
Semantic Web 13 (2022) 195–213 195
DOI 10.3233/SW-210439
IOS Press

Creating RESTful APIs over SPARQL
endpoints using RAMOSE
Marilena Daquino a,b, Ivan Heibi a,b, Silvio Peroni a,b,* and David Shotton a,c

a Research Centre for Open Scholarly Metadata, Department of Classical Philology and Italian Studies, University
of Bologna, Bologna, Italy
b Digital Humanities Advanced Research Centre, Department of Classical Philology and Italian Studies,
University of Bologna, Bologna, Italy
c Oxford e-Research Centre, University of Oxford, Oxford, United Kingdom

Editor: Armin Haller, Australian National University, Australia
Solicited reviews: Pierre-Antoine Champin, Claude Bernard Lyon 1 University, France; Victor Charpenay, University of Erlangen–Nürnberg,
Nürnberg, Germany; Sergio Rodriguez Mendez, Australian National University, Australia; Jonathan Yu, CSIRO, Australia

Abstract. Semantic Web technologies are widely used for storing RDF data and making them available on the Web through
SPARQL endpoints, queryable using the SPARQL query language. While the use of SPARQL endpoints is strongly supported
by Semantic Web experts, it hinders broader use of RDF data by common Web users, engineers and developers unfamiliar with
Semantic Web technologies, who normally rely on Web RESTful APIs for querying Web-available data and creating applications
over them. To solve this problem, we have developed RAMOSE, a generic tool developed in Python to create REST APIs
over SPARQL endpoints. Through the creation of source-specific textual configuration files, RAMOSE enables the querying
of SPARQL endpoints via simple Web RESTful API calls that return either JSON or CSV-formatted data, thus hiding all the
intrinsic complexities of SPARQL and RDF from common Web users. We provide evidence that the use of RAMOSE to provide
REST API access to RDF data within OpenCitations triplestores is beneficial in terms of the number of queries made by external
users of such RDF data using the RAMOSE API, compared with the direct access via the SPARQL endpoint. Our findings show
the importance for suppliers of RDF data of having an alternative API access service, which enables its use by those with no
(or little) experience in Semantic Web technologies and the SPARQL query language. RAMOSE can be used both to query any
SPARQL endpoint and to query any other Web API, and thus it represents an easy generic technical solution for service providers
who wish to create an API service to access Linked Data stored as RDF in a triplestore.

Keywords: REST API, OpenCitations, citation data, SPARQL endpoint, RDF, Linked Data, triplestore, RAMOSE, data access,
query language

1. Introduction1

Application Programming Interfaces (APIs) are powerful means of automating communication between applica-
tion programs and data services. The aim of an API is to expose service functions and data to facilitate the interac-

*Corresponding author. E-mail: silvio.peroni@unibo.it.
1The first three authors contributed to the conceptualization of the work, the investigation, and the definition of the methodology. S. Peroni

and M. Daquino developed the software described in Section 3 “RAMOSE: a technical introduction”. M. Daquino is responsible for Section 4
“Use of REST APIs in Open Citations” (analysis and writing – original draft); I. Heibi is responsible for Section 5 “Related Works” (analysis
and writing – original draft). All other sections were written and revised collaboratively by all the authors.

1570-0844 © 2022 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:silvio.peroni@unibo.it
https://creativecommons.org/licenses/by/4.0/


196 M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE

tion with users or (particularly) machines. Representational State Transfer (REST) APIs expose on the Web a set of
stateless operations which enhance performance, reliability, and extensive reuse of the Web data resources [5].

Within the Semantic Web domain, the SPARQL 1.1 specifications include a Recommendation for “an application
protocol for the distributed updating and fetching of RDF graph content in a Graph Store via the mechanics of
the Hypertext Transfer Protocol (HTTP)” [15]. Such REST-based access to SPARQL endpoints has been a com-
mon ground used by several Semantic Web developers to query RDF data available on the Web [2]. Indeed, sev-
eral institutions that have adopted Semantic Web technologies to manage their data – such as the British Library
(http://bnb.data.bl.uk/), US government (https://www.data.gov/developers/semantic-web), and Wikidata (https://
www.wikidata.org/) – usually employ such a REST-based approach to serve their RDF data to users (e.g. Web de-
velopers) and application programs via bespoke specialised Web interfaces that mediate the interaction with their
SPARQL endpoints.

While SPARQL has widespread adoption among Semantic Web practitioners [8], it is not popular within the
community of ordinary Web developers and scholars due to its complexity. The use of SPARQL is characterised by
a very steep learning curve that prevents its widespread adoption in common Web projects, which usually leverage
Web REST APIs to access and query data. Thus, the exclusive use of SPARQL endpoints to expose RDF data
prevents easy access to such data by many stakeholders with legacy technologies. Indeed, several projects (including
those of the institutions mentioned above) accompany their SPARQL endpoints with ad-hoc Web REST APIs. Such
Web REST APIs are usually hardcoded and are difficult to maintain since they require expertise in both Web and
Semantic Web technologies.

There is, thus, an increasing implicit demand for a generic mechanism that:

1. enables a broader Web audience (Web developers and scholars) to query RDF data available in triplestores
behind SPARQL endpoint interfaces without having to use the SPARQL query language; and

2. allows Semantic Web developers to easily and quickly provide REST API access to their RDF data, a situation
that we directly experienced in the context of OpenCitations [19] (https://opencitations.net/).

OpenCitations is an independent infrastructure organization for open scholarship dedicated to the publication of
open bibliographic and citation data using Semantic Web technologies. OpenCitations is also engaged in advocacy
for open citations – e.g. see the Initiative for Open Citations (I4OC, https://i4oc.org). Initially, the data within the
OpenCitations Corpus [20] were queryable only by using our SPARQL endpoint. However, we received several
suggestions from people working in different scholarly disciplines for a more holistic approach for data querying,
to enable users with no skills in Semantic Web technologies to access these data and to reuse them for building
Web applications. In addition to providing a standard Web REST API for access to our Corpus data, we also needed
a method whereby we could quickly and easily create new Web REST APIs to extend such access to new RDF
datasets that we ourselves might publish (e.g. COCI, http://opencitations.net/index/coci), while at the same time
providing a generic tool for adoption by the Semantic Web community as a whole. Moreover, since our data sources
interoperate with identifiers minted by external content providers (e.g. Crossref, ORCID, doi.org), we needed a
flexible mechanism to serve RDF data integrated with information belonging to non-RDF data providers.

To address such needs, we developed RAMOSE, the RESTful API Manager Over SPARQL Endpoints (https://
github.com/opencitations/ramose), which was explicitly created to foster reusability of RDF data across common
Web applications. While developed to solve the specific problem of providing REST APIs for OpenCitations data,
RAMOSE has been developed in a way which permits it to interact with any SPARQL endpoint, following the
rationale we adopt for all our software development (available at https://github.com/opencitations), namely: while
addressing the problem at hand, do this in a manner that provides a generic, open and public tool which can be
reused by others with similar requirements.

RAMOSE is an open-source Python software tool released under an ISC license. It allows one to create a Web
REST API, with the related documentation, which acts as an interface to one or more SPARQL endpoints, regardless
of the kinds of data hosted in the RDF triplestore. The creation of an API only requires the creation of a configu-
ration file in a specific textual Markdown-like format (https://en.wikipedia.org/wiki/Markdown) which includes the
SPARQL queries to be used by the API to retrieve RDF data. At OpenCitations, we now use RAMOSE to implement
all the REST APIs introduced at http://opencitations.net/querying.

http://bnb.data.bl.uk/
https://www.data.gov/developers/semantic-web
https://www.wikidata.org/
https://www.wikidata.org/
https://opencitations.net/
https://i4oc.org
http://opencitations.net/index/coci
https://github.com/opencitations/ramose
https://github.com/opencitations/ramose
https://github.com/opencitations
https://en.wikipedia.org/wiki/Markdown
http://opencitations.net/querying


M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE 197

In this article, we provide a quick introduction to the context in which we have made this development (Section 2),
followed in Section 3 by a description of RAMOSE, its architectural model, and how to configure and deploy it. In
Section 4, we document how Web users engaged with OpenCitations data both before RAMOSE was developed and
after we started using it to provide Web REST API access to OpenCitations datasets, to show the potential impact of
RAMOSE on data reuse. After a discussion on other existing works concerning other software that addresses similar
scenarios (Section 5), we conclude the article (Section 6) by sketching out some planned future developments.

2. Background: OpenCitations and its data

OpenCitations formally started in 2010 as a one-year project funded by JISC (with a subsequent extension). The
project was global in scope and was designed to change the face of scientific publishing and scholarly communica-
tion, since it aimed to publish open bibliographic citation information in RDF [2] and to make citation links as easy
to traverse as Web links. The main deliverable of the project, among several outcomes, was the release of an open
repository of scholarly citation data described using the SPAR (Semantic Publishing and Referencing) Ontologies
[17], and named the OpenCitations Corpus (OCC, http://opencitations.net/corpus), which was initially populated
with the citations from journal articles within the Open Access Subset of PubMed Central (https://www.ncbi.nlm.
nih.gov/pmc/tools/openftlist/).

At the end of 2015, we set up a new instantiation of the OpenCitations Corpus [20] based on a new metadata
schema and employing several new technologies to automate the ingestion of fresh citation metadata from authori-
tative sources. From the beginning of July 2016, OCC started ingesting, processing and publishing reference lists of
scholarly papers available in Europe PubMed Central. Additional metadata for these citations were obtained from
Crossref (https://crossref.org) [11] and (for authors) from ORCID (https://orcid.org) [7]. Routine ingestion of new
data into OCC from Europe PubMed Central was suspended in December 2017, when it contained 12,652,601 cita-
tion links. Since then, OCC has been used as a publication platform for citations derived from the ExCITE Project
(http://excite.west.uni-koblenz.de/website/), the Venice Scholar Project (https://venicescholar.dhlab.epfl.ch/about)
and other sources, and now contains 13,964,148 bibliographic citations to 7,565,367 cited publications.

Following our development in 2018 of Open Citation Identifiers (globally unique PIDs for citations treated as first-
class data entities in their own right [18]), and using open references supplied by Crossref, we switched OpenCita-
tions’ bulk publication of citation links from OCC to COCI, the OpenCitations Index of Crossref open DOI-to-DOI
citations [10], which was first released in July 2018 and currently contains (as of 8 September 2021) 1,186,958,898
bibliographic citations between 69,074,291 DOI-identified publications. Also, in July 2018, in parallel with the de-
velopment of COCI, we released the first version of RAMOSE and started to expose all OpenCitations data via Web
REST APIs.

Recently, OpenCitations has been selected by SCOSS (https://scoss.org) among the Open Science infrastructures
that deserve to receive funds from the community to foster their long-term sustainability.

3. RAMOSE: A technical introduction

RAMOSE is an open-source application written in Python which allows the agile development and publication
of documented REST APIs for querying against any SPARQL endpoint. It is possible to customize RAMOSE to
generate a Web REST API for the URL of a given SPARQL endpoint simply by creating an appropriate source-
specific textual configuration file.

The modularity of RAMOSE allows a complete definition and customization of API operations and their input
parameters. In addition, it enables one to apply pre-processing and post-processing steps by using external Python
libraries that can be easily imported, and automatically generates HTML documentation of the API and a dashboard
for the API monitoring.

RAMOSE has been designed to be consistent with the following principles:

1. It must work with any legacy RDF triplestore providing a public SPARQL endpoint.

http://opencitations.net/corpus
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://crossref.org
https://orcid.org
http://excite.west.uni-koblenz.de/website/
https://venicescholar.dhlab.epfl.ch/about
https://scoss.org


198 M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE

Fig. 1. An overview of the main components of RAMOSE.

2. A Semantic Web expert should only be required initially, to define the SPARQL queries hidden behind the API
operations, while all the other aspects of the REST API configuration and use should not require Semantic
Web skills.

3. API operations and their input parameters must be fully customizable according to the needs of the infrastruc-
ture exposing the data.

4. The configuration file of a RAMOSE-based API must be easy to write and must avoid technicalities as much
as possible.

5. It must be possible to specify pre-processing and post-processing steps, developed as pure Python functions,
in any operation, so as to better customise the interpretation of the input parameters and call outputs.

6. Basic built-in filters and refinement mechanisms must be provided by default.
7. It must be possible to use the REST API within another Python application, to run it as a command line

application, and to make it available as a proper service within a web server.

The source code of RAMOSE, its documentation, and examples of its use are all available on GitHub at https://
github.com/opencitations/ramose. RAMOSE is licensed under the ISC License.

3.1. Architecture overview

RAMOSE is a middleware interface between the data consumer and one or more SPARQL endpoints. Figure 1
shows an overview of the application. It consists of the application file (i.e. the file ramose.py) and one or more
configuration documents (one for each Web REST API service that is created by means of RAMOSE).

The RAMOSE application file handles the following aspects: service builder for running API operations, defi-
nition of built-in filters and refinement mechanisms, SPARQL query dispatcher, results format converter (either in
CSV or JSON), generation of HTML documentation, and setting up of a web server for testing and monitoring
purposes.

The application file accepts one or more configuration files in order to set up the services (one configuration file
for each of the triplestores to be queried) and creates the APIs documentation and a web dashboard for testing and
monitoring the API. Each RAMOSE configuration document contains metadata of one REST API service (name,
contacts, license, description, etc.), the URL of the SPARQL endpoint to be queried, the optional specification of a
Python file containing functions that can be used to pre-process the API call input, parameters and/or to post-process
the result of the execution of the SPARQL query, and the definition of all the operations. Each operation must
specify the SPARQL query to run against the SPARQL endpoint, the URL to call the operation, which includes also
the name and shape of its input parameters, the HTTP method to use for the request, optional pre-processing/post-
processing function names (defined in external libraries) to be executed before/after the execution of the SPARQL

https://github.com/opencitations/ramose
https://github.com/opencitations/ramose


M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE 199

Fig. 2. The workflow implemented by RAMOSE to handle an API call specified via a URL, accompanied by a running example. The yellow dot-
ted rectangles are optionally executed since they depend on the call URL (apply filters & refinements, transform JSON) and on the specification
of the executed operations (pre-process, postprocess) contained in the configuration document.

query, the types of all the fields returned by the operation, an additional description of the operation, an example of
use, and an exemplar output in JSON.

As shown in Fig. 2, every time someone executes an operation, the URL of the call is parsed, and the values of
the input parameters are retrieved according to the shape (i.e. data type and textual form) specified in the configura-
tion file. The pre-processing functions are executed on the specified input parameters. These functions are used to
transform the input parameters into a form appropriate for the SPARQL query to be executed.

Following this pre-processing, any input parameter included in the SPARQL query of the operation between [[...]]
is replaced with its current value, and finally the SPARQL query is performed against the SPARQL endpoint accord-
ing to the HTTP method specified. When the SPARQL endpoint returns a result, RAMOSE runs the post-processing
functions on it. Post-processing allows one to perform simple tasks, such as data cleansing or normalisation, or
more sophisticated processes, such as cross dataset queries for integrating results. After post-processing, RAMOSE
applies filters and refinements (if specified in the call URL) and converts the results either into CSV or into JSON
according to what has been specified in the request. Where JSON is chosen as the output format, it is possible to ask
RAMOSE, via a particular refinement parameter included in the call URL, to transform the default JSON output



200 M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE

#<field_name_1> <field_value_1>
#<field_name_1> <field_value_2>
#<field_name_3> <field_value_3>
...
#<field_name_n> <field_value_n>

Listing 1. The hash-format syntax

#url <api_base>
#type api
#title <api_title>
#description <api_description>
#version <version_number>
#endpoint <sparql_endpoint_url>
...

#url <operation_url_1>
#type operation
#sparql <sparql_query_1>
...

#url <operation_url_2>
#type operation
#sparql <sparql_query_2>
...

Listing 2. An excerpt of the structure of a RAMOSE configuration document, organised in two sections: the one with information about the API
(in italic in the listing), and the other describing all the operations that the API exposes

into a more structured one. Refinement operations avoid operations generally performed via SPARQL (e.g. sorting
results) that might affect the performance of the triplestore [22]. Moreover, these allow users to perform further
operations on the results (since they cannot modify the underlying SPARQL queries). An example of the whole
process is presented in Fig. 2.

3.2. Configuration document

The configuration of the REST API is specified using a hash-format file (extension: .hf). The hash-format syntax,
shown in Listing 1, is based on Markdown. A hash-format document includes several key-value pairs introduced by
a hashtag, where the token flagged with the hashtag defines the name of a field and the following text is a Markdown
content acting as a value associated with that field.

A RAMOSE configuration document includes two main sections, as shown in Listing 2. The first one contains
general metadata and mandatory information about the REST API, and the other one includes a description of
all the operations exposed by the REST API. As examples, the RAMOSE configuration documents we use in
OpenCitations are available at https://github.com/opencitations/api.

Table 1 lists all the fields used in the first section of the configuration document to describe the REST API,
while Table 2 lists all the fields used to define all the operations that may be included in the second section of the
configuration file. In both sections, #url must be always the first field of each block.

https://github.com/opencitations/api


M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE 201

Table 1

The key-value pairs containing general information about the API

#<field> <value> Description

#url <api_base> The base URL of the API (e.g. “/api/v1”)

#type api The section type – only “api” is allowed

#base <base_url> The base URL of the webpage from which the API is available (e.g. “https://w3id.org/oc/index”)

#method <get|post> The HTTP methods supported to send the request to the SPARQL endpoint, that can be “get”, “post”, or both

#title<api_title> The title or name of the API

#description <api_description> A textual description of the API

#version<version_number> The textual string defining the version of the API

#license<license> The textual string defining information about the licenses associated to the API, the data it returns, etc.

#contacts<contact_url> The contact information for the API.

#endpoint<endpoint_url> The SPARQL endpoint URL to query

#addon<addon_file_name> The path of a Python file implementing functions that can be called in the pre-processing and postprocessing
steps of each operation

3.3. Filters and refinements

RAMOSE implements optional filters and refinement mechanisms on the results returned by the API. These can
be specified as HTTP parameters (i.e. “?<param1>=<value1>&<param2>=<value2>&...”) in the API call URL.

These filters and refinement mechanisms work independently from the configuration file, the SPARQL endpoint
specified in it, and the scope of the RDF data available. They provide common and advanced filtering, sorting, and
manipulative functionalities that can be used with any result set returned by the API. The operations that can be
used are described as follows.

3.3.1. Excluding rows with empty data
Parameter: require=<field>. All the rows that have an empty value in the field <field> specified as the value of

the parameter are removed from the result set. E.g. require=creation removes all the rows that do not have a
value specified in the field creation.

3.3.2. Filtering rows
Parameter: filter=<field>:<operator><value>. Only the rows complying with the filter specified (i.e. <field>:

<operator><value>) are considered in the result returned by the API call. The term <operator> is not mandatory.
If <operator> is not specified, <value> is interpreted as a regular expression – e.g. filter=creation:ˆ20.+

returns the row in which the value specified in the field creation starts with “20” and is followed by one or more
characters. Otherwise, if <operator> is specified, the value of <field> of each row is compared with <value> by
means of the specified <operator>, that may assume the following values: “=”, “<”, and “>”. The comparison will be
done according to the type associated to the field under consideration, as specified in #field_type (see Table 2).
For instance, filter=creation:>2016-05, with the value type specified as a datetime, returns all the rows
that have a date greater than 1 May 2016.

3.3.3. Sorting rows
Parameter: sort=<order>(<field>). Sort in ascending (<order> set to “asc”) or descending (<order> set to

“desc”) order the rows in the result set according to the values in <field>. For instance, sort=asc(citing) sorts
all the rows according to the value specified in the field citing in alphanumerical order.

3.3.4. Formatting results
Parameter: format=<type>. The final table is returned in the format specified in <type> that can be either “csv”

(see Listing 3) or “json” (see Listing 4). For instance, format=csv returns the final table in CSV format. It is
worth noting that this parameter takes priority over the format type specified in the “Accept” header of the HTTP
request. Thus, if the header of a request to the API specifies Accept: text/csv and the URL of such request
includes format=json, the final table is returned in JSON. This method allows developers (or users that may
access data via browser) to override header requests.

https://w3id.org/oc/index


202 M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE

Table 2

The key-value pairs defining each operation of the API. All the fields accompanied with an “[O]” are optional in the configuration file

#<field> <value> Description

#url
<operation_url>

The URL of the operation. It may contain zero or more parameters name between {. . . } (e.g.
“/citations/{doi}”)

#type operation The section type – only “operation” is allowed

#<param>
<type>(<regex>) [O]

The shape (type and textual form) an input parameter of the operation must have (e.g. “str(10\..+)”).
Possible types are strings (“str”, which is the default value), integers (“int”), floating numbers (“float”),
durations (“duration”), and date times (“datetime”). The regular expression is used to match the value of
the parameter from the URL.

#preprocess
<functions> [O]

The Python functions used to pre-process the input parameters. One can specify one or more functions
separated by “–>” which must take in input the name of one or more parameters (separated by a comma)
between parenthesis, (e.g. “lower(doi) –> encode(doi)”). The output of a function is taken as input by the
following functions.

#postprocess
<functions> [O]

The Python functions used to postprocess the results returned after the execution of the SPARQL query.
One can specify one or more functions separated by “–>” which must take in input the name of zero or
more variables (separated by a comma) returned by the SPARQL query between parenthesis (e.g.
“decode_doi(citing, cited)”)

#method <get|post> The HTTP method used to send the request to the SPARQL endpoint for this operation (that can be either
“get” or “post”) which must be compliant with those specified in the first section of the configuration file
(as shown in Table 1)

#description
<op_description>

A textual description of the operation

#field_type <var_type_list> A list of types of the variables that will be returned by executing the operation, separated by space
(“<type1>(<var1>) <type2>(<var2>) . . . ”) accompanied by their type – e.g. “str(oci) datetime(creation)
duration(timespan)”. Possible types are strings (“str”, which is the default value), integers (“int”), floating
numbers (“float”), durations (“duration”), and date times (“datetime”)

#call
<ex_request_call>

The URL of an example of an API call (e.g. “/citations/10.1108/jd-12-2013-0166”)

#output_json
<ex_response>

An example in JSON format of the results expected by the execution of the example call

#sparql <sparql_query> The SPARQL query to perform on the specified SPARQL endpoint. The query may include any input
parameter of the operation between “[[...]]” (e.g. “[[doi]]”) which is replaced with its current value before
calling the SPARQL endpoint

citing,cited
10.3233/ds-190019,10.1108/jd-12-2013-0166
10.3233/sw-160224,10.1108/jd-12-2013-0166
...

Listing 3. A result set returned by RAMOSE in CSV format

3.3.5. Transforming JSON results
Parameter: json=<op>("<sep>",<field>,<new_field_1>,<new_field_2>,. . . ). When the JSON format is re-

quested in the data return (see previous subsection), it is possible to transform each key-value pair of the final JSON
according to the rule specified. Two possible operations <op> can be specified: “array” and “dict”.

If <op> is set to “array”, the string value associated with the key <field> is converted into an array by splitting
the various textual parts at locations identified by means of the separator <sep>. For instance, considering the JSON
shown in Listing 4, the execution of array("/",cited) returns the JSON shown in Listing 5.

Instead, if <op> is set to “dict”, the value associated with the key <field> is converted into a JSON object by
splitting the various textual parts using the separator <sep> and by associating each of these split strings to new
fields specified by the keys <new_field_1>, <new_field_2>, etc. The number of newly specified keys corresponds to



M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE 203

[
{
"citing":"10.3233/ds-190019",
"cited":"10.1108/jd-12-2013-0166"

},
{
"citing":"10.3233/sw-160224",
"cited":"10.1108/jd-12-2013-0166"

}, ...
]

Listing 4. The same result set returned by RAMOSE shown in Listing 3, but in JSON format

[
{
"citing":"10.3233/ds-190019",
"cited":["10.1108","jd-12-2013-0166"]

},
{
"citing":"10.3233/sw-160224",
"cited":["10.1108","jd-12-2013-0166"]

}, ...
]

Listing 5. The same result in JSON shown in Listing 4, transformed according to the rule array("/",cited), which splits the string value
of the field cited according to the separator/and organises the resulting strings into a list

the number of splits to be applied to the value. For instance, considering the JSON shown in Listing 5, the execution
of dict("/",citing,prefix,suffix) returns the JSON shown in Listing 6.

It is worth mentioning that, in case the value of the field has already been converted to a list of strings, the “dict”
operation still works, and will be applied to all the strings contained in such a list. For instance, considering the
JSON shown in Listing 6, the execution of dict("0",cited,one,two) returns the JSON shown in Listing 7.

3.3.6. Application of the filters and refinement mechanisms
In an API call, it is possible to specify one or more parameters of the same kind if you want to run the same filter

and/or refinement multiple times. For instance, require=citing&require=cited excludes from the result
all the rows that have unspecified the value of either the field citing or the field cited.

The order in which each parameter of the same type of a filter/refinement is run by RAMOSE depends on the
order in which it is specified in the URL. However, the order of execution of the types of filter/refinement do not
follow the actual order in the URL of the API call. Instead, RAMOSE first processes require, then filter,
which is followed by sort. Then it applies format and, if the requested format is JSON, it finally executes json.

3.4. Run and deploy RAMOSE

There are three ways to run RAMOSE. First, one can use its command line interface (CLI) to execute it. Second,
it can be executed directly within a web server. Finally, it can be used directly within a Python code by using its
main class, i.e. APIManager. These possibilities are described in the following subsections.



204 M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE

[
{
"citing":{"prefix":"10.3233",

"suffix":"ds-190019"},
"cited":["10.1108","jd-12-2013-0166"]

},
{
"citing":{"prefix":"10.3233",

"suffix": "sw-160224"},
"cited":["10.1108","jd-12-2013-0166"]

}, ...
]

Listing 6. The same result in JSON shown in Listing 5, transformed according to the rule dict("/",citing,prefix,suffix), which
splits the string value of the field citing according to the separator/and organises the resulting strings into a JSON object with the new field
labels prefix and suffix

[
{
"citing":{"prefix":"10.3233",

"suffix": "ds-190019"},
"cited":[
{"one":"1","two":".1108"},
{"one":"jd-12-2","two": "13-0166"}

]
},

{
"citing":{"prefix":"10.3233",

"suffix": "sw-160224"},
"cited":[
{"one":"1","two":".1108"},
{"one":"jd-12-2","two": "13-0166"}

],
}, ...

]

Listing 7. The same result in JSON shown in Listing 6, transformed according to the rule dict("0",cited,one,two), which splits each
string value of the list in the field cited according to the separator 0 and organises the resulting strings into a JSON object according to the
new fields one and two

3.4.1. Command line interface (CLI)
RAMOSE can be run via CLI by specifying one or more configuration documents (parameter -s) and the op-

eration to call (parameter -c), composed by concatenation of the API base URL with the operation URL, plus the
wanted parameters for filtering and refining if needed. Also, it can take as input additional optional parameters (a) to
specify the format of the output (parameter -f, JSON being the default), (b) to specify the name of the file in which
to store the output (parameter -o, the output is printed in the shell output stream if a filename is not specified), and
(c) to specify the method to use for the API request (parameter -m, GET being the default). The template of a CLI
call of RAMOSE is shown as follows:



M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE 205

python ramose.py
-s <conf_files>
-c <api_base><operation_url>?<params>
-f <csv|json>
-o <output_name>
-m <get|post>

RAMOSE can also create a HTML documentation of the API described in a configuration file, such as that
available at http://opencitations.net/index/api/v1. Specifically, the HTML documentation is requested by using the
-d parameter, which can be stored in a file (parameter -o, as shown before) and, if needed, an additional CSS file
can be specified to customise the layout of the document (parameter -css). The template of a CLI call of RAMOSE
to generate the documentation is shown as follows:

python ramose.py
-s <conf_file>
-d
-o <output_name>
-css <css_file_path>

3.4.2. Web server
RAMOSE can also be used within a web server which is instantiated by using the parameter -w specifying the IP

address of the host and the related port separated by “:” (e.g. 127.0.0.1:8080). RAMOSE uses Flask to run the web
server on the specified host machine. To deploy the REST API, one can use the following command:

python ramose.py
-s <conf_files>
-w <host:port>
-css <css_file_path>

The Web API application can be accessed via a browser at the host and port specified (e.g. http://127.0.0.1:8080)
and includes a basic dashboard for tracking API calls (available at http://<host>:<port>), and a documen-
tation of the REST API (available at http://<host>:<port>/<api_base>).

3.4.3. Python classes
The Python class APIManager implements all the functionalities made available by RAMOSE. The signature of

this class is as follows:

APIManager(conf_files)

The constructor of the class takes as input a list of API configuration files defined according to the hash format, and
makes all the operations they define available for calling using the method get_op with the following signature:

get_op(op_complete_url)

This method takes as input a string containing the complete URL of the operation to execute, i.e. <api_base> plus
<operation_url> such as "/api/v1/citations/10.1108/JD-12-2013-0166", and returns an object of
type Operation which implements the specific API call defined by the input URL. Thus, such an instance of the
class Operation enables one to execute it by calling the method exec with the following signature:

exec(method, content_type)

http://opencitations.net/index/api/v1


206 M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE

Fig. 3. The UML class diagram of all the Python classes implementing RAMOSE.

This method takes as input the string describing the HTTP method to use to call the SPARQL endpoint (either
"get" or "post") and the content type (i.e. the format) of the result returned by the call (either "csv" or
"json"). The method returns a tuple of two items. The first item contains the status code of the HTTP response,
while the second item contains the string of the results in the requested format. The UML class diagram of all the
classes implementing RAMOSE is shown in Fig. 3.

4. Use of REST APIs in OpenCitations

To date, RAMOSE has been principally adopted by the OpenCitations organisation to serve its datasets to a variety
of stakeholders, including both Semantic Web practitioners and scholars in research fields that are not familiar with
Semantic Web technologies, e.g. scientometricians. This case study gave us the opportunity to sketch a preliminary
evaluation of the software in order to propose a mature, flexible solution to the community and to foster its reuse as
based on the evidence of actual benefits for RDF data providers.

Specifically, we aimed to understand the potential benefit that the introduction of REST APIs – created by means
of RAMOSE – can bring for access to and reuse of data stored in RDF. We analysed the logs of the requests to
OpenCitations services between January 2018 and March 2020 to identify trends in data access strategies. This
period was particularly meaningful, since the first REST API made available by OpenCitations was released in June
2018, before which our data was available only through SPARQL endpoints.

While this paper represents the first proposal of RAMOSE to the community for direct use in accessing other
RDF triplestores, several stakeholders have requested systematic access to the OpenCitations REST APIs. We give
an account of applications and services that systematically rely on OpenCitations REST APIs created via RAMOSE.

4.1. Users’ queries analysis

As mentioned above, the logs allowed us to understand to what extent the introduction of the REST API has
changed the way users interact with OpenCitations data. However, although OpenCitations implements an open



M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE 207

Table 3

Similarity between clusters of users’ queries and API calls

Cluster Matched API call name Similarity (%)

1 metadata 71

2 metadata 88

3 metadata 79

4 coauthorship 79

5 coauthorship 93

6 metadata 90

7 metadata 99

8 metadata 94

9 coauthorship 86

10 metadata 65

REST API system, it does not track users (e.g. by means of API keys) and users’ IP addresses are currently masked
by proxies, hence the impact of the introduction of RAMOSE REST APIs cannot be directly measured in terms of
unique users. Being aware of a potential bias in results, we considered the number of queries (either directly against
the SPARQL endpoint or to a Web REST API) as the unit of measure for showing trends in the two strategies for
data access.

Specifically, we first analysed whether Web REST API operations implemented by OpenCitations are designed in
a way that satisfies a representative number of users’ queries, to assume that the types of queries performed directly
against the SPARQL endpoint can be reasonably compared (one-to-one) with REST API calls.

We collected all the SPARQL queries performed by users against the SPARQL endpoints of the OpenCitations
Corpus and of the OpenCitations Indexes over a 3-year time span (from January 2018 to March 2020), removed
common variable terms (e.g. prefixes, limit, offset) and normalised query variables to placeholder strings (e.g.
specific DOI requested in a query is substituted with the generic term ”string”). We pruned all the queries that
had less than four query variables and those that had been performed less than ten times, to remove the long tail
of queries that may have been the results of failed attempts, mistakes and so on. We then aggregated queries by
using the affinity propagation method (i.e. a method that does not require one a priori to specify the number of final
clusters), obtaining ten clusters of queries, for each of which an exemplar query is provided. We finally matched
exemplar queries with the five queries underlying OpenCitations API calls by measuring their string similarity. We
selected a similarity score (see token set ratio, https://github.com/seatgeek/fuzzywuzzy) that allows us to measure
whether the same triple patterns appear in the matching query regardless their order.

In Table 3 we illustrate the results of the comparison, including for each cluster the name of the API call having
the best match with respect to the exemplar query, and the similarity score expressed in percentage.

The results show that, with an average confidence of ∼80%, users’ SPARQL queries are covered by two of
the main API calls designed by OpenCitations, namely: metadata, a method to retrieve bibliographic metadata
of resources and their references, and coauthorship, a method to retrieve the network of authors given a set of
documents (see https://opencitations.net/api/v1 and https://opencitations.net/index/api/v1 for a complete description
of the API calls).

Secondly, we compared the number of total SPARQL queries made against the OpenCitations SPARQL endpoints
(excluding those coming from RAMOSE) with the number of all the REST API calls received in the same period.
The results, split by trimester for the sake of readability, are shown in Fig. 4.

In Fig. 4, the blue bars show usage employing the OpenCitations SPARQL endpoints directly or using the other
available non-API services, while the yellow bars show access using the APIs created with RAMOSE. The increase
in overall usage of OpenCitations datasets following the introduction of the APIs may be attributed both to the in-
creased ease of access to OpenCitations data that these APIs make possible, thus attracting use by people unfamiliar
with SPARQL, and also to the launch in June 2018 of COCI [10], which for the first time made available through
OpenCitations the hundreds of millions of citations derived from open references at Crossref.

While there is some fluctuation in the quarterly figures, there has been a significant increase in the average number
of API calls since T3-2018, and a significant declining trend in the interaction with the other SPARQL services. That

https://github.com/seatgeek/fuzzywuzzy
https://opencitations.net/api/v1
https://opencitations.net/index/api/v1


208 M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE

Fig. 4. The number of requests received by the OpenCitations SPARQL endpoints vs. the calls to the OpenCitations REST APIs between January
2018 and March 2020 – listed by trimester. The orange line represents the moving average of the number of Web REST API calls. Note that the
vertical axis has a logarithmic scale.

trimester could be considered the turning point, since at that time several developers with no or limited expertise with
Semantic Web technologies started to build prototype applications using the OpenCitations data newly available
via the REST API. In that trimester, the total number of accesses to the REST API was 138% of the number of
accesses to the other SPARQL services. In subsequent trimesters, the use of the original SPARQL services decreased
substantially to become stable at about 22,000 requests per month, while the number of REST API calls increased
dramatically, reaching a total number of 4,394,093 calls in T1-2020, more than 65 times the number of SPARQL
requests.

These figures point to substantial benefits from the adoption of RAMOSE with regards to increasing user interac-
tion with OpenCitations data. Such results are corroborated by results of the preliminary comparison, which allow
us to validate the conclusion that a decrease of the number of SPARQL queries in favour of a higher number of
REST API calls can be associated with an actual increase of data engagement – rather than being due to bad API
design choices and a consequent inefficient increase of the number of API calls.

The source code for reproducing the preliminary analysis is available at http://github.com/opencitations/ramose/
tree/master/eval. All the data used in this evaluation are available on Zenodo [4].

4.2. Current uptake of RAMOSE

The flexibility of RAMOSE enabled the simple creation of additional REST APIs for each of the new datasets
released by OpenCitations. From the first REST API released in June 2018, three other REST APIs have been
released, as described at http://opencitations.net/querying, with all the configuration documents being available at
https://github.com/opencitations/api.

Other REST APIs based on RAMOSE, for services external to OpenCitations, have been developed to address
specific tasks. For instance, during the Hack Day of the 2018 Workshop on Open Citations (https://workshop-oc.
github.io/2018/), we developed an exemplar REST API service (still available at http://opencitations.net/wikidata/
api/v1) to return scholarly metadata from the Wikidata SPARQL endpoint (https://query.wikidata.org). This REST
API has been used by the citation network visualisation tool VOSviewer [24] (https://www.vosviewer.com) to
display the citation network within more than 5,000 papers in the Wikidata Zika Corpus (https://twitter.com/
ReaderMeter/status/1037349669335126016).

In addition to VOSviewer, the REST APIs developed by OpenCitations using RAMOSE have been exten-
sively used in several other software and data services. Those of which we are aware are Citation Gecko (https://
citationgecko.com), OpenAccess Helper (https://www.oahelper.org), DBLP (https://dblp.uni-trier.de), CiteCorp
(https://github.com/ropenscilabs/citecorp), and Zotero (https://github.com/zuphilip/zotero-open-citations). Our in-
teractions with the developers of those services have been instrumental in guiding the development of the facilities

http://github.com/opencitations/ramose/tree/master/eval
http://github.com/opencitations/ramose/tree/master/eval
http://opencitations.net/querying
https://github.com/opencitations/api
https://workshop-oc.github.io/2018/
https://workshop-oc.github.io/2018/
http://opencitations.net/wikidata/api/v1
http://opencitations.net/wikidata/api/v1
https://query.wikidata.org
https://www.vosviewer.com
https://twitter.com/ReaderMeter/status/1037349669335126016
https://twitter.com/ReaderMeter/status/1037349669335126016
https://citationgecko.com
https://citationgecko.com
https://www.oahelper.org
https://dblp.uni-trier.de
https://github.com/ropenscilabs/citecorp
https://github.com/zuphilip/zotero-open-citations


M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE 209

that RAMOSE makes available, including the filters and refinement mechanisms that have demonstrated their use-
fulness is several scenarios, and have led, for example, to the adoption of JSON as the default data format returned
by RAMOSE so as to meet to the input requirements of VOSviewer.

5. Related works

In the past, several tools, in particular REST APIs on top of SPARQL endpoints, have been developed to leverage
RDF data served through SPARQL query interfaces, often employing bespoke solutions tailored to their data, such
as the DBpedia REST APIs (https://wiki.dbpedia.org/rest-api) and the Europeana Search API (https://pro.europeana.
eu/page/search).

Among works that are closer to what RAMOSE provides, the following deserve specific mention.
BASIL [3] is a cloud platform that supports sharing and reusing of SPARQL queries, and automatically generates

Web APIs from those, which can be easily embedded into users’ applications. Moreover, it allows one to reuse
results as HTML snippets, called “views”. While pre-processing operations are possible, the only way to undertake
post-processing operations is separately to implement ad-hoc procedures on the returned results. BASIL runs using
Java and requires the installation and configuration of a MySQL server on the running machine.

Another important tool in this category is grlc (http://grlc.io/) [13], a lightweight server that translates on the fly
to Linked Data API calls SPARQL queries stored in a GitHub repository, in a local filesystem, or listed at a URL.
The idea behind grlc is to implement an API mapping along with the use of SPARQL decorators which extends the
original queries with other generated metadata which add extra functionalities to the APIs. In order to make this
happen, the specified archive must contain a collection of SPARQL queries as .rq files and include the decorators as
comments inside each .rq file. With grlc the pre-/post-processing operations are defined as decorators, and each API
call can point to a different SPARQL endpoint by specifying the decorator “endpoint” before the SPARQL query.

A useful add-on to integrate with the grlc, suggested by its authors, is SPARQL Transformer [12]. This tool
allows one to simplify the JSON outputs of a SPARQL query by re-shaping and simplifying the final JSON schema.
SPARQL Transformer relies on a single JSON object to define which data should be extracted from the endpoint
and what shape should they assume. Although this approach refines the final output, using it alone does not allow
one to perform custom operations on the returned results (e.g. data normalisation or cleansing), which are delegated
to separated post-processing operations, e.g. using the grlc features, or ad-hoc functions. SPARQL Transformer is
written in JavaScript and can be imported and integrated in an HTML module.

Another recently proposed framework is the Ontology-Based API (OBA) [6]. In contrast with the other tools
discussed above, OBA creates a REST API service starting from an ontology (specified in OWL), and it performs
queries only on one SPARQL endpoint, which must expose RDF data modelled according to the ontology used
to create the API. OBA automatically generates a series of SPARQL queries templates to execute CRUD (create,
retrieve, update, delete) operations through the REST API generated, and gives the possibility to define other API
operations based on custom SPARQL queries. This customisation is provided using the same strategy adopted in
grlc.

In Table 4 we mention the tools discussed above except the last one. and highlight some of their meaningful
features. We have also included RAMOSE in the table, to enable a comparison with other tools. The table header
contains the tools analysed. The first column lists the main features retrieved by analysing the tools and organises
them in three macro groups:

1. Tool characteristics: the technical characteristics of the tool including the programming language used for its
creation, its license, its requirements, and how to run it.

2. Building the REST API service: what modules and configuration files should be defined to create the REST
API service by using the tool, and what inputs/data are required.

3. REST API service: the characteristics of the REST API service produced using the tool, introducing the
main aspects of its API operations, API parameters, documentation, and other features worth of mention-
ing.

https://wiki.dbpedia.org/rest-api
https://pro.europeana.eu/page/search
https://pro.europeana.eu/page/search
http://grlc.io/


210 M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE

Table 4

A comparison between RAMOSE and other tools used to create RESTful APIs over RDF triplestores. The first two columns define the features
considered in the analysis. The features are classified under three macro groups: “tool characteristics”, which describe the technical characteristics
of the tool, “building the REST API service using the tool”, i.e. the modules/configuration files and the values needed for the creation of the
REST API service, and “REST API service”, which illustrates the features of the created REST API service

RAMOSE grlc Basil OBA

Tool characteristics Language Python Python Java Java

License ISC License MIT License N/A Apache License

Running
requirements

- Python should be
installed on the
running machine

- Java should be
installed on the
running machine
- Have a MySQL
server
- A database on
MySQL running a
specific list of queries
- A configuration file
in .ini format, which
defines the
connection
parameters
- A log4j2
configuration file for
logging permissions
(optional)

- Java should be
installed on the
running machine
- Docker should be
installed on the
running machine

Running
interface

- CLI
- Web server
- Python code

- Its web service
(grlc.io service)

- CLI - Python
- Javascript client

Building the REST
API service using
the tool

Values
(required or
optional)

- A URL to the
SPARQL endpoint
- Custom SPARQL
queries
- General metadata
about the REST API
service to create

- A URL to the
SPARQL endpoint
- Custom SPARQL
queries
- General metadata
about REST API
service to create

- A URL to the
SPARQL endpoint
- Custom SPARQL
queries
- Views: an
alternative
presentation of the
API results based on
a template or script,
e.g. HTML
representation
(optional)

- A URL to the
SPARQL endpoint
- Ontology network
(specified in OWL)
- Custom SPARQL
queries (optional)

Module/s
(required or
optional)

- One configuration
file in hash-format

- A list of files in rq
format (each file
specifies a different
API operation)
- Configuration files
could be loaded from
a GitHub repository,
a local storage, or a
spec file accessible
on the web

- A configuration file
in .yaml format
- A list of files in rq
format (each file
specifies a different
API operation)
(optional)

Among the several differences between RAMOSE and the other tools, we want to highlight the following two:

• all the tools analysed generate a web-based front-end documentation based on Swagger (https://swagger.io/).
In RAMOSE, we propose a different approach with an alternative representation, the main purpose of which is
to be as far as possible clear to those who are not software programmers;

https://swagger.io/


M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE 211

Table 4

(Continued)

RAMOSE grlc Basil OBA

REST API service Parameters - Filters
- Ordering
- Result formats
(CSV or JSON)
- JSON
transformation

- Specify a page (in
case a maximum
number of results are
specified)
- Parameters used as
variables inside the
SPARQL queries
definition (following
a particular
convention)
- Parameters values
could be restricted to
a set of permitted
options

- All the available
parameters are used
as variables inside the
SPARQL queries
definition (following
a particular
convention)

- All the available
parameters are used
as variables inside the
SPARQL queries
definition (following
a particular
convention)

Operations - Via GET or POST
requests
- Can perform a list
of
pre-/post-processing
methods to apply on
respectively the input
of the API operation
and output of the
SPARQL query
executed by that
operation

- Via GET or POST
requests
- Transformation/re-
engeneering in JSON
of the output returned
by the SPARQL
query executed by
that operation

- Via GET, POST,
PUT or DELETE
requests
- Supports
authorization when
using POST, PUT
and DELETE
methods

Documentation - Own Web-based
documentation
- Automatically built
according to the
values specified in
the configuration file

- Swagger-based
documentation
- Automatically built
according to the
values specified in
the configuration file

- Swagger-based
documentation

- Swagger-based
documentation
- Automatically built
following the
annotations in the
input ontology

Others - Perform queries on
different SPARQL
endpoints only
through SPARQL
federation
- Import Python files
to expose functions
for pre- and
post-processing
methods

- Perform queries on
different SPARQL
endpoints
- Generation of
provenance in PROV
of both the Git
repository history
and grlc’s activity
additions

- Perform queries on
different SPARQL
endpoints
- Creates new API
operations using
HTTP PUT requests

- Performs queries
only on one SPARQL
endpoint (since it is
assumed to be
modelled according
to the ontology used
to create the API)
- It generates
automatic SPARQL
queries templates to
handle CRUD-based
APIs

• the parameters of RAMOSE are based on pre-defined options/functions, and it is possible to customize pre-
processing and post-processing operations. The other tools define the REST API parameters based on variables
that form part of the SPARQL queries (which follow a specific convention).

In addition to the tools mentioned above, it is worth mentioning also the approach proposed in [23]. In this work
Schröder et al. present a generic approach to convert any given SPARQL endpoint into a path-based JSON REST
API. This work focused mostly on simple CRUD-based workflows. The idea behind this approach is to build API
paths that follow RDF triple patterns, e.g. the call /class/dbo:Country/dbr:Germany returns a JSON object for the
specified entity (i.e. the DBpedia resource representing Germany). Despite being very intuitive for Semantic Web



212 M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE

practitioners, it does not help adopters who are not acquainted both with RDF knowledge organisation and the scope
of the dataset at hand.

Other SPARQL editor interfaces have been published in the past, with the aim of assisting users in querying
against SPARQL endpoints by means of a user-friendly GUI, e.g. YASGUI [21]. Such tools are meant to allow users
to perform exploratory queries, but do not offer means to programmatically access data. Moreover, these are usually
hard to use by users with no knowledge of SPARQL.

Another class of tools include WYSIWYG Web applications for searching and browsing RDF data by hiding the
complexity of SPARQL. Such tools include general-purpose RDF search engines and GUI interfaces, such as Pubby
(http://wifo5-03.informatik.uni-mannheim.de/pubby/), LodView [1], our own search interface OSCAR [9], Scholia
[14], Elda (http://www.epimorphics.com/web/tools/elda.html), and BioCarian [25].

Finally, some frameworks have been developed in the past in order to provide high-level interfaces to interact
with RDF data through a web server. Among these, it is worth mentioning the Python Linked Data API (pyLDAPI,
https://github.com/RDFLib/pyLDAPI), which is Python module that can be added into a Python Flask installation
to handle requests and return responses in a manner consistent with Linked Data principles of operation.

6. Conclusions

In this article, we have introduced RAMOSE, the RESTful API Manager Over SPARQL Endpoints. RAMOSE
is an open-source Python software development that allows one to create Web REST API interfaces to one or more
SPARQL endpoints by editing a configuration file in Markdown-like syntax, automatically generating documen-
tation and a web server for testing and monitoring purposes. This generic software, which is freely available on
GitHub and citable via Zenodo [16], can be used over any SPARQL endpoint by creating a configuration text file.
We have illustrated all the features that RAMOSE implements and we have presented the analysis of our moti-
vating scenario, namely the dramatic increase in usage of OpenCitations data demonstrated by our access logs, to
demonstrate the benefit that such a tool has brought to OpenCitations in terms of user interaction with its data. We
commend the use of RAMOSE to others wishing to expose their own RDF data via a REST API.

In the future, we aim at extending RAMOSE with missing CRUD (Create, Read, Update, Delete) operations
to fully support Semantic Web developers when interacting with the triplestores they own. Secondly, we want to
enhance RAMOSE capabilities and support Web developers in interacting with other types of data sources, such as
JSON, XML, CSV data dumps and relational databases, so that it will be possible to leverage the same software
solution over different data sources. Lastly, alongside the method for importing CSS templates, we will provide
methods to import custom HTML templates.

References

[1] D.V. Camarda, S. Mazzini and A. Antonuccio, LodLive, exploring the web of data, in: Proceedings of the 8th International Conference on
Semantic Systems – I-SEMANTICS’12, ACM, New York, NY, USA, 2012, pp. 197–200. doi:10.1145/2362499.2362532.

[2] R. Cyganiak, D. Wood and M. Krötzsch, ‘RDF 1.1 Concepts and Abstract Syntax’, World Wide Web Consortium, W3C Recommendation,
Feb. 2014. Accessed: Nov. 12, 2020. Available: https://www.w3.org/TR/rdf11-concepts/.

[3] E. Daga, L. Panziera and C. Pedrinaci, BASIL: A cloud platform for sharing and reusing SPARQL queries as web APIs, in: ISWC-P&D
2015 – ISWC 2015 Posters & Demonstrations Track, CEUR Workshop Proceedings, Vol. 1486, Aachen, Germany, 2015, Accessed: Nov.
12, 2020. Available: http://ceur-ws.org/Vol-1486/paper_41.pdf.

[4] M. Daquino, I. Heibi, S. Peroni and D. Shotton, OpenCitations 2018–2020 requests: SPARQL endpoints vs REST APIs v2, Zenodo (2020).
doi:10.5281/ZENODO.3953068.

[5] R.T. Fielding, REST APIs must be hypertext-driven, in: Untangled Musings of Roy T. Fielding, Vol. 20, 2008, Accessed: Nov. 12, 2020.
Available: https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven.

[6] D. Garijo and M. Osorio, OBA: An ontology-based framework for creating REST APIs for knowledge graphs, in: The Semantic Web – ISWC
2020, Lecture Notes in Computer Science, Vol. 12507, Springer, Cham, Switzerland, 2020, pp. 48–64. doi:10.1007/978-3-030-62466-8_4.

[7] L.L. Haak, M. Fenner, L. Paglione, E. Pentz and H. Ratner, ORCID: A system to uniquely identify researchers, Learned Publishing 25(4)
(2012), 259–264. doi:10.1087/20120404.

[8] S. Harris and A. Seaborne, ‘SPARQL 1.1 Query Language’, World Wide Web Consortium, W3C Recommendation, Mar. 2013. Accessed:
Nov. 12, 2020. Accessed: Nov. 12, 2020. Available: https://www.w3.org/TR/sparql11-query/.

http://wifo5-03.informatik.uni-mannheim.de/pubby/
http://www.epimorphics.com/web/tools/elda.html
https://github.com/RDFLib/pyLDAPI
https://doi.org/10.1145/2362499.2362532
https://www.w3.org/TR/rdf11-concepts/
http://ceur-ws.org/Vol-1486/paper_41.pdf
https://doi.org/10.5281/ZENODO.3953068
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://doi.org/10.1007/978-3-030-62466-8_4
https://doi.org/10.1087/20120404
https://www.w3.org/TR/sparql11-query/


M. Daquino et al. / Creating RESTful APIs over SPARQL endpoints using RAMOSE 213

[9] I. Heibi, S. Peroni and D. Shotton, Enabling text search on SPARQL endpoints through OSCAR, Data Science 2(1–2) (2019), 205–227.
doi:10.3233/DS-190016.

[10] I. Heibi, S. Peroni and E.D. Shotton, Software review: COCI, the OpenCitations index of crossref open DOI-to-DOI citations, Scientomet-
rics 121(2) (2019), 1213–1228. doi:10.1007/s11192-019-03217-6.

[11] G. Hendricks, D. Tkaczyk, J. Lin and P. Feeney, Crossref: The sustainable source of community-owned scholarly metadata, Quantitative
Science Studies 1(1) (2020), 414–427. doi:10.1162/qss_a_00022.

[12] P. Lisena, A. Meroño-Peñuela, T. Kuhn and R. Troncy, Easy web API development with SPARQL transformer, in: The Semantic Web –
ISWC 2019, Lecture Notes in Computer Science, Vol. 11779, Springer, Cham, Switzerland, 2019, pp. 454–470. doi:10.1007/978-3-030-
30796-7_28.

[13] A. Meroño-Peñuela and R. Hoekstra, grlc makes GitHub taste like linked data APIs, in: The Semantic Web, Lecture Notes in Computer
Science, Vol. 9989, Springer, Cham, Switzerland, 2016, pp. 342–353. doi:10.1007/978-3-319-47602-5_48.

[14] F.Å. Nielsen, D. Mietchen and E.L. Willighagen, Scholia, scientometrics and wikidata, in: The Semantic Web: ESWC 2017 Satellite Events,
Lecture Notes in Computer Science, Vol. 10577, Springer, Cham, Switzerland, 2017, pp. 237–259. doi:10.1007/978-3-319-70407-4_36.

[15] C. Ogbuji, ‘SPARQL 1.1 Graph Store HTTP Protocol’, World Wide Web Consortium, W3C Recommendation, Mar. 2013. Accessed: Nov.
12, 2020. Available: https://www.w3.org/TR/sparql11-http-rdf-update/.

[16] S. Peroni and M. Daquino, ‘opencitations/ramose: Release 1.0.2’, Version 1.0.2 [software], Zenodo. doi:10.5281/zenodo.4585536.
[17] S. Peroni and D. Shotton, The SPAR ontologies, in: The Semantic Web – ISWC 2018, Lecture Notes in Computer Science, Vol. 10842,

Cham, Switzerland, 2018, pp. 119–136. doi:10.1007/978-3-030-00668-6_8.
[18] S. Peroni and D. Shotton, Open citation identifier: Definition, Figshare (2019). doi:10.6084/m9.figshare.7127816.
[19] S. Peroni and D. Shotton, OpenCitations, an infrastructure organization for open scholarship, Quantitative Science Studies 1(1) (2020),

428–444. doi:10.1162/qss_a_00023.
[20] S. Peroni, D. Shotton and F. Vitali, One year of the OpenCitations corpus, in: The Semantic Web – ISWC 2017, Vol. 10588, Cham,

Switzerland, 2017, pp. 184–192. doi:10.1007/978-3-319-68204-4_19.
[21] L. Rietveld and R. Hoekstra, The YASGUI family of SPARQL clients, Semantic Web 8(3) (2016), 373–383. doi:10.3233/SW-150197.
[22] M. Saleem, S. Gábor, F. Conrads, S.A.C. Bukhari, Q. Mehmood and A. Ngonga Ngomo, How representative is a sparql benchmark?

An analysis of rdf triplestore benchmarks, in: WWW’19: The World Wide Web Conference, 2019, pp. 1623–1633. doi:10.1145/3308558.
3313556.

[23] M. Schröder, J. Hees, A. Bernardi, D. Ewert, P. Klotz and S. Stadtmüller, Simplified SPARQL REST API: CRUD on JSON object graphs
via URI paths, in: The Semantic Web: ESWC 2018 Satellite Events, Lecture Notes in Computer Science, Vol. 11155, Springer, Cham,
Switzerland, 2018, pp. 40–45. doi:10.1007/978-3-319-98192-5_8.

[24] N.J. van Eck and L. Waltman, Software survey: VOSviewer, a computer program for bibliometric mapping, Scientometrics 84(2) (2010),
523–538. doi:10.1007/s11192-009-0146-3.

[25] N. Zaki and C. Tennakoon, BioCarian: Search engine for exploratory searches in heterogeneous biological databases, BMC Bioinformatics
18(1) (2017). doi:10.1186/s12859-017-1840-4.

https://doi.org/10.3233/DS-190016
https://doi.org/10.1007/s11192-019-03217-6
https://doi.org/10.1162/qss_a_00022
https://doi.org/10.1007/978-3-030-30796-7_28
https://doi.org/10.1007/978-3-030-30796-7_28
https://doi.org/10.1007/978-3-319-47602-5_48
https://doi.org/10.1007/978-3-319-70407-4_36
https://www.w3.org/TR/sparql11-http-rdf-update/
https://doi.org/10.5281/zenodo.4585536
https://doi.org/10.1007/978-3-030-00668-6_8
https://doi.org/10.6084/m9.figshare.7127816
https://doi.org/10.1162/qss_a_00023
https://doi.org/10.1007/978-3-319-68204-4_19
https://doi.org/10.3233/SW-150197
https://doi.org/10.1145/3308558.3313556
https://doi.org/10.1145/3308558.3313556
https://doi.org/10.1007/978-3-319-98192-5_8
https://doi.org/10.1007/s11192-009-0146-3
https://doi.org/10.1186/s12859-017-1840-4

	Introduction
	Background: OpenCitations and its data
	RAMOSE: A technical introduction
	Architecture overview
	Configuration document
	Filters and refinements
	Excluding rows with empty data
	Filtering rows
	Sorting rows
	Formatting results
	Transforming JSON results
	Application of the filters and refinement mechanisms

	Run and deploy RAMOSE
	Command line interface (CLI)
	Web server
	Python classes


	Use of REST APIs in OpenCitations
	Users' queries analysis
	Current uptake of RAMOSE

	Related works
	Conclusions
	References

