the distance between the closest observations of merged clusters. This let us think that the merging
criterion of Single is better adapted to the loss function we use (i.e., the Soft Nearest Neighbor loss).

6.3. Distance analysis

Regarding the distance analysis of node embeddings, Fig. 4 shows that distances between similar nodes are dif-
ferent depending on the alignment relation holding between them. Recall that our GCN model is agnostic to these
alignment relations when computing the SNN loss. Interestingly, distances reflect the “strength” of the alignment re-
lations: strong similarities (i.e., owl:sameAs and skos:closeMatch links) have smaller distances than weaker
ones (i.e., skos:relatedMatch and skos:related links). The skos:broadMatch relation appears more
difficult to position with regard to others. This can be explained as it is the only alignment relation that is not sym-
metric. Such coherent distributions of distances seem to indicate the “rediscovery” of alignment relations by GCNs
and encourages to consider the distance between embeddings of nodes in a “semantic” way, i.e., smaller distances
indicate stronger similarities. Hence, an interesting perspective lies in predicting the exact alignment relation hold-
ing between similar nodes (i.e., in the same cluster) based on the distance between their embeddings, and evaluating
this prediction. Additionally, such different distances also seem to confirm that the neighborhood aggregation of
embeddings in GCNs makes them well-suited to a structural and relational matching.

6.4. Towards a further integration of domain knowledge in GCNs

Our results highlight the interest of considering domain knowledge associated with knowledge graphs in embed-
ding approaches and seem to advocate for a further integration of domain knowledge within embedding models.
Future works may investigate the same targets with additional inferences rules (e.g., from OWL 2 RL semantics)
or different embedding techniques, whether based on graph neural networks [11] or others (e.g., translational ap-
proaches such as TransE). Additionally, we did not use attention mechanisms, which could also consider domain
knowledge as in Logic Attention Network [31]. Here, inference rules associated with domain knowledge are used to
transform the knowledge graph as a pre-processing operation. However, we could envision to consider such mech-
anisms directly in the model (e.g., weight sharing between predicates and their super-predicates). Literals could
also be taken into account [33]. In a larger perspective, one major future work lies in investigating if and how other
semantics than types of alignments can emerge in the output embedding space.

6.5. Generalization to other knowledge graphs

Despite our approach being motivated by the matching of individuals within an aggregated knowledge graph, its
transposition to distinct graphs could be explored. Such a perspective could allow to assess the generalization of
our approach and its results. In particular, we could consider knowledge graphs that are not completely independent
such as LOD datasets that are connected through major LOD hubs. Recall that our approach is supervised since gold
clusters are computed from preexisting alignments. Hence, testing our approach on different knowledge graphs of
the LOD would require such preexisting alignments or using ontology alignment systems in a distant supervision
process [8]. In this setting, merging the different graphs into one and learning a “global” embedding, as we did, may
provide positive results but may pose additional scalability issues.

394 P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study

7. Conclusion

In this paper, we proposed to match entities of a knowledge graph by learning node embeddings with Graph
Convolutional Networks (GCNs) and clustering nodes based on their embeddings. We particularly investigated the
interplay between formal semantics associated with knowledge graphs and GCN models. Our results showed that
considering inference rules associated with domain knowledge tends to improve performance. Additionally, even
if our GCN model was agnostic to the exact alignment relations holding between entities (e.g., equivalence, weak
similarity), distances in the embedding space are coherent with the “strength” of the alignment relations. These
results seem to advocate for a further integration of formal semantics within embedding models.

Acknowledgements

This work was supported by the PractiKPharma project, founded by the French National Research Agency
(ANR) under Grant ANR15-CE23-0028, and by the Snowball Inria Associate Team.

Appendix. Detailed results of clustering experiments

Detailed results of clustering experiments are available Table 8, Table 9 and Table 10.

Table 8

Results of clustering nodes that belong to gold clusters whose size is greater or equal to 50 for graphs G0 and G5. Average and standard deviation
for each metric are computed on test folds during a 5-fold cross validation. Given a gold clustering, gray cells indicate the best results among
clustering algorithms and underlined values indicate the best result between G0 and G5

G0 G5
ACC ARI NMI ACC ARI NMI

C0 Ward 0.24 ± 0.02 0.07 ± 0.01 0.37 ± 0.01 0.25 ± 0.02 0.07 ± 0.01 0.35 ± 0.01

Single 0.84 ± 0.08 0.66 ± 0.13 0.59 ± 0.05 0.90 ± 0.00 0.75 ± 0.01 0.64 ± 0.02

OPTICS 0.61 ± 0.05 0.21 ± 0.08 0.25 ± 0.04 0.68 ± 0.02 0.27 ± 0.05 0.27 ± 0.02

C1 Ward 0.19 ± 0.02 0.05 ± 0.00 0.33 ± 0.01 0.20 ± 0.03 0.05 ± 0.01 0.31 ± 0.01

Single 0.85 ± 0.01 0.55 ± 0.04 0.51 ± 0.03 0.85 ± 0.01 0.57 ± 0.03 0.51 ± 0.03

OPTICS 0.64 ± 0.03 0.19 ± 0.03 0.28 ± 0.01 0.71 ± 0.04 0.26 ± 0.06 0.30 ± 0.02

C2 Ward 0.88 ± 0.03 0.84 ± 0.03 0.94 ± 0.01 0.88 ± 0.03 0.84 ± 0.03 0.94 ± 0.01

Single 0.88 ± 0.03 0.84 ± 0.03 0.94 ± 0.01 0.86 ± 0.04 0.81 ± 0.07 0.93 ± 0.02

OPTICS 0.94 ± 0.06 0.92 ± 0.07 0.97 ± 0.03 0.91 ± 0.06 0.88 ± 0.08 0.95 ± 0.04

C3 Ward 0.52 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.53 ± 0.01 0.00 ± 0.00 0.00 ± 0.00

Single 0.53 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.53 ± 0.01 0.00 ± 0.00 0.00 ± 0.00

OPTICS 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

C4 Ward 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Single 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

OPTICS 0.45 ± 0.14 −0.02 ± 0.06 0.08 ± 0.08 0.38 ± 0.11 0.01 ± 0.05 0.11 ± 0.08

C5 Ward 0.20 ± 0.02 0.04 ± 0.00 0.24 ± 0.01 0.15 ± 0.02 0.03 ± 0.00 0.20 ± 0.01

Single 0.88 ± 0.00 0.31 ± 0.03 0.29 ± 0.03 0.89 ± 0.00 0.30 ± 0.03 0.27 ± 0.02

OPTICS 0.71 ± 0.03 0.18 ± 0.07 0.18 ± 0.04 0.68 ± 0.06 0.07 ± 0.07 0.11 ± 0.04

C6 Ward 0.69 ± 0.02 0.48 ± 0.03 0.64 ± 0.03 0.76 ± 0.12 0.58 ± 0.22 0.67 ± 0.12

Single 0.86 ± 0.02 0.60 ± 0.09 0.63 ± 0.08 0.82 ± 0.02 0.46 ± 0.12 0.52 ± 0.11

OPTICS 0.59 ± 0.07 0.21 ± 0.09 0.44 ± 0.06 0.58 ± 0.05 0.19 ± 0.06 0.45 ± 0.04

P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study 395

Table 9

Results of clustering nodes that belong to gold clusters whose size is greater or equal to 20 for graphs G0 and G5. Average and standard deviation
for each metric are computed on test folds during a 5-fold cross validation. Given a gold clustering, gray cells indicate the best results among
clustering algorithms and underlined values indicate the best result between G0 and G5

G0 G5
ACC ARI NMI ACC ARI NMI

C0 Ward 0.17 ± 0.01 0.04 ± 0.00 0.32 ± 0.01 0.17 ± 0.02 0.04 ± 0.00 0.31 ± 0.01

Single 0.79 ± 0.08 0.64 ± 0.11 0.54 ± 0.05 0.86 ± 0.01 0.69 ± 0.01 0.57 ± 0.01

OPTICS 0.45 ± 0.03 0.09 ± 0.02 0.17 ± 0.01 0.50 ± 0.01 0.13 ± 0.01 0.19 ± 0.01

C1 Ward 0.15 ± 0.01 0.03 ± 0.00 0.31 ± 0.01 0.15 ± 0.01 0.03 ± 0.00 0.30 ± 0.00

Single 0.64 ± 0.22 0.38 ± 0.19 0.45 ± 0.06 0.82 ± 0.01 0.58 ± 0.03 0.52 ± 0.03

OPTICS 0.47 ± 0.02 0.08 ± 0.01 0.20 ± 0.01 0.51 ± 0.02 0.11 ± 0.03 0.20 ± 0.01

C2 Ward 0.98 ± 0.00 0.98 ± 0.02 0.99 ± 0.00 0.98 ± 0.00 0.99 ± 0.01 0.99 ± 0.00

Single 0.97 ± 0.03 0.95 ± 0.05 0.98 ± 0.01 0.98 ± 0.00 0.98 ± 0.01 0.99 ± 0.00

OPTICS 0.69 ± 0.01 0.44 ± 0.04 0.78 ± 0.01 0.73 ± 0.03 0.48 ± 0.04 0.81 ± 0.02

C3 Ward 0.92 ± 0.06 0.89 ± 0.08 0.95 ± 0.03 0.89 ± 0.05 0.84 ± 0.08 0.93 ± 0.03

Single 0.91 ± 0.05 0.87 ± 0.06 0.95 ± 0.03 0.88 ± 0.07 0.84 ± 0.09 0.93 ± 0.04

OPTICS 0.89 ± 0.07 0.87 ± 0.08 0.94 ± 0.08 0.92 ± 0.06 0.90 ± 0.09 0.95 ± 0.04

C4 Ward 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Single 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

OPTICS 0.29 ± 0.05 0.01 ± 0.01 0.09 ± 0.02 0.34 ± 0.05 0.03 ± 0.01 0.11 ± 0.02

C5 Ward 0.12 ± 0.01 0.02 ± 0.00 0.21 ± 0.01 0.10 ± 0.00 0.01 ± 0.00 0.17 ± 0.00

Single 0.85 ± 0.01 0.32 ± 0.09 0.28 ± 0.06 0.86 ± 0.00 0.20 ± 0.03 0.27 ± 0.02

OPTICS 0.48 ± 0.02 0.05 ± 0.01 0.10 ± 0.01 0.52 ± 0.02 0.05 ± 0.02 0.09 ± 0.01

C6 Ward 0.56 ± 0.05 0.39 ± 0.10 0.67 ± 0.02 0.50 ± 0.06 0.29 ± 0.08 0.65 ± 0.03

Single 0.64 ± 0.07 0.43 ± 0.13 0.62 ± 0.05 0.78 ± 0.01 0.67 ± 0.06 0.71 ± 0.03

OPTICS 0.44 ± 0.03 0.08 ± 0.03 0.38 ± 0.02 0.47 ± 0.05 0.08 ± 0.08 0.37 ± 0.05

Table 10

Results of clustering nodes that belong to gold clusters whose size is greater or equal to 10 for graphs G0 and G5. Average and standard deviation
for each metric are computed on test folds during a 5-fold cross validation. Given a gold clustering, gray cells indicate the best results among
clustering algorithms and underlined values indicate the best result between G0 and G5

G0 G5
ACC ARI NMI ACC ARI NMI

C0 Ward 0.14 ± 0.01 0.02 ± 0.00 0.29 ± 0.01 0.13 ± 0.01 0.02 ± 0.00 0.28 ± 0.02

Single 0.66 ± 0.17 0.53 ± 0.22 0.52 ± 0.06 0.74 ± 0.15 0.61 ± 0.16 0.54 ± 0.06

OPTICS 0.25 ± 0.02 0.02 ± 0.01 0.12 ± 0.01 0.27 ± 0.01 0.03 ± 0.01 0.11 ± 0.01

C1 Ward 0.13 ± 0.01 0.01 ± 0.00 0.28 ± 0.01 0.14 ± 0.01 0.01 ± 0.00 0.27 ± 0.01

Single 0.41 ± 0.12 0.18 ± 0.07 0.41 ± 0.02 0.72 ± 0.15 0.53 ± 0.14 0.52 ± 0.04

OPTICS 0.28 ± 0.01 0.02 ± 0.00 0.13 ± 0.01 0.28 ± 0.00 0.02 ± 0.00 0.13 ± 0.01

C2 Ward 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

Single 0.99 ± 0.01 0.99 ± 0.02 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

OPTICS 0.63 ± 0.01 0.31 ± 0.01 0.67 ± 0.01 0.62 ± 0.01 0.29 ± 0.01 0.66 ± 0.01

C3 Ward 0.92 ± 0.00 0.90 ± 0.10 0.94 ± 0.05 0.86 ± 0.04 0.81 ± 0.05 0.89 ± 0.02

Single 0.90 ± 0.07 0.88 ± 0.12 0.93 ± 0.05 0.83 ± 0.05 0.77 ± 0.08 0.88 ± 0.04

OPTICS 0.75 ± 0.02 0.58 ± 0.03 0.78 ± 0.02 0.72 ± 0.03 0.49 ± 0.07 0.73 ± 0.05

C4 Ward 0.99 ± 0.00 0.90 ± 0.07 0.86 ± 0.08 0.99 ± 0.00 0.91 ± 0.05 0.88 ± 0.04

Single 0.98 ± 0.01 0.83 ± 0.10 0.78 ± 0.15 0.99 ± 0.00 0.88 ± 0.05 0.85 ± 0.07

OPTICS 0.18 ± 0.03 0.01 ± 0.01 0.06 ± 0.01 0.18 ± 0.01 0.00 ± 0.00 0.06 ± 0.01

C5 Ward 0.09 ± 0.01 0.01 ± 0.00 0.18 ± 0.01 0.07 ± 0.00 0.01 ± 0.00 0.14 ± 0.01

Single 0.81 ± 0.01 0.31 ± 0.12 0.25 ± 0.08 0.82 ± 0.01 0.32 ± 0.08 0.26 ± 0.05

OPTICS 0.27 ± 0.01 0.01 ± 0.00 0.06 ± 0.01 0.28 ± 0.01 0.01 ± 0.01 0.05 ± 0.01

C6 Ward 0.48 ± 0.03 0.24 ± 0.05 0.64 ± 0.01 0.44 ± 0.02 0.16 ± 0.03 0.60 ± 0.02

Single 0.63 ± 0.07 0.56 ± 0.14 0.70 ± 0.04 0.74 ± 0.02 0.76 ± 0.05 0.76 ± 0.03

OPTICS 0.37 ± 0.02 0.02 ± 0.01 0.29 ± 0.02 0.37 ± 0.02 0.03 ± 0.01 0.29 ± 0.01

396 P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study

Table 11

Results of clustering nodes that belong to gold clusters whose size is greater
or equal to 50 for C0 and all graphs. Average and standard deviation for
each metric are computed on test folds during a 5-fold cross validation.
Gray cells indicate the best result among clustering algorithms. Underlined
values indicate the best result between graphs. ↓ indicates a lower value
with regard to G0

Ward Single OPTICS

G0 ACC 0.24 ± 0.02 0.84 ± 0.08 0.61 ± 0.05

ARI 0.07 ± 0.01 0.66 ± 0.13 0.21 ± 0.08

NMI 0.37 ± 0.01 0.59 ± 0.05 0.25 ± 0.04

G1 ACC 0.24 ± 0.02 0.86 ± 0.00 ↓ 0.58 ± 0.03

ARI 0.07 ± 0.01 0.70 ± 0.02 ↓ 0.16 ± 0.03

NMI ↓ 0.35 ± 0.02 ↓ 0.58 ± 0.02 ↓ 0.23 ± 0.01

G2 ACC 0.24 ± 0.01 0.89 ± 0.02 0.70 ± 0.01

ARI 0.07 ± 0.00 0.72 ± 0.03 0.32 ± 0.03

NMI ↓ 0.34 ± 0.01 0.61 ± 0.04 0.28 ± 0.01

G3 ACC ↓ 0.22 ± 0.03 0.89 ± 0.02 0.63 ± 0.03

ARI 0.07 ± 0.01 0.75 ± 0.02 0.29 ± 0.04

NMI ↓ 0.36 ± 0.01 0.63 ± 0.03 0.28 ± 0.02

G4 ACC ↓ 0.23 ± 0.02 ↓ 0.80 ± 0.16 0.62 ± 0.02

ARI 0.07 ± 0.01 ↓ 0.63 ± 0.21 ↓ 0.20 ± 0.03

NMI ↓ 0.36 ± 0.01 ↓ 0.58 ± 0.08 ↓ 0.24 ± 0.01

G5 ACC 0.25 ± 0.02 0.90 ± 0.00 0.68 ± 0.02

ARI 0.07 ± 0.01 0.75 ± 0.01 0.27 ± 0.05

NMI ↓ 0.35 ± 0.01 0.64 ± 0.02 0.27 ± 0.02

Table 12

Results of clustering nodes that belong to gold clusters whose size is greater
or equal to 20 for C0 and all graphs. Average and standard deviation for
each metric are computed on test folds during a 5-fold cross validation.
Gray cells indicate the best result among clustering algorithms. Underlined
values indicate the best result between graphs. ↓ indicates a lower value
with regard to G0

Ward Single OPTICS

G0 ACC 0.17 ± 0.01 0.79 ± 0.08 0.45 ± 0.03

ARI 0.04 ± 0.00 0.64 ± 0.11 0.09 ± 0.02

NMI 0.32 ± 0.01 0.54 ± 0.05 0.17 ± 0.01

G1 ACC 0.19 ± 0.01 0.81 ± 0.01 ↓ 0.43 ± 0.02

ARI 0.04 ± 0.00 0.64 ± 0.02 ↓ 0.07 ± 0.03

NMI 0.32 ± 0.01 ↓ 0.52 ± 0.01 ↓ 0.16 ± 0.02

G2 ACC 0.17 ± 0.01 0.81 ± 0.08 0.48 ± 0.01

ARI 0.04 ± 0.00 ↓ 0.63 ± 0.09 0.11 ± 0.02

NMI ↓ 0.30 ± 0.01 0.54 ± 0.05 0.17 ± 0.01

G3 ACC ↓ 0.15 ± 0.01 0.81 ± 0.06 0.46 ± 0.01

ARI ↓ 0.03 ± 0.00 0.64 ± 0.12 0.12 ± 0.02

NMI 0.32 ± 0.01 0.55 ± 0.05 0.18 ± 0.01

G4 ACC 0.17 ± 0.01 ↓ 0.69 ± 0.22 ↓ 0.43 ± 0.02

ARI ↓ 0.03 ± 0.00 ↓ 0.54 ± 0.24 ↓ 0.08 ± 0.02

NMI 0.32 ± 0.01 ↓ 0.52 ± 0.08 0.17 ± 0.01

G5 ACC 0.17 ± 0.02 0.86 ± 0.01 0.50 ± 0.01

ARI 0.04 ± 0.00 0.69 ± 0.01 0.13 ± 0.01

NMI ↓ 0.31 ± 0.01 0.57 ± 0.01 0.19 ± 0.01

P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study 397

Table 13

Results of clustering nodes that belong to gold clusters whose size is greater
or equal to 10 for C0 and all graphs. Average and standard deviation for
each metric are computed on test folds during a 5-fold cross validation.
Gray cells indicate the best result among clustering algorithms. Underlined
values indicate the best result between graphs. ↓ indicates a lower value
with regard to G0

Ward Single OPTICS

G0 ACC 0.14 ± 0.01 0.66 ± 0.17 0.25 ± 0.02

ARI 0.02 ± 0.00 0.53 ± 0.22 0.02 ± 0.01

NMI 0.29 ± 0.01 0.52 ± 0.06 0.12 ± 0.01

G1 ACC 0.15 ± 0.01 0.73 ± 0.10 0.25 ± 0.01

ARI 0.02 ± 0.00 0.58 ± 0.13 0.02 ± 0.01

NMI 0.30 ± 0.01 ↓ 0.51 ± 0.03 0.12 ± 0.01

G2 ACC ↓ 0.12 ± 0.01 ↓ 0.62 ± 0.16 0.27 ± 0.01

ARI 0.02 ± 0.00 ↓ 0.47 ± 0.19 0.03 ± 0.01

NMI ↓ 0.26 ± 0.01 ↓ 0.48 ± 0.05 ↓ 0.11 ± 0.00

G3 ACC ↓ 0.12 ± 0.00 0.70 ± 0.18 0.26 ± 0.01

ARI 0.02 ± 0.00 0.58 ± 0.23 0.03 ± 0.01

NMI ↓ 0.28 ± 0.01 0.52 ± 0.06 0.12 ± 0.01

G4 ACC 0.14 ± 0.01 ↓ 0.56 ± 0.18 0.25 ± 0.01

ARI 0.02 ± 0.00 ↓ 0.42 ± 0.20 0.02 ± 0.00

NMI 0.29 ± 0.01 ↓ 0.50 ± 0.06 0.12 ± 0.00

G5 ACC ↓ 0.13 ± 0.01 0.74 ± 0.15 0.27 ± 0.01

ARI 0.02 ± 0.00 0.61 ± 0.16 0.03 ± 0.01

NMI ↓ 0.28 ± 0.02 0.54 ± 0.06 ↓ 0.11 ± 0.01

References

[1] M. Ankerst, M.M. Breunig, H. Kriegel and J. Sander, OPTICS: Ordering points to identify the clustering structure, in: SIGMOD 1999,
Proceedings ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, USA, June 1–3, 1999, ACM
Press, 1999, pp. 49–60. doi:10.1145/304182.304187.

[2] F. Baader et al. (eds), The Description Logic Handbook: Theory, Implementation, and Applications, Cambridge University Press, 2003.
[3] T. Berners-Lee, J. Hendler, O. Lassila et al., The semantic web, Scientific American 284(5) (2001), 28–37.
[4] A. Bordes, N. Usunier, A. García-Durán, J. Weston and O. Yakhnenko, Translating embeddings for modeling multi-relational data, in:

Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013, Pro-
ceedings of a meeting held December 5–8, 2013, Lake Tahoe, Nevada, United States, 2013, pp. 2787–2795.

[5] H. Cai, V.W. Zheng and K.C. Chang, A comprehensive survey of graph embedding: Problems, techniques, and applications, IEEE Trans.
Knowl. Data Eng. 30(9) (2018), 1616–1637. doi:10.1109/TKDE.2018.2807452.

[6] K.E. Caudle et al., Incorporation of pharmacogenomics into routine clinical practice: The Clinical Pharmacogenetics Imple-
mentation Consortium (CPIC) guideline development process, Current Drug Metabolism 15(2) (2014), 209–217. doi:10.2174/
1389200215666140130124910.

[7] J. Chen, P. Hu, E. Jiménez-Ruiz, O.M. Holter, D. Antonyrajah and I. Horrocks, OWL2Vec*: Embedding of OWL ontologies, Machine
Learning 110(7) (2021), 1813–1845. doi:10.1007/s10994-021-05997-6.

[8] J. Chen, E. Jiménez-Ruiz, I. Horrocks, D. Antonyrajah, A. Hadian and J. Lee, Augmenting ontology alignment by semantic embedding
and distant supervision, in: The Semantic Web – 18th International Conference, ESWC 2021, Virtual Event, June 6–10, 2021, Proceedings,
R. Verborgh, K. Hose, H. Paulheim, P. Champin, M. Maleshkova, Ó. Corcho, P. Ristoski and M. Alam, eds, Lecture Notes in Computer
Science, Vol. 12731, Springer, 2021, pp. 392–408. doi:10.1007/978-3-030-77385-4_23.

[9] A. Coulet and M. Smaïl-Tabbone, Mining electronic health records to validate knowledge in pharmacogenomics, ERCIM News 2016(104)
(2016).

[10] C. d’Amato, N.F. Quatraro and N. Fanizzi, Injecting background knowledge into embedding models for predictive tasks on knowledge
graphs, in: The Semantic Web – 18th International Conference, ESWC 2021, Virtual Event, June 6–10, 2021, Proceedings, R. Verborgh,
K. Hose, H. Paulheim, P. Champin, M. Maleshkova, Ó. Corcho, P. Ristoski and M. Alam, eds, Lecture Notes in Computer Science,
Vol. 12731, Springer, 2021, pp. 441–457. doi:10.1007/978-3-030-77385-4_26.

[11] V.P. Dwivedi, C.K. Joshi, T. Laurent, Y. Bengio and X. Bresson, Benchmarking graph neural networks, CoRR abs/2003.00982 (2020).
[12] J. Euzenat and P. Shvaiko, Ontology Matching, 2nd edn, Springer, 2013. ISBN 978-3-642-38720-3.
[13] N. Frosst, N. Papernot and G.E. Hinton, Analyzing and improving representations with the soft nearest neighbor loss, in: Proceedings of the

36th International Conference on Machine Learning, ICML 2019, Long Beach, California, USA, 9–15 June 2019, Proceedings of Machine
Learning Research, Vol. 97, PMLR, 2019, pp. 2012–2020.

https://doi.org/10.1145/304182.304187
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.2174/1389200215666140130124910
https://doi.org/10.2174/1389200215666140130124910
https://doi.org/10.1007/s10994-021-05997-6
https://doi.org/10.1007/978-3-030-77385-4_23
https://doi.org/10.1007/978-3-030-77385-4_26

398 P. Monnin et al. / Discovering alignment relations with Graph Convolutional Networks: A biomedical case study

[14] T.R. Gruber, A translation approach to portable ontology specifications, Knowledge Acquisition 5(2) (1993), 199–220. doi:10.1006/knac.
1993.1008.

[15] R.V. Guha, Towards a model theory for distributed representations, in: 2015 AAAI Spring Symposia, Stanford University, Palo Alto, Cali-
fornia, USA, March 22–25, 2015, AAAI Press, 2015, http://www.aaai.org/ocs/index.php/SSS/SSS15/paper/view/10220.

[16] V. Gutiérrez-Basulto and S. Schockaert, From knowledge graph embedding to ontology embedding? An analysis of the compatibility
between vector space representations and rules, in: Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth
International Conference, KR 2018, Tempe, Arizona, 30 October–2 November 2018, AAAI Press, 2018, pp. 379–388.

[17] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutiérrez, J.E.L. Gayo, S. Kirrane, S. Neumaier, A. Polleres, R. Nav-
igli, A.N. Ngomo, S.M. Rashid, A. Rula, L. Schmelzeisen, J.F. Sequeda, S. Staab and A. Zimmermann, Knowledge graphs, CoRR
abs/2003.02320 (2020). https://arxiv.org/abs/2003.02320 abs/2003.02320.

[18] A. Iana and H. Paulheim, More is not always better: The negative impact of A-box materialization on RDF2vec knowledge graph embed-
dings, in: Proceedings of the CIKM 2020 Workshops Co-Located with 29th ACM International Conference on Information and Knowledge
Management (CIKM 2020), Galway, Ireland, October 19–23, 2020, S. Conrad and I. Tiddi, eds, CEUR Workshop Proceedings, Vol. 2699,
CEUR-WS.org, 2020, http://ceur-ws.org/Vol-2699/paper05.pdf.

[19] D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, in: 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings, 2015.

[20] T.N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks, in: 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings, OpenReview.net, 2017.

[21] P. Monnin, M. Couceiro, A. Napoli and A. Coulet, Knowledge-based matching of n-ary tuples, in: Ontologies and Concepts in Mind and
Machine – 25th International Conference on Conceptual Structures, ICCS 2020, Bolzano, Italy, September 18–20, 2020, Proceedings,
M. Alam, T. Braun and B. Yun, eds, Lecture Notes in Computer Science, Vol. 12277, Springer, 2020, pp. 48–56. doi:10.1007/978-3-030-
57855-8_4.

[22] P. Monnin, J. Legrand, G. Husson, P. Ringot, A. Tchechmedjiev, C. Jonquet, A. Napoli and A. Coulet, PGxO and PGxLOD: A reconciliation
of pharmacogenomic knowledge of various provenances, enabling further comparison, BMC Bioinformatics 20-S(4) (2019), 139:1–139:16.
doi:10.1186/s12859-019-2693-9.

[23] P. Monnin, C. Raïssi, A. Napoli and A. Coulet, Knowledge reconciliation with graph convolutional networks: Preliminary results, in:
Proceedings of the Workshop on Deep Learning for Knowledge Graphs (DL4KG2019) Co-Located with the 16th Extended Semantic
Web Conference 2019 (ESWC 2019), Portoroz, Slovenia, June 2, 2019, CEUR Workshop Proceedings, Vol. 2377, CEUR-WS.org, 2019,
pp. 47–56.

[24] M. Nickel, K. Murphy, V. Tresp and E. Gabrilovich, A review of relational machine learning for knowledge graphs, Proceedings of the
IEEE 104(1) (2016), 11–33. doi:10.1109/JPROC.2015.2483592.

[25] N. Noy, A. Rector, P. Hayes and C. Welty, Defining N-ary relations on the semantic web, W3C Working Group Note 12(4) (2006).
[26] N. Pang, W. Zeng, J. Tang, Z. Tan and X. Zhao, Iterative entity alignment with improved neural attribute embedding, in: Proceedings of the

Workshop on Deep Learning for Knowledge Graphs (DL4KG2019) Co-Located with the 16th Extended Semantic Web Conference 2019
(ESWC 2019), Portoroz, Slovenia, June 2, 2019, CEUR Workshop Proceedings, Vol. 2377, CEUR-WS.org, 2019, pp. 41–46.

[27] H. Paulheim, Make embeddings semantic again! in: Proceedings of the ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas
Tracks Co-Located with 17th International Semantic Web Conference (ISWC 2018), Monterey, USA, October 8th – to – 12th, 2018, CEUR
Workshop Proceedings, Vol. 2180, CEUR-WS.org, 2018.

[28] P. Ristoski and H. Paulheim, RDF2Vec: RDF graph embeddings for data mining, in: The Semantic Web – ISWC 2016 – 15th International
Semantic Web Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part I, Lecture Notes in Computer Science, Vol. 9981, 2016,
pp. 498–514. doi:10.1007/978-3-319-46523-4_30.

[29] M.S. Schlichtkrull, T.N. Kipf, P. Bloem, R. van den Berg, I. Titov and M. Welling, Modeling relational data with graph convolutional
networks, in: The Semantic Web – 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings,
Lecture Notes in Computer Science, Vol. 10843, Springer, 2018, pp. 593–607. doi:10.1007/978-3-319-93417-4_38.

[30] L. Serafini and A.S. d’Avila Garcez, Logic tensor networks: Deep learning and logical reasoning from data and knowledge, in: Proceedings
of the 11th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy ’16) Co-Located with the Joint Multi-Conference on
Human-Level Artificial Intelligence (HLAI 2016), New York City, NY, USA, July 16–17, 2016, CEUR Workshop Proceedings, Vol. 1768,
CEUR-WS.org, 2016.

[31] P. Wang, J. Han, C. Li and R. Pan, Logic attention based neighborhood aggregation for inductive knowledge graph embedding, in: The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, the Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, the Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27–February 1, 2019, AAAI Press, 2019, pp. 7152–7159. doi:10.1609/aaai.v33i01.33017152.

[32] Q. Wang, Z. Mao, B. Wang and L. Guo, Knowledge graph embedding: A survey of approaches and applications, IEEE Trans. Knowl. Data
Eng. 29(12) (2017), 2724–2743. doi:10.1109/TKDE.2017.2754499.

[33] Z. Wang, Q. Lv, X. Lan and Y. Zhang, Cross-lingual knowledge graph alignment via graph convolutional networks, in: Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31–November 4, 2018, Association
for Computational Linguistics, 2018, pp. 349–357. doi:10.18653/v1/d18-1032.

[34] M. Whirl-Carrillo, E.M. McDonagh, J.M. Hebert, L. Gong, K. Sangkuhl, C.F. Thorn, R.B. Altman and T.E. Klein, Pharmacogenomics
knowledge for personalized medicine, Clinical Pharmacology and Therapeutics 92(4) (2012), 414. doi:10.1038/clpt.2012.96.

https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1006/knac.1993.1008
http://www.aaai.org/ocs/index.php/SSS/SSS15/paper/view/10220
https://arxiv.org/abs/2003.02320
http://arxiv.org/abs/abs/2003.02320
http://ceur-ws.org/Vol-2699/paper05.pdf
https://doi.org/10.1007/978-3-030-57855-8_4
https://doi.org/10.1007/978-3-030-57855-8_4
https://doi.org/10.1186/s12859-019-2693-9
https://doi.org/10.1109/JPROC.2015.2483592
https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1609/aaai.v33i01.33017152
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.18653/v1/d18-1032
https://doi.org/10.1038/clpt.2012.96

	Introduction
	Related work
	Matching
	Graph embedding
	Graph Convolutional Networks (GCNs)
	Graph embedding and domain knowledge

	Matching nodes with Graph Convolutional Networks and clustering
	Approach outline
	Learning node embeddings with Graph Convolutional Networks and the Soft Nearest Neighbor loss
	Matching nodes by clustering their embeddings

	Evaluating the influence of applying inference rules associated with domain knowledge
	Experiments
	Knowledge graph and gold clusters of similar nodes
	Learning node embeddings
	Clustering
	Distance analysis

	Discussion
	Impact of inference rules
	Impact of clustering set-up
	Distance analysis
	Towards a further integration of domain knowledge in GCNs
	Generalization to other knowledge graphs

	Conclusion
	Acknowledgements
	Appendix. Detailed results of clustering experiments
	References

