
Semantic Web 12 (2021) 649–683 649
DOI 10.3233/SW-200419
IOS Press

Knowledge Graph OLAP
A multidimensional model and query operations for contextualized knowledge graphs

Christoph G. Schuetz a,*, Loris Bozzato b, Bernd Neumayr a, Michael Schrefl a and Luciano Serafini b

a Institute of Business Informatics – Data & Knowledge Engineering, Johannes Kepler University Linz, Austria
E-mails: christoph.schuetz@jku.at, bernd.neumayr@jku.at, michael.schrefl@jku.at
b Center for Information and Communication Technology, Fondazione Bruno Kessler, Italy
E-mails: bozzato@fbk.eu, serafini@fbk.eu

Editor: Harald Sack, Karlsruhe Institute of Technology, Germany
Solicited reviews: Sven Groppe, University of Lübeck, Germany; Aidan Hogan, Universidad de Chile, Chile; Maribel Acosta, Ruhr-University
Bochum, Germany

Abstract. A knowledge graph (KG) represents real-world entities and their relationships. The represented knowledge is often
context-dependent, leading to the construction of contextualized KGs. The multidimensional and hierarchical nature of context
invites comparison with the OLAP cube model from multidimensional data analysis. Traditional systems for online analytical
processing (OLAP) employ multidimensional models to represent numeric values for further analysis using dedicated query
operations. In this paper, along with an adaptation of the OLAP cube model for KGs, we introduce an adaptation of the traditional
OLAP query operations for the purposes of performing analysis over KGs. In particular, we decompose the roll-up operation
from traditional OLAP into a merge and an abstraction operation. The merge operation corresponds to the selection of knowledge
from different contexts whereas abstraction replaces entities with more general entities. The result of such a query is a more
abstract, high-level view – a management summary – of the knowledge.

Keywords: Contextualized Knowledge Repository, knowledge graph management system, knowledge graph summarization,
Resource Description Framework, ontologies

1. Introduction

A knowledge graph (KG) represents real-world en-
tities and their relationships. KGs have been described
as “large networks of entities, their semantic types,
properties, and relationships” [49], as consisting of
“a set of interconnected typed entities and their at-
tributes” [31] with possibly arbitrary relationships
[64]. The majority of a KG’s contents are instance-
level facts, or assertional knowledge (ABox) [64], al-
though KGs may also include terminological and on-
tological knowledge (TBox) representing “the vocab-
ulary used in the knowledge graph” [31] in order to
allow for “ontological reasoning and query answer-
ing” [5] over the facts. Furthermore, a KG typically

*Corresponding author. E-mail: christoph.schuetz@jku.at.

covers a variety of topics rather than focusing exclu-
sively on a single aspect of the real world such as ge-
ographic terms [64]. For the representation of KGs,
the Resource Description Framework (RDF) [23] often
serves as the data model.

KGs present a wide range of potential applications,
e.g., (web) search [35] and question-answering [81],
intra-company knowledge management [65] and in-
vestment analysis [68]. Among the most popular ex-
amples of KGs are proprietary ones such as Google’s
Knowledge Graph [32] and Microsoft’s Satori [66]
as well as community-driven efforts such as DBpedia
[52] and Wikidata [87]. More and more organizations
follow suit with the development of KGs for their own
purposes, necessitating the development of appropri-
ate knowledge graph management systems (KGMS) [5]
that facilitate exploitation of the knowledge contained

1570-0844 © 2021 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:christoph.schuetz@jku.at
mailto:bernd.neumayr@jku.at
mailto:michael.schrefl@jku.at
mailto:bozzato@fbk.eu
mailto:serafini@fbk.eu
mailto:christoph.schuetz@jku.at
https://creativecommons.org/licenses/by-nc/4.0/

650 C.G. Schuetz et al. / Knowledge Graph OLAP

in a KG, e.g., by providing mechanisms for KG sum-
marization [90].

In order to facilitate KG management, KGs are in-
creasingly subject to contextualization, i.e., the enrich-
ment of facts with context metadata such as time and
location. For example, in the aeronautics domain, the
relevant knowledge for air traffic management is in-
herently context-dependent [71], especially with re-
spect to time and location but also other context dimen-
sions, e.g., importance or topic. In particular, knowl-
edge about airport infrastructure and airspace such as
operational status of runways and closure of airspace
varies over time. Frameworks such as the Contextual-
ized Knowledge Repository (CKR) [75] serve to orga-
nize knowledge within hierarchically ordered contexts
along multiple context dimensions.

The multidimensional nature of context invites com-
parison with the multidimensional modeling approach
as employed by online analytical processing (OLAP)
systems for data analysis. In traditional OLAP sys-
tems, hierarchically ordered dimensions span a multi-
dimensional space – also referred to as OLAP cube –
where each point (or cell) represents an event of in-
terest quantified by numeric measures. Similarly, con-
text dimensions span a multidimensional space where
each cell represents a context that comprises facts of
a KG. OLAP systems employ multidimensional mod-
els to perform analytical queries over datasets using
operations such as slice-and-dice and roll-up (see [83]
for further information). In this regard, slice-and-dice
refers to the selection of relevant data for the analy-
sis whereas roll-up refers to the aggregation of the se-
lected data in order to obtain a more abstract view on
the underlying business situation.

In this paper, we introduce Knowledge Graph OLAP
(KG-OLAP), a conceptual approach that consists of a
multidimensional model and corresponding query op-
erations for performing analysis over KGs. Extending
the CKR framework [12,75], KG-OLAP cubes col-
lect knowledge into hierarchically ordered contexts:
Each cell of a KG-OLAP cube corresponds to a con-
text, with knowledge encoded as triples replacing nu-
meric measures as the contents of the cells. In KG-
OLAP cubes, knowledge from the more general con-
texts propagates to the more specific contexts. Typ-
ically, the more general contexts establish the com-
mon terminological knowledge whereas the more spe-
cific contexts contain assertional knowledge. Regard-
ing query operations, the KG-OLAP framework dis-
tinguishes two categories: contextual and graph oper-
ations. The central types of operation in each category

are merge and abstraction, respectively. In particular, a
merge operation combines the knowledge from differ-
ent contexts whereas an abstraction operation replaces
individual entities within a context with more abstract
entities; different variants for each of those types of
operation exist.

Fig. 1 draws an analogy between (a) the roll-up op-
eration in traditional OLAP on numeric measures and
(b) merge and abstraction in KG-OLAP on KGs. First,
the example emphasizes the fact that traditional OLAP
and KG-OLAP work on distinct types of data. The
example’s general setting is air traffic management,
where messages dispatched by air traffic control no-
tify of temporary changes in infrastructure. In tradi-
tional OLAP, the description of real-world events is
condensed into numeric measures: In this example, the
OLAP cube captures the daily number of messages

Fig. 1. Traditional OLAP operates on numeric measures whereas
KG-OLAP operates on knowledge graphs.

C.G. Schuetz et al. / Knowledge Graph OLAP 651

dispatched by air traffic control per geographic seg-
ment and message importance. In KG-OLAP, each cell
of the cube contains knowledge, encoded as triples,
valid and relevant in the context that the cell repre-
sents: In this example, knowledge about navigation
aids of varying importance, valid on a particular day,
and relevant for a specific geographic segment. In
particular, the KG-OLAP cube comprises knowledge
about navigation aids used for approaching Vienna air-
port (VIE): the VOR/DME (i.e., a type of radio beacon)
in Sollenau (SNU) and the VOR/DME in Fischamend
(FMD), which are located in different geographic seg-
ments. On the one hand, that knowledge concerns re-
strictions, namely limitations of frequency (frqLimit),
indicating usability of the navigation aid’s frequency
to be restricted (RES) to certain sectors (not shown in
the example). On the other hand, there is the flight crit-
ical knowledge about a temporary change in SNU’s op-
erational status to INTERRUPT and the fact that FMD
is currently not “flight checked”, i.e., has not under-
gone mandatory, periodic security checks. To illustrate
the idea of merge and abstraction – the main types
of operations in KG-OLAP – the roll-up operation
in traditional OLAP can be considered a sequence of
merge and abstraction. In traditional OLAP, the merge
operation obtains a collection of numeric values for
each grouping of cells by day, flight information re-
gion, and importance package; each geographic seg-
ment belongs to a region, each importance to an impor-
tance package. Then, the abstraction operation applies
the SUM aggregation operator on the collection of nu-
meric values to obtain an aggregate numeric value. In
KG-OLAP, the merge operation first combines triples
from the more specific contexts into a more general
context. Then, the abstraction operation replaces each
VOR/DME entity by the target of its airport property to
obtain a more abstract representation of the knowledge
about navigation aids at Vienna airport. Just like there
are different aggregation functions for numeric values,
there are different variants of the abstraction opera-
tion for KGs. In addition, in case of KG-OLAP, there
are different variants of the merge operation. In KG-
OLAP, merge and abstraction may also be conducted
repeatedly and in an arbitrary order.

We illustrate KG-OLAP following use cases of
(contextualized) knowledge graphs for air traffic man-
agement (ATM) [41,71]; we draw from experience in
collaborative research projects on the use of seman-
tic technologies in ATM (see [34,61,79]). ATM KGs
potentially comprise a wide variety of topics: events,
weather, flight plans, infrastructure, equipment, orga-

nizations, companies, and personnel. The running ex-
ample focuses on the representation of events such as
runway closures and surface contamination which af-
fect the operational status of airport infrastructure and
thus alter general ATM knowledge. Merge and abstrac-
tion then serve to obtain a management summary of
the represented knowledge for pilot briefings or post-
operational analysis, providing a more abstract view
on the KG which contains relevant ATM knowledge in
the suitable form for a particular situation. Another po-
tential application of KG-OLAP is the analysis of busi-
ness reports formalized using KGs and business model
ontologies [74], which we do not elaborate further in
this paper.

Previous work [72,73] introduced the concept of
ATM information cubes, presenting a use case for KG-
OLAP in pilot briefings to an ATM audience, with-
out the conceptual and technological fundamentals of
KGs in general or KG-OLAP in particular. The KG-
OLAP framework may serve to realize ATM informa-
tion cubes, which can be considered a simplified ver-
sion of KG-OLAP cubes. ATM information cubes or-
ganize messages, the contents thus being considerably
less complex and comprehensive than (contextualized)
KGs, lacking ontological knowledge and the knowl-
edge propagation mechanism of KG-OLAP, among
other things. The work on ATM information cubes also
omits the formal definition of abstraction query opera-
tions while lacking other graph operations altogether.

The contributions of this paper are:

(i) the identification of requirements for a model and
query operations for performing analysis over
KGs;

(ii) the formalization of a model for KGs with hierar-
chical contexts and knowledge propagation suit-
able for performing analysis;

(iii) the definition of a set of query operations for per-
forming analysis over KGs;

(iv) an experimental analysis of run time perfor-
mance for working with contextualized KGs.

The remainder of this paper is organized as follows.
In Section 2, we present the use cases that serve to il-
lustrate KG-OLAP and motivate the approach. In Sec-
tion 3, we introduce the formalization for the multi-
dimensional model of KG-OLAP cubes. In Section 4,
we present query operations for KG-OLAP cubes. In
Section 5, we discuss implementation of the approach.
In Section 6, we review related work. We conclude
with a discussion and an outlook on future work.

652 C.G. Schuetz et al. / Knowledge Graph OLAP

Further details about used language, reasoning
methods, implementation, and experimental evaluation
are provided in the separate Appendix [70].

2. Use cases in air traffic management

In this section, we give relevant background infor-
mation on air traffic management (ATM) before dis-
cussing the use of (contextualized) KGs for aeronau-
tical information management. We then describe two
potential use cases of KG-OLAP in the ATM domain,
from which we derive functional requirements.

2.1. Background

Modern ATM aims to ensure safe flight opera-
tions through careful management, analysis, and ad-
vance planning of air traffic flow as well as timely
provisioning of relevant information in the form of
messages. The exchange of data/information between
ATM stakeholders is of paramount importance in or-
der to foster common situational awareness for im-
proved efficiency, safety, and quality in planning and
operations. In this regard, situational awareness refers
to a “person’s knowledge of particular task-related
events and phenomena” [78], i.e., knowledge about
the world relevant for ATM, which must be accurately
represented and conveyed to the various stakehold-
ers. To this end, ATM relies on a multitude of stan-
dardized data/information (exchange) models, e.g., the
Aeronautical Information Exchange Model (AIXM),
the Flight Information Exchange Model (FIXM), the
ICAO Meteorological Information Exchange Model
(IWXXM), and the ATM Information Reference Model
(AIRM).

Among the most common types of messages ex-
changed in ATM are Notices to Airmen. A Notice to
Airmen (NOTAM) – or Digital NOTAM (DNOTAM)
when in electronic form using AIXM format – is
a message that conveys important information about
temporary changes in flight conditions to aircraft pilots
[39], e.g., closures of aerodromes, runways, and taxi-
ways, surface conditions, and construction activities
(see [28] for a list of airport event scenarios) but also
airspace restrictions. Messages shape the knowledge
about the world as relevant for ATM. For example,
a DNOTAM (Listing 1) may change the knowledge
about the taxiways of a particular airport by announc-
ing the temporary closure of a taxiway due to snow
removal. To this end, a DNOTAM employs different

Listing 1. An example DNOTAM in XML notifying of a taxiway
closure in Vienna due to snow removal

C.G. Schuetz et al. / Knowledge Graph OLAP 653

time slices. A baseline timeslice defines the regular
(baseline) knowledge whereas a tempdelta timeslice
announces temporary changes of the baseline knowl-
edge. Instead of the baseline, a DNOTAM typically
employs snapshot timeslices, i.e., baseline blended
with tempdelta knowledge. In the example DNOTAM
in Listing 1, the encoded snapshot/baseline knowl-
edge consists of the definition of the designator of Vi-
enna airport (Lines 5–13) and the definition of vari-
ous attributes of a taxiway at Vienna airport (Lines 17–
27) per 12 February 2018 at 8:00 am. The tempdelta
knowledge consists of the notification of a taxiway clo-
sure due to snow removal (Lines 29–50) on 12 Febru-
ary 2018 from 8:00 am to 10:00 am.

2.2. (Contextualized) ATM knowledge graphs

The knowledge encoded in DNOTAMs is more
naturally represented using contextualized KGs [71].
Fig. 2 illustrates the contextualized representation of
the knowledge encoded in the DNOTAM from List-
ing 1 along a temporal dimension. The all-date con-
text defines general knowledge about various infras-
tructure elements, which hardly changes. The tempo-
ral context for the timespan from 8:00–10:00 am on 12
February 2018, on the other hand, defines knowledge
about a temporarily reduced availability – a closed op-
erational status – due to snow removal. Other context
dimensions may also serve to organize ATM knowl-
edge into contextualized KGs [71], e.g., geography,
topic, and importance. Besides the knowledge derived
from DNOTAMs according to the AIXM, an ATM KG

Fig. 2. A contextualized KG based on the DNOTAM in Listing 1.

may comprise knowledge from data items according
to other ATM information (exchange) models, e.g.,
IWXXM for weather or FIXM for flight plans.

In our scenario, RDF serves as the common repre-
sentation language for ATM knowledge even though
XML is the native serialization format of DNOTAMs
in the AIXM standard. AIXM, however, builds on the
Geography Markup Language (GML), the initial pro-
posal of which was based directly on RDF, with subse-
quent editions continuing to “borrow many ideas from
RDF” [50, p. 20], including the GML’s object-property
model [50, p. 16]. Similarly, other ATM information
(exchange) models are easily translated into RDF.

In fact, ATM research has shown growing inter-
est in the use of semantic technologies (see [40]
for an overview), leading to the development of do-
main ontologies [33,85], e.g., the NASA ATM Ontol-
ogy (ATMONTO) [42] and the AIRM Ontology [86].
NASA’s ATMGRAPH [41,43], in turn, is a KG for
the ATM domain that builds on ATMONTO and com-
prises knowledge about infrastructure, flights, and op-
erating conditions. The rationale behind ATMGRAPH
lies in the integration of heterogeneous data from var-
ious sources for analysis purposes. Compared to a
data lake solution storing raw files from various data
sources [25], which shifts the burden of data integra-
tion largely to analysts, ATMGRAPH facilitates query-
ing across sources [44, p. 2]. Using semantic tech-
nologies was also deemed preferable over a relational
implementation due to increased flexibility regarding
modifications, possibility of inferencing, and reusabil-
ity of the knowledge [44, p. 3]. In summary, employ-
ing (contextualized) KGs for aeronautical information
management seems promising.

In the remainder of this paper, we use example KGs
for illustration purposes largely following the AIXM
conceptual models [1] and the FAA’s airport opera-
tions scenarios [28]. In the following, we present two
use cases for contextualized KGs in the ATM domain,
which serve to motivate the KG-OLAP approach.

2.3. Use case 1: Pilot briefings

Prior to a flight, pilots receive a pre-flight informa-
tion bulletin (PIB), which comprises all DNOTAMs,
but also METARs, i.e., messages about weather con-
ditions, that are even remotely relevant for the upcom-
ing flight. Pilots then have to manually sift through an
abundance of messages and decide upon the priority
of each message. Among other things, the priority of
a message depends on the current flight phase. For ex-

654 C.G. Schuetz et al. / Knowledge Graph OLAP

ample, during take-off, a taxiway closure at the desti-
nation airport has low priority for a pilot.

Automated rule-based filtering and prioritization
of DNOTAMs reduces information overload in pi-
lot briefings [79]. Pilots formulate an interest speci-
fication [14], which comprises spatial, temporal, and
aircraft interests [15]. The SemNOTAM system then
matches DNOTAMs against the interest specification
and assigns an importance, e.g., flight critical or oper-
ational restriction, to each DNOTAM. DNOTAMs are
also classifed according to geographic scope and flight
phase (spatio-temporal) as well as event scenario. The
general approach is also applicable to other types of
ATM information, e.g., METARs, provided appropri-
ate filtering and prioritization rules are available.

The result of DNOTAM filtering and prioritization
may be packaged into a semantic container [61]. A se-
mantic container collects data items into a package
that comprises all the data items satisfying a certain
membership condition, formulated in terms of an ATM
domain ontology. A membership condition may have
multiple facets, e.g., geography, time, aircraft, and im-
portance. Semantic containers foster reuse of previ-
ously compiled packages of ATM information, thus
reducing processing effort, and allow for replication
in order to increase availability and conserve band-
width. Raw data items, not knowledge triples, consti-
tute the contents of a semantic container. For exam-
ple, a semantic container may comprise the relevant
DNOTAMs for a flight from Dubai to Vienna on a par-
ticular day, along with additional information about the
importance of each individual DNOTAM.

Automated rule-based filtering and prioritization
in combination with semantic containers may serve
to construct ATM information cubes [72,73]. Fine-
grained semantic containers comprising data items of
different geographic and temporal scopes as well as
importance levels may be arranged in a multidimen-
sional space. A pilot could then select the appropri-
ate containers at the right moment without being over-
loaded with information. Individual messages could be
combined into a more abstract representation in order
to obtain a management summary of relevant events.
Runway closures at the destination airport, for exam-
ple, may be flight critical and pilots should be aware of
the fact that there are closures in effect at the destina-
tion also in the early phases of a flight, possibly with
a general indication of the reason for closure, e.g., due
to snow. In detail, however, the runway closures con-
cern the pilot only upon approach of the destination,

e.g., which runway directions are closed, which types
of snow are found on the runways.

In this paper, rather than considering ATM informa-
tion cubes with messages collected into semantic con-
tainers, we consider cubes of ATM knowledge. More
general contexts establish a common schema and busi-
ness term vocabulary, which is inherited and extended
by the more specific contexts. The messages represent
a source of knowledge about the state of the world
with limited spatial, temporal, and content scope. The
information contained in the messages translates into
knowledge triples that are collected into contexts based
on the scope of the messages.

2.4. Use case 2: Post-operational analysis

Air traffic flow and capacity management (ATFCM),
which represents one of the core activities in ATM,
has post-operations teams analyzing operational events
in order to identify valuable lessons learned for the
benefit of future operations and produces an overview
of occurred incidents [62, p. 131]. A data warehouse
provides the post-operations team with statistical data
about past flight operations [62, p. 130].

Post-operational analytical tasks in ATFCM may
also leverage contextualized ATM knowledge. The ra-
tionale is similar to ATMGRAPH’s [44], a KG hav-
ing richer semantics while being more flexible and
versatile than simple statistical data organized in a
data warehouse. In addition to the data warehouse, the
post-operations team may employ a KG-OLAP cube
of contextualized ATM knowledge extracted from
DNOTAMs and other types of messages, organized
by temporal relevance, route or ground segment, air-
craft model, and importance. By analyzing such ATM
knowledge, an air traffic flow post-operations team
may gain a more comprehensive picture of past air
traffic operations. Using the merge operation, the post-
operations team may combine ATM knowledge from
different contexts. For example, the relevant ATM
knowledge per day and geographic segment could be
combined to obtain the ATM knowledge per month
and geographic region and month. Various incarna-
tions of the abstraction operation then serve to obtain
a more abstract representation of the ATM knowledge.
For example, instead of indicating specific closures
of individual runways or taxiways, the abstract ATM
knowledge would indicate closures of runways and
taxiways in general for aircraft with certain character-
istics. Besides DNOTAMs, other types of aeronauti-
cal information relevant to ATFCM, e.g., flight data

C.G. Schuetz et al. / Knowledge Graph OLAP 655

in FIXM and meteorological messages in IWXXM,
could similarly serve to populate the cube of ATM
knowledge.

In the remainder of this paper, we employ contex-
tualized KGs for the ATM domain to illustrate the
KG-OLAP approach. In particular, we focus mainly
on ATM knowledge derived from DNOTAMs. The ex-
ample contextualized KGs are plausible for both pilot
briefings and post-operational analysis.

2.5. Functional requirements

Based on the presented use cases from the ATM do-
main, we identify functional requirements that a sys-
tem for performing data analysis over KGs must fulfill.
Although derived from use cases in ATM, the require-
ments also apply to other use cases, e.g., the analysis
of business situations formalized using business model
ontologies [74].

Requirement 1 (Heterogeneity). The system must
cope with heterogeneity in the knowledge represen-
tation. Heterogeneity is inherent to KGs, which are
not simple graphs. In particular, heterogeneity in KGs
manifests itself as follows:

(a) Multiple types of entities. In the ATM domain,
for example, a KG comprises knowledge about
various kinds of infrastructure but also flight
plans, airspace, weather events, and more.

(b) Multiple types of relationships. Unlike simple
graphs, the entities in a KG are connected via
various relationships. For example, one type of
relationship serves to indicate the airport that a
runway is situated at while another associates a
runway with a usage restriction.

(c) Schema variability, i.e., entities of the same type
may have different properties and relationships.
For example, runway availability may warn of in-
spection adjacent to a runway. But, runway avail-
ability may also announce runway closure, e.g.,
due to snow, or mention the characteristics of air-
craft that are prohibited to land, which in turn
may depend on weight, wingspan, etc.

Requirement 2 (Ontological knowledge). The system
must handle ontological knowledge that describes re-
lationships between classes and employs logic for the
definition of domain-specific terms. ATM information
(exchange) models, for example, comprise a multitude
of generalization/specialization relationships and de-
fine associations between classes, which potentially

translate into domain and range constraints. ATM tech-
nical language is rife with domain-specific terms, e.g.,
heavy wake-turbulence aircraft, the meaning of which
can be defined using an ontology, which facilitates use
of business terms in queries [14].

Requirement 3 (Self-describing data). The system
must store metadata along with the instance data in
order to facilitate interpretation. As a general trait of
semantic systems, definitions of classes and proper-
ties are a flexible part of the data, not encoded in
the system’s physical schema. The RDF data format,
for example, serves for the representation of instance
data and class-level data alike. Changes in the data
model do not culminate in a refactoring of the database
schema in the same way as in relational databases. Fur-
thermore, query operations may directly operate on the
metadata. A query operation may, for example, obtain
an overview of relationships where individual entities
are replaced by their classes.

Requirement 4 (Modularization). The system must
allow for the modularization of knowledge according
to different criteria. Knowledge that belongs together
can be represented together. Separate knowledge with
different scopes can be split into multiple modules.
For example, some knowledge, e.g., a particular run-
way closure, may be relevant for LOWW airport while
other knowledge, e.g., reduced quality of a specific
navigation aid, may be relevant for LOWL airport.

Requirement 5 (General and specific knowledge).
The system must support both modules with more gen-
eral scope and modules with more specific scope. For
example, in some cases, associating particular knowl-
edge with individual geographic segments is impos-
sible. Instead, the knowledge could be relevant for
the entire LOVV region and not only LOWW airport.
When selecting relevant knowledge for the LOWW
airport, however, relevant knowledge for the entire re-
gion should also be included.

Requirement 6 (Knowledge selection and combina-
tion). The system must provide query operations for
selecting and combining knowledge from different
modules. For example, in a pilot briefing, depending
on the flight phase, knowledge with a specific geo-
graphic applicability is relevant, which must be se-
lected from multiple modules.

Requirement 7 (Knowledge abstraction). The system
must provide query operations that allow to obtain a
more abstract view on the represented knowledge. For

656 C.G. Schuetz et al. / Knowledge Graph OLAP

example, in some situations, the knowledge about var-
ious layers of dry snow, compact snow, etc. on differ-
ent runways of an airport, may be accurately summa-
rized by the fact that the runways at LOWW airport
have snow contamination.

In the following, we formulate the KG-OLAP cube
model and query operations guided by the identified
functional requirements.

3. Multidimensional model

In this section, we introduce the KG-OLAP cube
model for the representation of contextualized KGs.
We first introduce the model informally before provid-
ing a formal definition. We define the model as an ex-
tension of the Contextualized Knowledge Repository
(CKR) framework [12,75].

3.1. KG-OLAP cube model

KG-OLAP adapts the multidimensional modeling
paradigm from data warehousing (see [83]) in order
to organize multidimensional KGs. Hence, the KG-
OLAP cube is the central modeling element. Follow-
ing the basic structure of the CKR framework, the KG-
OLAP cube consists of two distinct layers: an upper
and a lower layer. The upper layer describes the struc-
ture and properties of a cube’s cells; the lower layer
specifies the contents of the cells. The two layers em-
ploy distinct and possibly disjoint languages.

A KG-OLAP cube’s upper layer defines the mul-
tidimensional structure of a cube and associates spe-
cific knowledge modules with individual cube cells.
Intuitively, the cube’s dimensions (e.g., time, location)
span a multidimensional space, the points of which are
referred to as cells.1 The dimensions are hierarchically
organized into levels. The definition of a cube’s dimen-
sions and their hierarchical organization – the cube’s
multidimensional structure – into levels is referred to
as KG-OLAP cube schema.

Example 1 (KG-OLAP cube schema). Fig. 3 illus-
trates, in Dimensional Fact Model (DFM) notation
[30], a KG-OLAP cube’s schema with its dimensions
and levels. The presented KG-OLAP cube organizes
relevant knowledge for air traffic management (ATM).

1Alternatively, data warehouse literature refers to those points as
facts – a term which in order to avoid confusion we reserve to des-
ignate the statements in a KG.

Fig. 3. A KG-OLAP cube with its dimensions and levels in DFM
notation for the organization of KGs in air traffic management.

The box in the center represents the cells of the cube:
each cell contains an RDF graph that encodes the con-
textualized ATM knowledge – the cell’s knowledge
module. The cube has four context dimensions that
characterize the cells: importance, location, date, and
aircraft. Hence, the ATM knowledge graph is parti-
tioned by importance of the knowledge for a particu-
lar aircraft model on a certain day within a geographic
segment. The importance dimension has the levels im-
portance and package, the location dimension has seg-
ment and region, the date dimension has day, month,
and year, the aircraft dimension has model and type.

The dimension members (e.g., February 2020, Vi-
enna) of a KG-OLAP cube are organized in a com-
plete linear order, which is referred to as roll-up rela-
tionship. For example, the month February 2020 rolls
up to the year 2020 and Vienna rolls up to Austria. Di-
mension members belong to levels, which define the
granularity of the dimension members (e.g. month and
year, country and city). The levels serve to aggregate
individual cells of a cube (see Section 4). Levels are
likewise organized in a complete linear order, which is
similarly referred to as roll-up relationship. For exam-
ple, month rolls up to year and city rolls up to country.

Example 2 (Dimensions and levels). Fig. 4 shows an
ordering of dimension members and the correspond-
ing levels, which is used in the running example cube
of ATM knowledge. Each dimension is represented as
a tree. The dimension’s name is depicted above the
tree. Each node represents a dimension member, the
caption next to each node shows the respective dimen-
sion member’s name. An edge between two nodes rep-
resents a roll-up relationship between the respective
dimension members, from bottom to top. On the left
hand side of each tree are the levels of the dimension
members, ordered from most general to most specific.
Each dimension has an implicit all level, which is not
shown in Fig. 3. For example, in the importance di-

C.G. Schuetz et al. / Knowledge Graph OLAP 657

Fig. 4. Example hierarchies for the context dimension members.

mension, the FlightCritical member at the importance
level rolls up to the Essential member at the package
level, which rolls up to the All-importance member at
the all-importance level. The hierarchical ordering of
the dimension members mirrors the hierarchical order-
ing of the levels.

The dimension members characterize the cells of
a KG-OLAP cube: each cell has a set of dimension
members as identifying attributes and the dimension
hierarchies organize the cells into a hierarchical struc-
ture. For example, the combination of dimension mem-
bers February 2020 and Austria identifies a particular
cell in a two-dimensional cube with time and location
dimensions. The hierarchical order of dimension mem-
bers then determines the coverage relationship, which
is a partial order between cells. For example, the cell
identified by the combination of dimension members
February 2020 and Austria covers the cell identified by
the combination of dimension members 12 February
2020 and Vienna. With each cell, a KG-OLAP cube

then associates a knowledge module, which comprises
facts of knowledge valid in the respective context.

Example 3 (KG-OLAP cube cells). Fig. 5 shows a
set of cells according to the KG-OLAP cube schema
in Fig. 3; the contents of the knowledge modules are
shown in Fig. 6 (see Example 4). The c0 cell associates
the K0 knowledge module, which contains the knowl-
edge facts relevant for all importance categories, all lo-
cations, on all dates, and for all aircraft. The c1 cell as-
sociates the K1 knowledge module, which contains the
knowledge facts relevant for all importance categories,
the LOVV (Austria) flight information region, the year
2020, and all aircraft. The c0 cell covers the c1 cell,
which is determined by the hierarchical order of the
identifying dimension members: all of c1’s attribute di-
mension members are equal or roll up to c0’s attribute
members for the respective dimensions. Context cov-
erage indicates a sort of “extension” relationship: the
covered cells inherit the knowledge in the modules of
the covering cells.

The c2 cell, which is covered by c1, associates the
K2 knowledge module, which contains the knowledge
facts relevant for the Supplementary briefing package,
the LOVV region, the month 02-2020, and FixedWing
aircraft. The c3 cell, which is also covered by c1, asso-
ciates the K3 knowledge module, which contains the
knowledge facts relevant for all importance categories,
the LOWW (Vienna airport) segment, the year 2020,
and all aircraft. The cells c2 and c3 are not in a cov-
erage relationship: c3’s importance, temporal, and air-
craft attributes are more general than c2’s attributes in
the respective dimensions but c3’s location attribute is
more specific than c2’s.

The c4 cell, which is covered by c3, associates the
K4 knowledge module, which contains the knowledge
facts relevant for the Essential briefing package, the
LOWW segment, the day 12-02-2020, and FixedWing
aircraft. The cells c5 and c6, which are covered by c4,
associate the K5 and K6 knowledge modules, respec-
tively, which contain the knowledge facts of FlightCrit-
ical and Restriction importances, respectively, relevant
for the LOWW segment, the day 12-02-2020, and the
A380 aircraft model. The c7 cell, which is covered by
c2 and c3, associates the K7 knowledge module, which
contains the knowledge facts of PotentialHazard im-
portance relevant for the LOWW segment, the day 12-
02-2020, and the A380 aircraft model.

A KG-OLAP cube’s lower layer consists of the ac-
tual knowledge modules that are associated with the
individual cells. A knowledge module contains state-

658 C.G. Schuetz et al. / Knowledge Graph OLAP

Fig. 5. An example instance of the KG-OLAP cube schema in Fig. 3. The arrows denote coverage relationships between contexts; the covered
context points to the covering. The contents of the knowledge modules K0-K7 are defined in Fig. 6.

ments valid in the context of the associated cell. The
knowledge inside each module is specified using an
object language and expresses the facts and axioms
valid in the specific context defined by the cell. Fur-
thermore, knowledge propagates downwards along the
coverage relationships, from the more general to the
more specific contexts. In the examples, we employ
SROIQ-RL as the object language, which corre-
sponds to the OWL 2 RL profile, as it will be the lan-
guage of reference for our formal definition of reason-
ing in Section 3.2.3. We note, however, that our ap-
proach is agnostic to the language chosen for the rep-
resentation of local knowledge.

Example 4 (Knowledge modules). Fig. 6 defines (us-
ing DL syntax) contents for the knowledge modules
K0–K7 associated with the KG-OLAP cube cells c0-
c7 from Fig. 5. The representation of module con-
tents generally follows the AIXM standard [1] and the

FAA’s airport operations scenarios [28], with minor
modifications for illustration purposes.

The K0 module (Rows 1–35) defines concepts and
terminological axioms valid across all contexts but
also concept and role assertions of general interest. In
particular, the module defines a designator property,
which assigns an identifying string to an infrastructure
element (Row 1), e.g., an airport/heliport, runway, or
taxiway. The isSituatedAt property links an infrastruc-
ture element to an AirportHeliport (Row 2).

The availability property links a Runway or Taxi-
way element to a ManoeuvringAreaAvailability individ-
ual (Row 3), which typically indicates, via the oper-
ationalStatus property (Row 4), a temporal change in
the runway or taxiway’s operational status, e.g., closed
or limited (Row 5). A ManoeuvringAreaAvailability in-
dividual may be annotated with a Note (Row 6) for
a certain purpose (Rows 7 and 8), e.g., as a remark

C.G. Schuetz et al. / Knowledge Graph OLAP 659

Fig. 6. Example contents of the KG-OLAP cube cells in Fig. 5.

(Row 9) that gives an additional explanation via the
note property (Row 10) for the value of the property
referred to by the note’s propertyName attribute (Row
11). For example, a DueToNote individual attached to
the Note via the note property may indicate why the
operationalStatus property assumes the value closed,
e.g., dueToSnowRemoval (Row 12); this example cor-
responds to the DNOTAM shown in Listing 1.

In some cases, a ManoeuvringAreaAvailability indi-
vidual may indicate nothing more than a warning via
the warning property (Row 13), which refers to a cause
for caution, e.g., inspection (Row 14). The boolean
warningAdjacent property (Row 15) indicates whether
or not the warning refers to an area adjacent to the
infrastructure element that the ManoeuvringAreaAvail-
ability individual belongs to.

A ManoeuvringAreaAvailability individual may also
indicate a usage restriction for a runway or taxi-
way, which forbids certain operations, e.g., land-
ing, possibly conditional to certain aircraft charac-
teristics. In that case, the usage property links a
ManoeuvringAreaAvailability individual to a Manoeu-
vringAreaUsage individual (Row 16). The operation
property, in turn, links a ManoeuvringAreaUsage in-
dividual to an OperationManoeuvring individual (Row
17), e.g., landing (Row 18). The limitationType prop-
erty (Row 19) then indicates the type of limitation,
e.g., forbid (Row 20), imposed for the previously speci-
fied operation. The aircraft property (Row 21) specifies
characteristics of aircraft which the usage restriction
applies to. HeavyWakeCharacteristic is a kind of Air-
craftCharacteristic (Row 22), referring to aircraft with
heavy wake turbulence.

The contaminant property (Row 23) indicates Sur-
faceContamination for an infrastructure element, e.g.,
a runway or taxiway. A SurfaceContamination has an
overall depth (Row 24) and several contamination lay-
ers, specified via the layer property linking a Surface-
Contamination to SurfaceContaminationLayer individ-
uals (Rows 25 and 26). A SurfaceContaminationLayer
has a contaminationType property (Row 27), indicating
the ContaminationType (Row 28) present on the sur-
face, e.g., drySnow (Row 29). The drySnow contam-
ination type represents a kind of snow (Row 30); the
kindOf property defines a grouping of individuals.

A navigation aid (Navaid) may be used for hom-
ing at an AirportHeliport (Rows 31 and 32). Very High
Frequency Omni-Directional Range (VOR) and Dis-
tance Measureing Equipment (DME) are special types
of Navaid (Row 33), with VOR/DME representing nav-
igation aids that act both as VOR and DME (Row 34).

660 C.G. Schuetz et al. / Knowledge Graph OLAP

The frequency property (Row 35) indicates the fre-
quency which a piece of equipment, e.g., a navigation
aid, operates at.

The K1 module (Rows 36–41) defines concepts and
individuals relevant for the LOVV (Austria) region in
2020. In particular, the module defines airportLOWW
(Vienna airport) as an individual of the Airport class
(Row 36) with designator ‘LOWW’ (Row 37) and
vor/dmeFMD (VOR/DME in Fischamend near Vienna)
as an individual of the VOR/DME class (Row 38) with
designator ‘FMD’ (Row 39) that is used for homing at
Vienna airport (Row 40). Furthermore, the module de-
fines the HeavyWakeCharacteristic concept (Row 41)
by maximum take-off weight, referring to aircraft that
fall into the weightCategory of aircraft with a maxi-
mum take-off weight above 136 tonnes.

The K2 module (Row 42) defines supplementary
knowledge relevant for FixedWing aircraft in the LOVV
region in February 2020. In this particular month, the
vor/dmeFMD navigation aid operates at a frequency of
110.8 MHz.

The K3 module (Rows 43–48) defines general
knowledge relevant in the LOWW (Vienna airport)
segment of the LOVV region in 2020. That knowl-
edge consists of the definition of individuals rep-
resenting a runway (runway16/34) and a taxiway
(taxiway10/004), which are both situated at Vienna air-
port (airportLOWW).

The K4 module (Rows 49–52) defines knowledge
essential for aircraft of type FixedWing in the LOWW
segment on 12 February 2020. On that day, taxi-
way10/004 was covered by a contaminant (Row 49)
with a depth of 0.4 (Row 50) consisting of one con-
tamination layer (Row 51) of drySnow (Row 52).

The K5 module (Rows 53–59) defines knowledge
of flight critical importance for A380 aircraft in the
LOWW segment on 12 February 2020. On that day,
runway16/34’s availability (Row 53) indicates a limited
operational status (Row 54) where usage is forbidden
(Rows 55 and 56) for landing aircraft (Row 57) with
heavy wake turbulence (Rows 58 and 59).

The K6 module (Rows 60–65) defines knowl-
edge about restrictions relevant for A380 aircraft in
the LOWW segment on 12 February 2020. On that
day, taxiway10/004’s availability (Row 60) indicates
a closed operational status (Row 61). An annotation
(Rows 62–63) remarks that the change in operational-
Status (Row 64) is due to snow removal (Row 65).

The K7 module (Rows 66–68) defines knowledge
about potential hazards relevant for A380 aircraft in the

LOWW segment on 12 February 2020. A warning no-
tifies of an inspection adjacent to taxiway10/004.

Example 4 illustrates how knowledge representa-
tion in KG-OLAP fulfills the functional requirements
defined in the previous section. First, the represented
KGs are heterogeneous (Requirement 1) regarding
both the types of entities and relationships; schema
variability is exemplified by the different variants of
ManoeuvringAreaAvailability. The KGs comprise on-
tological knowledge (Requirement 2), mainly in K0,
which defines properties and classes, but notably also
in K1, which contains the definition of a business
term, namely HeavyWakeCharacteristic, denoting the
characteristic of aircraft with heavy wake turbulence.
The contents are self-describing (Requirement 3), the
schema information and ontological knowledge be-
ing a flexible part of the data. Knowledge is modu-
larized (Requirement 4), namely along the context di-
mensions. The modules have different levels of gener-
ality (Requirement 5): K0 comprises knowledge that is
generally applicable, the other modules comprise grad-
ually more specific knowledge. For example, K1 com-
prises quite general knowledge for the LOVV region
whereas K2–K7 have more limited scopes of applica-
bility.

The knowledge from higher-level cells propagates
to the covered lower-level cells; the knowledge asso-
ciated with the lower-levels cells also specializes the
more general knowledge inherited from the higher lev-
els. The hierarchical organization facilitates the com-
bination of knowledge across cells in the course of data
analysis: the higher-level facts contain a shared con-
ceptualization of business terms that may be extended
by lower-level facts. The actual contents of lower-level
cells are defined in terms of the shared conceptualiza-
tion provided by the higher-level facts. The propagated
knowledge is also available for reasoning.

Example 5 (Inference). Consider the cells in Fig. 5
and the corresponding knowledge modules in Fig. 6.
In the K5 module, characteristic#101 is asserted to
be a HeavyWakeCharacteristic (Fig. 6, Row 59). Us-
ing the knowledge inherited from K0, it can be in-
ferred that characteristic#101 is an AircraftCharacter-
istic (Row 22). Using the knowledge inherited from
K1, it can also be inferred that characteristic#101
has a weightCategory property with value above136t
(Row 41).

C.G. Schuetz et al. / Knowledge Graph OLAP 661

3.2. Formalization

In the following, we adapt and extend the definitions
of the CKR framework – building on the CKR defi-
nition [8,12] in a generic description logic (DL) lan-
guage [4] – in order to fit the needs of KG-OLAP and
its query operations (see Section 4).

3.2.1. Basic definitions
We first define the basic notions of a KG-OLAP

cube before relating the KG-OLAP cube definitions
to the CKR framework. The multidimensional struc-
ture is expressed using a cube vocabulary �, which is
a DL signature. � is composed of the mutually dis-
joint sets NR� of atomic roles, NC� of atomic con-
cepts, and NI� of individual names. The vocabulary
further specifies a set F ⊆ NI� of cell names, a set
D ⊆ NR� of dimensions, a set L ⊆ NI� of levels, a
set I ⊆ NI� of dimension members, and for every di-
mension E ∈ D, a set DE ⊆ I of dimension members
of E (cf. dimensional structure in [75]). Dimensions
are defined as atomic roles: The dimensions serve to
link individual cells to dimension members that iden-
tify and qualify the situation (or context) described by
the contents of the cell’s knowledge module. the cube
language L� for expressing a KG-OLAP cube’s multi-
dimensional structure is thus a DL language over cube
vocabulary �.

For every dimension A ∈ D, we define the role ≺A –
the dimensional ordering for A – as a strict partial or-
der relation over dimension members DA, i.e., an ir-
reflexive, transitive and antisymmetric role over cou-
ples 〈d, d ′〉 ∈ DA × DA. In the following, we also
employ the non-strict dimensional ordering �A over
DA. In general, we assume that each dimension is or-
dered in a simple hierarchy (or tree), which could be
extended to support more complex hierarchies. Thus,
if we denote with ≺̇A the direct successor relation in
the dimensional ordering, we require that d≺̇Ae1 and
d≺̇Ae2 implies e1 = e2, i.e., ≺̇A is functional, and we
assume that, for every DA, there is a maximum, i.e.,
an all level with one all member. We further formally
define for every dimension A ∈ D its set LA ⊆ L of
levels. We define the role ≺L

A as a strict order rela-
tion over LA and a role lev associating dimension mem-
bers in DA to levels in LA. For example, in Fig. 4,
the Date dimension has dimension member ordering
12-02-2020 ≺ 02-2020 ≺ 2020 ≺ All-date, with
lev(12-02-2020, day), lev(02-2020, month), lev(2020,

year), and lev(All-date, all-date). The Date dimension

further has the hierarchical order of levels day ≺L
Date

month ≺L
Date year ≺L

Date all-date.
In order to define the hierarchical order of cells, we

adapt the definition of dimensional vector and context
coverage from the original CKR definition [75]. Let
|D| = k, we define a dimensional vector as the set

d = {A1 := d1, . . . , Ak := dk}

where every dj ∈ DAj , with 1 � j � k. The
value given by d to the dimension A is denoted
with dA. For example, given the dimensional vector
d = {Importance := All-importance, Location :=
LOVV, Time := 2020, Aircraft := All-aircraft}, dLocation

is equal to LOVV, with LOVV ∈ DLocation. We refer to
the set of all dimensional vectors of the cube vocabu-
lary � as the multidimensional space D�.

Given a dimensional vector, we associate with that
vector a cell name using the function cn : D� → F.
We require cn to be bijective, i.e., each cell name is
associated with a point in the multidimensional space
and, conversely, the cell name can be interpreted as
the unique identifier of the corresponding dimensional
vector. For example, in Fig. 5, given the dimensional
vector e = {Importance := FlightCritical, Location :=
LOWW, Time := 12-02-2020, Aircraft := A380}, we
have cn(e) = c5. We denote with cn− the inverse func-
tion of cn.

Context coverage derives from the order of the di-
mensional vectors associated with the contexts, which
in turn derives from the individual dimension orders.
Let d, e ∈ D�, we say that d � e iff dA � eA

for each A ∈ D. Similarly, given c1, c2 ∈ F, we
say that c2 covers c1 and we write c1 � c2 iff
cn(d) = c1 and cn(e) = c2 and, for every A ∈ D,
dA � eA. For example, given the dimension hi-
erarchies from Fig. 4, for the dimensional vectors
d = {Importance := All-importance, Location :=
LOVV, Time := 2020, Aircraft := All-aircraft} and
e = {Importance := FlightCritical, Location :=
LOWW, Time := 12-02-2020, Aircraft := A380}, we
have e � d. Then, given the cells in Fig. 5, where
cn(d) = c1 and cn(e) = c5, we have c5 � c1.

The knowledge represented in each cell is expressed
in a DL language L� , called the object language,
which in turn is based on a DL object vocabulary
� = NC�
 NR�
 NI� . Note that the expressivity
of languages at the meta and at the object level may
be different. In our examples, however, we assume that
the meta and object levels employ the same logic. Fur-
thermore, we stress that the definitions are agnostic to

662 C.G. Schuetz et al. / Knowledge Graph OLAP

the DL language chosen to express the knowledge in-
side modules, i.e. the expressiveness of operators used
to combine atomic elements into complex concepts
and roles.

3.2.2. Extending the CKR framework
We now define a KG-OLAP cube as a special kind

of CKR with hierarchically-ordered dimensions and
cells as well as knowledge propagation from higher to
lower-level cells. In the following, in order to formal-
ize the semantics of a KG-OLAP cube, we employ the
OLAP cube vocabulary � as a CKR meta-knowledge
vocabulary and extend the definitions of the CKR core.
In particular, we extend the definitions of the CKR as
presented by Bozzato and Serafini [12] – which has the
advantage over the original CKR formulation [75] that
it can be implemented as forward rules – to express
propagation of knowledge modules along the coverage
relations, and to allow contexts with empty knowledge
contents. Further extending the definition of CKR in
[12], we adopt the notion of the contextual structure
being defined by contextual dimensions from the orig-
inal CKR formulation [75], and we define knowledge
propagation as inheritance of knowledge modules. We
provide only basic definitions of the CKR core and re-
fer to previous work [12,75] for an exhaustive presen-
tation of the CKR framework.

A CKR is a two-layered structure composed of
(1) the global context G, consisting of a knowledge
base which contains meta-knowledge, i.e., the struc-
ture and properties of contexts, and global (context-
independent) knowledge, i.e., knowledge that applies
to every context; a CKR also consists of (2) a set of
(local) contexts that contain locally valid knowledge.

The meta-knowledge of a CKR is expressed in a DL
language containing the elements that define the con-
textual structure. A meta-vocabulary � is a DL vocab-
ulary that consists of a set of context names N ⊆ NI� ,
a set of module names M ⊆ NI� , a set of context
classes C ⊆ NC� , including the classes Ctx and Null,
a set of contextual relations R ⊆ NR� , a set of con-
textual attributes A ⊆ NR� , and for every attribute
A ∈ A, a set DA ⊆ NI� of attribute values of A. The
role mod defined over N×M expresses associations be-
tween contexts and modules. Intuitively, modules rep-
resent pieces of knowledge specific to a context or
context class; attributes describe contextual properties
(e.g., time, location, provenance) identifying a context
(or class). The context class Ctx defines the class of
all contexts, while the Null class defines the contexts
with empty knowledge modules, the latter being use-

ful for deliberately ruling out inapplicable combina-
tions of dimensions known to lack relevant knowledge
content. It is then easy to relate the KG-OLAP cube
language (Section 3.2) to the CKR core languages: we
have that F ⊆ N (i.e. cells are a kind of context), D ⊆ A
(i.e. dimensions are a kind of contextual attributes) and
context coverage is a partial order relation in R.

The meta-language L� of a CKR is then a DL lan-
guage over �. The knowledge inside contexts of a
CKR is expressed via a DL object language L� over
object vocabulary �. The expressions of the object lan-
guage are evaluated locally to each context, i.e., con-
texts can interpret each symbol independently. The lo-
cal evaluation corresponds to the local knowledge of
each cell in the KG-OLAP cube. Based on the meta-
and object languages, a CKR is defined (cf. [12]) as
follows.

Definition 1 (Contextualized Knowledge Repository).
A Contextualized Knowledge Repository (CKR) over
a meta-vocabulary � and an object vocabulary � is a
structure K = 〈G, KM〉 where:

– G is a DL knowledge base over L� ∪ L� , and
– KM = {Km}m∈M where every Km is a DL knowl-

edge base over L� , for each module name m ∈ M.

In the following we call K a KG-OLAP cube (or sim-
ply cube) if its metaknowledge is based (following the
above relations) on a cube language L�.

The CKR semantics basically follows the two-
layered structure of the CKR framework: a CKR inter-
pretation is composed by a DL interpretation for the
global context and a DL interpretation for every con-
text.

Definition 2 (CKR interpretation). A CKR interpreta-
tion for 〈�,�〉 is a structure I = 〈M, I〉 s.t.:

(i) M is a DL interpretation of �∪� s.t., for every
c ∈ N, cM ∈ CtxM and, for every C ∈ C,
CM ⊆ CtxM;

(ii) for every x ∈ CtxM, I(x) is a DL interpretation
over � s.t. �I(x) = �M and, for a ∈ NI� ,
aI(x) = aM.

The interpretation of ordinary DL expressions in M
and each I(x) is defined as in the CKR core [4]. We
then extend as follows the original definition of CKR
model [12] with new conditions for the intended inter-
pretation of the multidimensional structure.

Definition 3 (KG-OLAP cube model). A CKR inter-
pretation I = 〈M, I〉 is a KG-OLAP cube model of K
iff the following conditions hold:

C.G. Schuetz et al. / Knowledge Graph OLAP 663

(i) for α ∈ L� ∪ L� in G, M |= α;
(ii) for 〈x, y〉 ∈ modM with y = mM and x /∈

NullM, I(x) |= Km;
(iii) for α ∈ G∩L� and x ∈ CtxM \ NullM, I(x) |=

α;
(iv) if c1, c2 ∈ F, and for every A ∈ D with d ∈ DA,

M |= A(c1, d) and M |= A(c2, d) then c1 = c2;
(v) for d ∈ D� and cn(d) = c ∈ F, then M |=

A(c, dA) for each A ∈ D with dA ∈ DA;
(vi) if c1, c2 ∈ F, if M |= c1 � c2 and M |=

mod(c2, m) with m ∈ M, then M |= mod(c1, m).

Intuitively, while the conditions (i) and (ii) of Def-
inition 3 impose that I verifies the contents of global
and local modules associated to contexts, condition
(iii) states that global knowledge has to be propagated
to local contexts. Note that the contexts in the Null class
have no local knowledge associated to them. Condi-
tion (iv) states that contexts are identified by the val-
ues of their dimension attribute values. Condition (v)
basically states that dimensional vectors are a com-
pact way to represent assertions of the kind A(c, dA)

in the meta-knowledge. Finally, Condition (vi) defines
the propagation of modules associated with more gen-
eral contexts to the covered contexts.

Given a CKR K over 〈�,�〉 and c ∈ N, an axiom
α ∈ L� is c-entailed by K (denoted K |= c : α) if
I(cM) |= α for every model I = 〈M, I〉 of K. We
say that an axiom α is globally entailed by K (denoted
K |= α) if: (i) α ∈ L� and K |= c : α for every c ∈ N,
or (ii) α ∈ L� and M |= α for every cube model
I = 〈M, I〉 of K.

3.2.3. Reasoning in KG-OLAP cubes
While the definitions for KG-OLAP cube and CKR

are independent of any specific DL language used at
the meta and object levels, we formalize instance-level
reasoning inside a KG-OLAP cube using a materi-
alization calculus (see [47]) for cubes that employ
the SROIQ-RL language, which corresponds to the
OWL 2 RL profile [58]. We refer to Section 2 and
Section 3 of the Appendix [70] for definitions of the
SROIQ-RL language and an extension to the KG-
OLAP cube semantics of the materialization calculus
for CKR [12], respectively.

Intuitively, the materialization calculus is based on
a translation to Datalog. The axioms of the input cube
K are translated into Datalog atoms (by input rules I).
Datalog rules (called deduction rules P) are added to
the translation in order to encode the global and local
inference rules. Instance checking is then performed
by translating (through output rules O) the ABox as-

sertion to be verified into a Datalog fact and verify-
ing whether this fact is entailed by the CKR program
PK(K).

With respect to the calculus for SROIQ-RL CKRs
(see [12]) it is necessary to introduce additional rules
and translation steps in order to express computa-
tion of coverage relations and propagation of object
knowledge. In particular, regarding translation rules,
we introduce global input rules that encode coverage
in the level and dimension hierarchies. The following
global deduction rule encodes propagation of knowl-
edge – corresponding to condition (vi) in Definition 3
– where gm denotes the context name of the global
meta-knowledge.

triple(c1, covers, c2, gm),

triple(c1, mod,m, gm)

→ triple(c2, mod,m, gm)

Then, the translation procedure is extended from the
one presented for CKR [12] by introducing new steps
in which the cell coverage relation is computed from
the dimensional coverage in the global program (see
Section 3.3 of the Appendix [70]).

The rules and the translation process constitute a
sound and complete calculus for instance checking
in KG-OLAP cubes using SROIQ-RL (Theorem 1).
For the proof of Theorem 1 we refer to Section 3.4 of
the Appendix [70].

Theorem 1. Given K = 〈G, KM〉 a consistent KG-
OLAP cube in SROIQ-RL normal form, α ∈ L� an
atomic concept or role assertion and c ∈ F s.t. O(α, c)
is defined, then PK(K) |= O(α, c) iff K |= c : α.

3.3. Extensions

The presented KG-OLAP model can be extended in
several directions in order to increase flexibility. In the
following, we briefly identify possible extensions.

As in the underlying model of CKR, the KG-OLAP
model assumes a centralized view on the available
data: The structure of the cube and the knowledge as-
sociated to each cell is assumed to be locally avail-
able in a single knowledge base for the application of
reasoning and operations on the cube. Thus, a pos-
sible extension, supported by the modular nature of
the cube model, concerns the distribution of the cube
structure over separate knowledge bases. This would
require to revise the formalization so that both the meta

664 C.G. Schuetz et al. / Knowledge Graph OLAP

and object information are distributed across more lo-
cal knowledge bases and knowledge is propagated also
considering the topology of the distributed knowledge
bases (e.g., by introducing an additional “distribution”
dimension). The reasoning procedures and OLAP op-
erations on such distributed system have to be conse-
quently adapted to the distributed structure and the in-
tended knowledge propagation across local knowledge
bases. On the other hand, the modularization of knowl-
edge bases can represent an advantage to limit the load
of reasoning tasks and to restrict application of opera-
tions to a limited subset of cells.

In the proposed KG-OLAP model, we assume that
all the dimensions and dimensional values are known
a priori and thus no context is undefined (but may have
an empty module). The KG-OLAP model could be ex-
tended to consider updates of dimensions and dimen-
sional values, which necessitate the dynamic reorga-
nization of knowledge in the contexts that are identi-
fied by the newly introduced dimensional values. Up-
dates of the dimensions and their dimensional values
will typically be limited to extending the hierarchy
with new branches rather than modifying the existing
dimensional values. In this regard, however, the no-
tion of “slowly-changing dimensions” from traditional
data warehousing (see [83, pp. 139–145] for further
information) may be adopted in KG-OLAP. Further-
more, in some cases, it may not be possible to deter-
mine the right dimensional value for the statements.
The KG-OLAP model allows for the introduction of
“unknown” or “not applicable” members in the dimen-
sions. For example, there could be a cell containing
knowledge of unknown importance, a cell containing
knowledge of unknown temporal or spatial applicabil-
ity. Future work may investigate the different notions
and implications of such default members in the di-
mension hierarchies.

We note that, due to the modular structure of the
model, concepts in different cells can assume different
interpretations: the particular situation identified by a
cell can determine the local meaning of a concept, re-
flecting the contextual view of the model. In this re-
gard, we refer to the eval operator for the local propa-
gation of knowledge [12].

The concepts that are propagated from the higher
to the lower cells are assumed to be refined by the
knowledge in the lower cells. Such refinement is nec-
essarily monotonic, as the knowledge in the lower-
level cells cannot truly “override” the concept defini-
tions from the higher-level cells. In this direction, in
the CKR model, a notion of defeasible axiom has been

recently introduced: Defeasible axioms hold in gen-
eral but can be “overridden” by the instances in the
lower contexts of a contextual hierarchy [8,9,13]. Like-
wise, defeasible axioms could be introduced in KG-
OLAP.

For the presented definition of the KG-OLAP model
we consider a simple hierarchical organization of di-
mensional values, which can be divided into levels,
i.e., ranked hierarchies [13]. While this provides an
intuitive organization of the cube structure, such or-
ganization might be relaxed to allow for multiple re-
lations and more general definitions of hierarchies.
In this regard, an extensive body of research in data
warehousing and OLAP is dedicated to investigate
different kinds of hierarchies (see [83, pp. 94–106]),
which could be adapted for the KG-OLAP framework.
Regarding the CKR model, propagation of knowl-
edge (with defeasible inheritance) in general con-
textual hierarchies has been studied by Bozzato et
al. [10].

4. Query operations

In this section, we introduce a set of query opera-
tions for working with KG-OLAP cubes. We distin-
guish between contextual operations and graph opera-
tions. Contextual operations alter the multidimensional
structure of a cube. Graph operations modify the graph
structure (knowledge triples) in the knowledge mod-
ules of the cells of a cube.

4.1. Contextual operations

The contextual operations select and combine cells
of a KG-OLAP cube, thus satisfying Requirement 6,
using its dimensions and levels. The slice-and-dice op-
eration allows for the selection of a set of facts whereas
the merge operation combines cells at finer granulari-
ties into aggregated cells at a coarser granularity, merg-
ing the contents of the modules from the finer-grained
cells.

4.1.1. Slice and dice
The slice-and-dice operation restricts a cube to a set

of cells with a specific subset of dimension attribute
values; the operation selects a subcube of an input
KG-OLAP cube. The slice-and-dice operation selects
a partition of the cube for subsequent manipulation.
Note that slice-and-dice operations in data warehous-
ing literature and practice come in various forms. The

C.G. Schuetz et al. / Knowledge Graph OLAP 665

definition in this section establishes a basic notion of
slice-and-dice for KG-OLAP cubes. Future work may
well extend this notion to provide rich query mecha-
nisms in order to filter contexts based on complex con-
ditions in an expressive domain ontology.

Definition 4 (Slice and dice). Given a cube K =
〈G, KM〉 and a dimensional vector d which defines the
dice coordinates, we define the slice-and-dice oper-
ation δ(K, d) of K with respect to d as a new cube
K′ = 〈G′, KM′ 〉 over 〈�′, �〉, such that:2

– M′ = M, D′ = D, and for each A ∈ D, L′
A = LA;

– For each A ∈ D, D′
A = {d′

A ∈ DA | d′
A �

dA or dA � d′
A, with dA ∈ d};

– F′ = {c ∈ F | for each dA ∈ cn−(c), dA ∈ D′
A};

– G′ = G� ∪ G�′ (i.e., metaknowledge in G′ is
equal to the formulas in G� that have only sym-
bols in �′).

Fig. 7(a) depicts the definition of slice-and-dice op-
eration on a one-dimensional cube. Intuitively, the
slice-and-dice operation takes as argument the co-
ordinates of a point in the cube, i.e., a dimensional
vector d, and produces a new cube by extracting all
cells, along with their associated knowledge mod-
ules, at points underneath the argument point as
well as the cells that are in a coverage relationship
with those cells at points underneath the argument
point.

Example 6 (Slice and dice). Fig. 8 illustrates the ap-
plication of the slice-and-dice operation on the KG-
OLAP cube from Fig. 5, which we denote by KATM.
The context shown as shaded box represents the dice
coordinates {Importance := Essential, Location :=
LOWW, Date := All-date, Aircraft := FixedWing}.
Only cells that are underneath the point identified by
the dice coordinates, i.e., c4, c5, and c6, or cells that
are in a coverage relationship with c4, c5, and c6, i.e.,
c0, c1, and c3 are kept in the result cube K′

ATM; the
disregarded cells are shown in gray color.

In data warehousing, conceptual multidimensional
models typically distinguish between dimensional at-
tributes and non-dimensional attributes (see [30]).
While the dimensional attributes identify the cell, non-
dimensional attributes provide additional information
that can be used for selection. Similarly, KG-OLAP

2In the definition of operations, for simplicity of notation, we as-
sume that components of the cube K′ and languages �′, �′ are rec-
ognized with a prime superscript, e.g., �′ contains M′, F′, D′, etc.

Fig. 7. Illustration of contextual operations definitions.

cubes could be extended with non-dimensional at-
tributes to allow for additional variants of the slice-
and-dice operation.

4.1.2. Merge
The merge (or contextual roll-up) operation changes

the granularity of a cube and its dimensions. Given an
argument granularity specified as a vector of dimen-
sion levels l, the merge operation combines the con-
tents of knowledge modules at granularities that are
more specific than the given granularity.

Formally, we define a level vector as a set: l =
{l1, . . . , lk} s.t. for j ∈ {1, . . . , k}, lj ∈ LAj . We de-
fine restrictions of dimensional space D� given w.r.t.
a level vector l as follows:

Dl
� = {

d ∈ D� | for d ∈ DA, lev(d, l) with l ∈ l
}

D
l
� = {

d ∈ D� | e � d, with e ∈ Dl
�

}

666 C.G. Schuetz et al. / Knowledge Graph OLAP

Fig. 8. Applying slice-and-dice and merge operations on the KG-OLAP cube instance from Fig. 5. Gray lines denote contexts that are dis-
regarded by the slice-and-dice operation δ(KATM, {Importance := Essential, Location := LOWW, Date := All-date, Aircraft := FixedWing}),
with the unnamed context shown as shaded box denoting the dice coordinates, and the dashed box denotes a merge of contexts
ρ∪(K′

ATM, {package, segment, month, type}) into the c8 context.

Intuitively, the subspace Dl
� identifies all the vectors

exactly at the level specified by the level vector l, while
D

l
� defines the vectors above (or equal to) the speci-

fied level vector.
Let μ(c) = ⋃

c′≺c{m ∈ M | G |= mod(c′, m)}. The
set μ(c) then contains all module names of the initial

cube associated to contexts c′ that are more specific
than the input context c (with respect to the coverage
relation).

Definition 5 (Merge). Given a cube K = 〈G, KM〉
and a level vector l, we define the merge operation

C.G. Schuetz et al. / Knowledge Graph OLAP 667

ρmet(K, l) of K with respect to the level vector l as a
new cube K′ = 〈G′, KM′ 〉 over 〈�′, �′〉 s.t.

– F′ = {c ∈ F | cn−(c) ∈ D
l
� };

– D′ = D;
– M′ = M ∪ {mg(c) | c ∈ F′ with cn(c)− ∈ Dl

�}
with each mg(c) a new module name;

– For each A ∈ D, L′
A = {l′A ∈ LA | lA � l′A, lA ∈ l};

– For each A ∈ D, D′
A = {d′

A ∈ DA | lev(d′
A, lA), lA ∈

L′
A};

– G′ = G� ∪ G�′ ∪ {mod(c, mg(c)) | c ∈
F′ with cn(c)− ∈ Dl

�};
– Union merge (met = ∪): knowledge module

Kmg(c) for c is added to KM′ with: Kmg(c) =⋃
m∈μ(c) Km

– Intersection merge (met = ∩): knowledge mod-
ule Kmg(c) for c is added to KM′ with: Kmg(c) =⋂

m∈μ(c) Km

Fig. 7(b) illustrates the definition of the merge oper-
ation. Intuitively, the merge operation is a transforma-
tion over the original cube that combines the knowl-
edge from lower-level cells into higher-level cells in
the contextual hierarchy (by adding a new module
mg(c) containing the merged knowledge) and “cuts”
the contexts below the level defined by the input level
vector l. The merge operation employs a specific com-
bination method met ∈ {∪,∩}, which specifies the
kind of combination of knowledge inside the merged
cells. Note that the merge operation changes the mod-
ules of the contexts at the specified roll-up granular-
ity rather than creating new contexts, since a context
is uniquely identified by its dimensional vector. Con-
sequently, in Fig. 7(b), the result of the merge opera-
tion shows c1 with the combination of K1 and K2 as a
single module.

Example 7 (Merge). In Fig. 8, the c8 context is the re-
sult of a union merge to the {package, segment, month,

type} granularity of the result cube K′
ATM from the pre-

vious slice-and-dice operation. The c8 cell is at the
merge granularity, its knowledge module being the
union of the knowledge modules from the covered
cells.

In the case of general context coverage hierarchies
that do not follow a clear notion of granularity level,
the merge operation, which is now defined in terms of
levels, requires reformulation. Moreover, the combina-
tion method in the merge operation – which in its cur-
rent form simply considers either the union or intersec-
tion of the knowledge from the contexts in lower lev-
els – can be refined to consider different methods for

selection of knowledge in the newly generated module,
e.g., by considering ontology merging methods that
suit the use case at hand. We note that in the merge op-
eration we do not explicitly consider the management
of RDF blank nodes since we abstract from the serial-
ization of the knowledge. We assume that blank nodes
have been skolemized before the application of the
merge operation; another option is to consider methods
for merging RDF blank nodes in the resulting graph
[36, #shared-blank-nodes-unions-and-merges].

4.2. Graph operations

Graph operations – abstraction, pivoting, and reifi-
cation – alter the structure of the KGs inside the
knowledge modules of a cell, thus satisfying Require-
ment 7. Abstraction replaces sets of entities with in-
dividual and more abstract entities. Pivoting moves
metaknowledge (contextual information) inside the
modules. Reification allows to represent relations as
individuals.

4.2.1. Abstraction
Abstraction serves as an umbrella term for a class of

graph operations that, broadly speaking, replace enti-
ties in an RDF graph with more abstract entities. This
abstraction is based on various types of ontological in-
formation, e.g., class membership and grouping prop-
erties. We also refer to abstraction as ontological roll-
up.

We distinguish three types of abstraction: (a) triple-
generating abstraction generates new triples from ex-
isting triples, where an existing individual acts as ab-
straction of a set of other resources; (b) individual-
generating abstraction generates a new individual that
acts as abstraction of a set of resources; (c) value-
generating abstraction computes a new value using
some aggregation operation on a set of values.

Consider the set of asserted and inherited modules
of a cell c: mod(c) = {m ∈ M | G |= mod(c, m)}. We
then denote the local knowledge base of cell c as:

Kmod(c) =
⋃

m∈mod(c)

Km

Definition 6 (Abstraction). Given a cube K = 〈G,

KM〉, a context name c ∈ F, a (possibly complex) con-
cept C of L� restricting abstraction to a subset of indi-
viduals, a (possibly complex) role S of L� – the group-
ing property – we define the abstraction operation
αmet(K, c, C, S) as a new cube K′ = 〈G′, K′

M〉 over

668 C.G. Schuetz et al. / Knowledge Graph OLAP

〈�′, �′〉, with met ∈ {T , I, V (op)} for the specific
abstraction method (triple, individual or value gen-
eration), where the local knowledge module Kmod(c)

is modified as follows, depending on the abstraction
method:

– M′ = M ∪ {mg(c)} \ mod(c), with mg(c) a new
module name and mod(c) the set of asserted mod-
ules of c in the original cube;

– G′ = G ∪ {mod(c, mg(c))} \ {mod(c, m) | m ∈
mod(c)};

– Kmg(c) = Kmod(c) and KM′ = KM ∪ {Kmg(c)} \
{Kmod(c)};

– triple generation T : for b ∈ NI� with Kmod(c) |=
C(a), let S−(b) = {a ∈ NI� | Kmod(c) |=
S(a, b)}; then:

∗ for every role assertion R(a, c) ∈ Kmg(c) with
a ∈ S−(b) and R �= S, add R(b, c) to Kmg(c)

and remove R(a, c) from Kmg(c);
∗ for every role assertion R(c, a) ∈ Kmg(c) with

a ∈ S−(b) and R �= S, add R(c, b) to Kmg(c)

and remove R(c, a) from Kmg(c);

– individual generation I : for a ∈ NI� with
Kmod(c) |= C(a), let S(a) = {b ∈ NI� |
Kmod(c) |= S(a, b)}; then:

∗ for every b ∈ S(a), add grouping(a, gb) to
Kmg(c) with gb ∈ NI�′ a new individual name
(associated with the grouping individual b);

∗ for every role assertion R(a, c) ∈ Kmg(c), for
every b ∈ S(a), add R(gb, c) to Kmg(c) and
remove R(a, c) from Kmg(c);

∗ resp. for every R(c, a) and C(a) ∈ Kmg(c).

– value generation V (op): for a ∈ NI� with
Kmod(c) |= C(a), considering the operation op on
values in the range of S, let S(a) = {v ∈ NI� |
S(a, v) ∈ Kmg(c)}, then:

∗ add to Kmg(c) the assertion S(a, op(v1, . . . ,

vm)) with {v1, . . . , vm} = S(a);
∗ remove every S(a, v) ∈ Kmg(c) with v ∈ S(a).

Note that for simplicity we treat literal values as in-
dividuals and we do not distinguish roles across in-
dividuals and values in our language. We note that
rdf:type may serve as a grouping property, provided
that (newly introduced) grouping individuals represent
the concepts employed for grouping and that the man-
agement of these grouping individuals is taken care
of (cf. OWL punning [22]). Individual-generating ab-
straction may be extended for multiple grouping prop-

Fig. 9. Illustration of abstraction operations definitions.

erties. Moreover, we note that the grouping role S is al-
lowed to be a complex role expression, thus permitting
to group, e.g., along role compositions.

Fig. 9 shows a graphical representation for defini-
tions of the abstraction operations. Intuitively, the ab-
straction operation takes as input the single cell, on
the knowledge module of which the operation is ap-
plied, a class C of individuals to be abstracted, and
a property S, which represents the grouping relation
along which the elements have to be abstracted. The
kind of manipulation on the cell’s knowledge then de-
pends on the abstraction type: (a) in triple-generating
abstraction, for every instance C(a), if there is some
relation of the kind S(a, b), i.e., a is “grouped” into
b, then all of the role assertions of the kind R(a, c)

or R(c, a) are redirected to the grouping individual
b; (b) in individual-generating abstraction, for every
instance C(a), if there is some relation of the kind
S(a, b) then a new grouping individual gb and asser-
tion grouping(a, gb) are added, and all of the ABox
assertions of the kind R(a, c), R(c, a) and A(a) are
redirected to gb; (c) in value-generating abstraction,
for every element C(a), we consider all of the values
v1, . . . , vm that are related to a by role S and we add

C.G. Schuetz et al. / Knowledge Graph OLAP 669

their aggregation op(v1, . . . , vm) by a parameter oper-
ator op as a new S value for a.

The definition of individual-generating abstraction
can be easily extended to allow for multiple group-
ing properties. For example, in individual-generating
abstraction, given grouping relations S1 and S2, for
every instance C(a), if there is some relation of
the kind S1(a,m) and some relation of the kind
S2(a, n), a new grouping individual gmn and asser-
tion grouping(a, gmn) are added, and all of the ABox
assertions of the kind R(a, c), R(c, a) and A(a)

are redirected to gmn. The definition of individual-
generating abstraction could be defined as follows: in-
stead of a single grouping property S, the individual-
generating abstraction would have roles S1, . . . , Sk as
grouping properties. Then, for every a ∈ NI� with
Kmod(c) |= C(a), and for every j ∈ {1, . . . , k}, let
Sj (a) = {b ∈ NI� | Kmod(c) |= Sj (a, b)}. For every
b ∈ S1(a) × · · · × Sk(a) add grouping(a, gb) to Kmg(c)

with gb ∈ NI�′ a new individual name (associated
with the grouping tuple b). For every role assertion
R(a, c) ∈ Kmg(c), for every b ∈ S1(a)×· · ·×Sk(a) add
R(gb, c) to Kmg(c) and remove R(a, c) from Kmg(c);
resp. for every R(c, a) and C(a) ∈ Kmg(c).

Example 8 (Abstraction). Fig. 10 illustrates the
different variants of abstraction on the running ex-
ample of ATM knowledge graphs. Take the K4 mod-
ule of the c4 context of KATM from Fig. 6, which
contains an example of taxiway contamination. As-
sume that the K4 module also contains a runway
contamination with compactSnow, which is a kind
of snow. The RDF graph at the bottom of Fig. 10
then illustrates those contents. First, a triple-generating
abstraction αT (KATM, c4,�, kindOf) leads to the
replacement of individuals drySnow and compact-
Snow with snow, using kindOf as grouping property.
Let K′

ATM denote the cube resulting from the previous
triple-generating abstraction. Second, over that cube,
an individual-generating abstraction αI (K′

ATM, c4,

SurfaceContaminationLayer, contaminationType) then
groups all SurfaceContaminationLayer individuals with
the same contaminationType property value; the group-
ing property indicates which individuals have been
grouped. The new individual assumes the place of the
grouped individuals in the graph. Let K′′

ATM denote the
cube resulting from the individual-generating abstrac-
tion. Third, another individual-generating abstraction
αI (K′′

ATM, c4, SurfaceContamination, layer) groups all
SurfaceContamination individuals with the same layer
property value. Let K′′′

ATM denote the cube resulting

Fig. 10. Examples of triple-, individual-, and value-generating ab-
straction.

670 C.G. Schuetz et al. / Knowledge Graph OLAP

from that individual-generating abstraction. Fourth,
a value-generating abstraction αV (avg)(K′′′

ATM, c4,

SurfaceContamination, depth) replaces multiple depth
property values (0.2 and 0.4) by the average depth
(0.3). Let K′′′′

ATM denote the cube resulting from that
value-generating abstraction. A final individual-
generating abstraction αI (K′′′′

ATM, c4, Runway �
Taxiway, contaminant) then groups all Runway and
Taxiway individuals with the same contaminant prop-
erty value, which after the previous individual-
generating abstraction means taxiway10/004 and run-
way16/34. In this case, a complex concept Runway �
Taxiway determines which individuals are candidates
for abstraction. The result graph indicates, at an ab-
stract level, the presence of snow contamination at run-
ways and taxiways along with the average depth of
contamination.

The grouping role S can be an inverse role as
well as a composite (complex) role. For example,
in order to perform an individual-generating abstrac-
tion that groups SurfaceContaminationLayer individ-
uals by the infrastructure element they belong to,
the composite role layer− ◦ contaminant− may serve
as a grouping property. Similarly, a triple-generating
abstraction could replace entities by another entity
reached via a property path, e.g., using composite role
kindOf ◦ kindOf to replace one entity by another two
steps up the kindOf hierarchy. SPARQL-like property
paths with wildcard operators could also be intro-
duced.

Additional variants of the abstraction operation can
be defined in order to adapt the concept of abstraction
to the structure of the object knowledge. For exam-
ple, in individual-generating abstraction, we consider
an explicit grouping relation to be introduced between
grouped individuals and the newly introduced group
individual. The grouping may also be realized with the
introduction of a new class representing the abstrac-
tion, with class membership assuming the role of the
grouping relation.

We note that KG-OLAP, in general, aims at be-
ing independent from the specific ontology language
chosen for the representation of local axioms and as-
sertions. If an ontology language were employed that
could express the semantics of the abstraction oper-
ations (or some variant), that ontology language, in
conjunction with an automated reasoner, could serve
to implement the abstraction operations. Regardless,
in the case of OWL, reasoning alone cannot serve to
implement the abstraction operations. For example, in

case of individual-generating abstraction, since OWL
does not support grouping of individuals by property
value when that value is a variable, extralogical steps
must be followed in addition to reasoning. In Exam-
ple 8, membership reasoning for the complex con-
cept ∃contaminationType.{snow} could serve to obtain
all the individuals which have the same value snow
for the contaminationType property. In OWL, snow
could not be replaced by a variable, though. In order
to perform individual-generating abstraction, member-
ship reasoning would have to be performed for mul-
tiple complex concepts, replacing the constant snow
with other possible types of contamination. Suppose
slush and ice are the other types of contamination.
Then, in order to group layers by contamination type,
membership reasoning for ∃contaminationType.{slush}
and ∃contaminationType.{ice} would have to be per-
formed as well. For each of those concepts, an individ-
ual would have to be created that represents the group
of members that belong to the respective concept; al-
ternatively, the concepts could be named and used as
group individuals (OWL punning). Finally, each indi-
vidual representing a group would replace the individ-
uals belonging to that group in the KG.

4.2.2. Pivoting
The pivoting operation attaches dimensional prop-

erties (dimension attribute values) of a cell to a
specified set of individuals inside the cell’s object
knowledge. Pivoting allows for the preservation of
contextual knowledge in case of a merge opera-
tion.

Definition 7 (Pivoting). Given a cube K = 〈G, KM〉,
a cell name c ∈ F, a (possibly complex) concept C

of L� of the objects to be labeled, and a set D =
{A1, . . . , An} ⊆ D of the selected set of dimension la-
bels, we define the pivoting operation π(K, c, C,D) as
a new cube K′ = 〈G′, KM′ 〉 over 〈�′, �′〉 s.t.

– M′ = M ∪ {mg(c)}, with mg(c) a new module
name;

– G′ = G ∪ {mod(c, mg(c))};
– KM′ = KM ∪ {Kmg(c)};
– for every e ∈ NI� with Kmod(c) |= C(e), we

add to Kmg(c) the set of assertions A1(e, dA1), . . . ,

An(e, dAn) if G |= A1(c, dA1), . . . , An(c, dAn).

Note that we have to admit that � ∩ � �= ∅ in or-
der to use metaknowledge symbols in the local object
knowledge. Fig. 11 shows an illustration of the pivot-
ing operation definition. Intuitively, the pivoting oper-
ation takes as input a cell c and as parameters a class

C.G. Schuetz et al. / Knowledge Graph OLAP 671

Fig. 11. Illustration of the pivoting operation definition.

C as well as a set of dimensions D. The operation as-
sociates with c an additional knowledge module mg(c)
that contains, for each element e of argument class C

in c, a set of assertions that label the element e with
the dimension attribute values of c associated with the
argument dimensions in D ⊆ D.

Example 9 (Pivoting). Consider the K4 module of
the c4 context from Fig. 6. The pivoting operation
π(K, c4, SurfaceContamination, {Importance, Date})
then returns a new cube K′ with a knowledge mod-
ule mg(c4) that contains the additional assertions Im-
portance(taxiway10/004-contam#101, Essential) and
Date(taxiway10/004-contam#101, 12-02-2020).

4.2.3. Reification
The reification operation takes “triples” (instance-

level assertions) in the object knowledge of a cell and
creates individuals that represent such triples. Reifica-
tion allows for the preservation of duplicates in case of
a union merge, which facilitates subsequent counting
of occurrences in the course of the analysis. Further-
more, in combination with pivoting, the reification op-
eration allows for attaching contextual information to
context-dependent knowledge, preserving information
about the context of a triple in case of a merge union,
which would otherwise be lost.

Consider the set of asserted modules of cell c,
mod(c)={m ∈ M|G |= mod(c, m) and, for every c′ �=
c wher ec � c′,G �|= mod(c′, m)}. We denote the local
knowledge base of cell c as Kmod(c) = ⋃

m∈mod(c) Km.

Definition 8 (Reification). Given a cube K = 〈G, KM〉,
a cell name c ∈ F, a role R of L� (i.e. the reified prop-
erty), we define the reification operation
(K, c, R) as
a new cube K′ = 〈G′, K′

M〉 over 〈�′, �′〉 s.t.:

– a module name mg(c) is added to M′, mod(c,
mg(c)) is added to G′ and Kmg(c) is added to KM′ ;

– a concept R-type ∈ NC′
� (representing the reified

role type) is added to 〈�′, �′〉;
– for every a, b ∈ NI� s.t. R(a, b) ∈ Kmod(c), a

new individual R-a-b is added to Kmg(c) with the

Fig. 12. Illustration of the reification operation definition.

following set of assertions (associating the sub-
ject and object to the reified role assertion):

hasSubject(R-a-b, a)

hasObject(R-a-b, b)

R-type(R-a-b)

Fig. 12 shows an illustration of the reification op-
eration definition. Intuitively, the reification operation
considers a single cell c with its asserted knowledge
Kmod(c) and a role R to be reified: for each asserted
instance of property R, a new individual representing
that instance is added to the cell’s knowledge. For-
mally, as with pivoting, the new knowledge is added as
a new knowledge module mg(c).

Example 10 (Reification). Consider the K4 knowl-
edge module of the c4 context from Fig. 6. The reifica-
tion operation
(K, c4, depth) then returns a new cube
K′ with a knowledge module mg(c4) containing the
assertions hasSubject(depth-taxiway10/004-contam
#101-0.4, taxi-way10/004-contam#101), hasObject
(depth-taxiway10/004-contam#101-0.4, 0.4), and
depth-type(depth-taxiway10/004-contam#101-0.4).

5. Proof-of-concept prototype

In this section we sketch the foundations of a proof-
of-concept prototype of a KG-OLAP system imple-
mented on top of off-the-shelf quad stores. We evaluate
the prototype’s performance in order to grasp the com-
plexity of KG-OLAP cube maintenance and query op-
erations as basis for future optimization efforts; perfor-
mance optimization is not a goal of this paper. We re-
fer to Section 4 and Section 5 of the Appendix [70] for
additional information on implementation and perfor-
mance evaluation, respectively. Source code and logs
from the experiments are available in an online repos-
itory.3

3http://kg-olap.dke.uni-linz.ac.at/

http://kg-olap.dke.uni-linz.ac.at/

672 C.G. Schuetz et al. / Knowledge Graph OLAP

5.1. Design and implementation

A mapping of the formal language to an actual RDF
representation allows for the storage of KG-OLAP
cubes in off-the-shelf quad stores with SPARQL real-
izations of the query operations. Context-aware rules
serve to materialize roll-up relationships for levels
and cells as well as inference and propagation of
knowledge. Details about logical model, reasoning and
queries are provided in Section 4 of the Appendix [70].

Architecture For each KG-OLAP cube, a base repos-
itory in a quad store comprises the cube knowledge
(structure) and object knowledge (contents) for the
cube. Using the slice-and-dice operation, the user se-
lects a subset of the base data into a temporary reposi-
tory, which then contains a working copy of the origi-
nal data that can be modified using merge and abstrac-
tion.

Logical model The definition of the KG-OLAP mo-
del primitives (e.g., cell/fact, dimension, dimension
members) can be easily defined in terms of RDF/OWL
classes and properties. The two-layered structure of the
KG-OLAP system with a global context and multiple
local contexts – as in the CKR core [12] – is realized
in RDF using different RDF graphs – one graph for the
global knowledge and one graph for each knowledge
module as well as a graph for the materialized inferred
knowledge of each module.

Reasoning The reasoning procedure presented in
Section 3.2.3, analogously to the CKR core [12], can
be implemented using SPARQL-based forward rules
that materialize the inferences, including coverage re-
lationships between contexts. The KG-OLAP imple-
mentation employs the RDFpro framework [21] for
rule execution. RDFpro supports the specification of
SPARQL-based rules over multiple graphs, a feature
required for reasoning inside individual cells as well
as across different cells.

Queries The query operations introduced in Sec-
tion 4 can be implemented using SPARQL queries. In
particular, the query operations translate into SPARQL
SELECT statements that return “delta” tables which
consist of quads along with an indication of the op-
eration (insert or delete). The delta tables can then be
applied to the temporary repository.

5.2. Performance evaluation

In the following, we analyze performance of the
core set of KG-OLAP cube operations – i.e., slice-and-

dice, merge union, and abstraction. Specifically, we
look at median run times for the computation of the
query operations’ delta statements, i.e., the statements
that must be inserted or deleted in order to perform the
respective query operation, measured over multiple it-
erations, relative to repository size (number of state-
ments), context size (number of contexts), and delta
size (number of computed delta statements). We do not
include the duration of actual insertions or deletions of
the delta statements in the run times since these are not
specific to contextualized KGs.

The performance experiments employed synthetic
datasets based on the ATM scenario used through-
out the paper, which allowed us to vary the number
of dimensions, contexts, and statements while keep-
ing the graphs similar. The generated contexts con-
tain knowledge about airports, runways and taxiways,
warnings, temporary closures of runways and taxiways
for different aircraft characteristics based on weight
or wingspan, layers of surface contamination with the
depth of each layer, and navigation aids with their fre-
quencies. Query operations ran on three-dimensional
and four-dimensional datasets with 1365, 2501, and
3906 contexts, respectively. The contexts were not all
on the same granularity but distributed over five dif-
ferent granularity levels (not including the root con-
text), where the number of contexts per granularity
level gradually increased with the depth; the major-
ity of the contexts were on the most specific granu-
larity level (see Section 5.2 of the Appendix [70] for
details). Some entities were shared between contexts
at different granularities to accurately study the effect
of knowledge propagation. Context size was varied by
adding/removing branches in the context hierarchy. In
turn, for each dimensionality and context size there
were three different repository sizes. In order to make
for more realistic datasets, repository size was var-
ied by increasing the number of airports, runways and
taxiways, warnings, etc. per context, dependent on the
granularity level, not by randomly distributing state-
ments across contexts, which due to the structure of the
context hierarchy results in differences in the reposi-
tory sizes between context sizes. Additional “baseline”
datasets were used in the experiments involving ab-
straction operations, which consisted of a single con-
text, in order to investigate the impact of contextual-
ization on query processing.

We remark that designing performance experiments
after existing benchmarks for traditional OLAP, e.g.,

C.G. Schuetz et al. / Knowledge Graph OLAP 673

TCP-DS,4 would not give an accurate idea of the inher-
ent complexity of KG-OLAP cube maintenance and
query operations due to the different nature of the in-
volved data and the queries. Traditional OLAP op-
erates on numeric data, and does not fulfill Require-
ments 1–3 as well as Requirement 5 described in Sec-
tion 2.5. While it would be possible to model nu-
meric data using RDF and analyze those data using
SPARQL, it would be beside the point to measure per-
formance of atypical uses of KG-OLAP. Furthermore,
related work on OLAP and information networks that
aims at performance optimization, e.g., [88,89,91],
does not (wholly) fulfill the requirements described
in Section 2.5 (see also Section 6.3), rendering those
approaches incomparable to KG-OLAP in terms of
performance. Related work on ATM KGs conduct-
ing performance evaluation [44] runs general SPARQL
queries over large RDF datasets but does not fea-
ture modularization (Requirement 4). Those SPARQL
queries cannot be reasonably adapted to queries over
multiple modules, and running SPARQL queries over
a single context would only serve to replicate the re-
sults of related work, which depend on the experimen-
tal setting and require the same datasets to be used,
which are not public. Finally, in this paper, we do not
aim at performance optimization. Rather, we investi-
gate complexity of KG-OLAP cube maintenance and
query operations to inform future optimization efforts.

The performance experiments were conducted on
a virtual CentOS 6.8 machine with four cores of an
Intel Xeon CPU E5-2640 v4 with 2.4 GHz, hosting
a GraphDB5 8.9 instance. The Java Virtual Machine
(JVM) of the GraphDB instance ran with 100 GB heap
space. The JVM running the KG-OLAP system, which
conducts rule evaluation, prepares queries, and caches
query results, ran with 20 GB heap space.

The GraphDB instance comprised two repositories –
base and temporary – with the following configura-
tion (see [63] for further information). The entity in-
dex size was 30000000 and the entity identifier size
was 32 bits. Context index, predicate list, and literal in-
dex were enabled. Reasoning and inconsistency checks
were disabled; the KG-OLAP implementation takes
care of reasoning via RDFpro rule evaluation.

Fig. 13(a) shows run times of the slice-and-dice op-
eration. The plot on the left shows run time relative
to repository size per dimensionality. The plot in the

4http://www.tpc.org/tpcds/
5http://graphdb.ontotext.com/

middle shows run time relative to repository size per
context size. The plot on the right shows run time rel-
ative to the size of the delta table computed by the
query operation. Hence, performance of the slice-and-
dice operation primarily depends on the number of
delta statements in the query result, i.e., the number
of selected cells/statements from the base repository.
In fact, in this example, the slice-and-dice operation
performs better on the large context size (3906 con-
texts) due to fewer delta statements being computed
because of the distribution of the statements across the
contexts. Dimensionality does not play a role here. In
summary, slice and dice does not involve any complex
computations, consisting only of the selection of rele-
vant contexts and their contents.

In case of the merge operation, in order to study
worst-case performance, we deliberately chose dataset
and formulation of the merge operation such that the
result would be an almost complete reorganization of
the contexts in the KG-OLAP cube. The lower-level
cells contain the majority of statements, which are all
affected by the merge operation. The complexity of the
chosen operation is evidenced by the delta size, which
is about twice the repository size: the merge operation
first removes the statements from the merged cells only
to insert those statements again into higher-level cells.
The run time of the merge union operation, as shown
in Fig. 13(b), primarily depends on the number of con-
texts. For each context size, we observe a linear in-
crease in run time with respect to the repository size.
For the large context size (3906 contexts) there is also
a marked influence of dimensionality on run time.

For performance evaluation of the abstraction oper-
ations, we employ, on the one hand, baseline datasets
which consist of a single context comprising all state-
ments in order to gain an understanding of the inher-
ent complexity of these operations regardless of con-
textualization. Such abstraction operations on a single
context correspond to the formalization. On the other
hand, we perform abstraction operations in a variant
that performs the abstraction to each cell at a partic-
ular granularity level. Similar to the merge operation,
we deliberately choose a setting where the query oper-
ations affect a large number of statements in order to
study worst-case performance.

Fig. 14(a) shows run times of triple-generating ab-
straction. Run time grows linearly with repository
size. Run times for individual-generating abstraction
with a single grouping property are similar, as shown
in Fig. 14(b). For triple-generating abstraction, the
baseline datasets had significantly higher run times.

http://www.tpc.org/tpcds/
http://graphdb.ontotext.com/

674 C.G. Schuetz et al. / Knowledge Graph OLAP

Fig. 13. Performance of contextual operations.

The difference was less pronounced for individual-
generating abstraction.

For value-generating abstraction, the queries re-
sulted in smaller sizes of the computed delta tables.
Fig. 14(c) shows that the run time of value-generating
abstraction grows about linearly with respect to repos-
itory size with a small influence of context size and lit-
tle influence of dimensionality. Run times for the base-
line datasets were smaller. We note that the run times
of value-generating abstraction were in general quite
low.

For results of reification and pivoting operations we
refer to Section 4.5.6 and Section 4.5.7, respectively,
of the Appendix [70]. In summary, the reification op-
eration grows linearly with the repository size. For the
pivoting operation we observe context size as the main
factor influencing run time.

The proof-of-concept implementation relies on ma-
terialization of coverage relationships and inferences,
which requires evaluation of a set of rules over the base
repository in order to initialize the KG-OLAP cube.
Fig. 15 shows run times for the evaluation of differ-
ent rulesets relative to the repository sizes before and
after reasoning – input and output repository size, re-

spectively – as well as number of contexts for three-
dimensional and four-dimensional KG-OLAP cubes.
Reasoning in the performance experiments was con-
ducted with the entire repository loaded into main
memory first. Performance of two different rulesets
was evaluated. The first ruleset, at the local level,
i.e., within each context, performs membership rea-
soning under consideration of subclass relationships.
For example, if Runway is a subclass of RunwayTaxi-
way and the fact Runway(runway16/34) is known, then
RunwayTaxiway(runway16/34) is inferred. The second
ruleset considers subclass relationships as well as do-
main and range of the properties. For example, if
AirportHeliport is the range of the isSituatedAt prop-
erty, and isSituatedAt(runway16/34, airportLOWW) is
known, then AirportHeliport(airportLOWW) can be in-
ferred. Fig. 15(a) shows the results for the first rule-
set, Fig. 15(b) for the second. Note that the datasets
were different regarding class membership assertions:
most membership assertions were omitted in the in-
put dataset for domain/range reasoning and left to be
inferred during the reasoning process. Domain/range
reasoning had significant implications on the runtime
of rule evaluation. In both cases, however, the main

C.G. Schuetz et al. / Knowledge Graph OLAP 675

Fig. 14. Performance of abstraction operations.

factor influencing run time turned out to be the num-
ber of contexts. The reasoning task was complicated
by the fact that the relevant knowledge for reason-
ing was distributed over multiple modules, evidenced
by the fact that rule evaluation without any form
of local inferencing takes only a couple of seconds.
We leave the investigation of complexity and effi-
cient implementation of reasoning in a contextualized
setting under different ontology languages to future
work.

5.3. Discussion

The purpose of the implementation was to get an
idea of the complexity of KG-OLAP cube maintenance
and query operations. Even though optimization was
not a main goal of this paper, performance is already
more than satisfactory for certain use cases. In order
to handle big KGs, however, future work will consider
a distributed, parallelized implementation. Neverthe-
less, optimization requires a thorough definition of the

676 C.G. Schuetz et al. / Knowledge Graph OLAP

Fig. 15. Performance of rule evaluation.

framework’s fundamental concepts, which we provide
in this work.

In the following, we briefly discuss the implications
of the results of the performance evaluation regarding
the use cases presented in Section 2.

Use Case 1 (Pilot briefings). Performance of the
proof-of-concept prototype is more than satisfactory
for use in pilot briefings. In that case, a KG-OLAP
cube would cover the pilot briefing for a particular
flight. Knowledge would consist, on the one hand,
of relevant baseline information, e.g., available run-
ways and taxiways, route of the flight, and navigation
aids. On the other hand, temporary knowledge would
be extracted from DNOTAMs and METARs. A typ-
ical short-distance flight has fewer than 200 relevant
DNOTAMs [79, p. 6B2-10]. Assuming that it takes 10
triples to represent a single DNOTAM, the knowledge
extracted from DNOTAMs amounts to 2000 triples for
a short-distance flight. Even when accounting for other
potentially relevant knowledge, and assuming a long-
distance flight, the KG for a pilot briefing for a single
flight will be in the range of at most 100000 triples,
which is well within the capabilities of the proof-of-

concept prototype and would also allow for more so-
phisticated reasoning. The expected number of con-
texts for a single flight, even with hourly or half-hourly
granularity of contextualization, assuming tens of geo-
graphic segments, is within the capabilities of the pro-
totype implementation.

Use Case 2 (Post-operational analysis). Maintaining
a large KG-OLAP cube for post-operational analysis
in Europe or the United States, or even in a single re-
gion within one of those areas, with possibly tens of
thousands of contexts and billions of triples, would re-
quire a different implementation strategy. Taking the
figures regarding ATMGRAPH’s size as reference, the
volume of knowledge for only the New York area gen-
erated within a single month amounts to 260 million
triples [44]. An alternative to maintaining a single KG-
OLAP cube would be the adoption of a federated ap-
proach, maintaining multiple cubes within a metacube
[73], i.e., a cube of cubes. A drill-across operation
would then serve to combine knowledge from differ-
ent cubes. Processing would have to be distributed and
parallelized on multiple worker nodes.

C.G. Schuetz et al. / Knowledge Graph OLAP 677

6. Related work

In this section we review related work on contex-
tualization in KGs, on OLAP and semantic web tech-
nologies, on OLAP and information networks, and on
(knowledge) graph summarization.

6.1. Contextualized knowledge graphs

The choice of CKR as base formalism for the defi-
nition of the KG-OLAP cube model was motivated by
the explicit representation of dimensions and the orga-
nization of dimensions into levels which, as discussed
in the previous sections, is compatible with the multi-
dimensional perspective of OLAP. The idea of associ-
ating contexts with dimensions traces back to the the-
oretical works of Lenat [53] and the “context as a box”
paradigm from Benerecetti et al. [7] for representation
of contexts in knowledge representation.

The problem of annotation and contextualization of
knowledge in KGs has been present since the early
years of semantic web technologies. Different ways
of introducing a notion of modularization in the RDF
data model or KG implementations have been pro-
posed [16,38,45]. Such approaches, however, often do
not provide a formal (logic-based) definition of the re-
sulting contextual model, which goes against Require-
ment 2 (ontological knowledge).

The need for formalization of the notion of con-
text in KGs led to the proposal of several (description)
logic-based approaches for the contextualization of
knowledge bases: apart from the CKR [12,75], we can
cite [46,80,82,92], for example. While these models
explicitly introduce contexts as a primitive in knowl-
edge bases, these proposals do not always take into
account an explicit representation of the notion of di-
mensions and/or level hierarchies, which is important
– as of Requirement 4 for modularization and Require-
ment 5 for hierarchical decomposition of KGs into
more general and more specific knowledge along with
knowledge propagation – to qualify the different situa-
tions represented by contexts, and to have a clear sep-
aration of knowledge bases associated with each con-
text.

Krötzsch et al. [48] propose an approach for adding
annotations in a logic-based reading of KGs. While
that model formally introduces annotations to local
description logic axioms and assertions, it does not
provide definite criteria for knowledge propagation
across contextual structures as in the KG-OLAP cover-
age hierarchy (cf. Requirement 5, general and specific
knowledge).

6.2. OLAP and semantic web technologies

Semantic technologies have been used for a vari-
ety of tasks in the context of OLAP (see [3] for an
overview). Related to KG-OLAP are techniques for
data analysis over RDF data. The RDF data cube vo-
cabulary (QB) [24] and its extension, QB4OLAP [26],
provide an RDF representation format for publishing
traditional OLAP cubes with numeric measures on
the Semantic Web, with often SPARQL-based opera-
tors that emulate traditional OLAP queries for analyz-
ing multidimensional data in QB [57] and QB4OLAP
[27,84]. Such statistical linked data are just differ-
ent serialization and publication formats of traditional
OLAP cubes. Other work has suggested “lenses” over
RDF data [20] for the purpose of RDF data analysis,
i.e., analytical schemas which can be used for OLAP
queries on RDF data. Similarly, superimposed multi-
dimensional schemas [37] define a mapping between
a multidimensional model and a KG in order to allow
for the formulation of OLAP queries. Contrary to these
approaches, KG-OLAP focuses on RDF graphs as the
“measures” of OLAP cubes rather than numeric mea-
sures that are aggregated using aggregation operators
such as SUM and AVG.

Fusion cubes [2] supplement traditional OLAP
cubes with external data in RDF format, particu-
larly linked open data where typically the data are
not owned by the analyst. Fusion cubes are tradi-
tional OLAP cubes with numeric measures that can
be populated dynamically with statistical data from
RDF sources. Fusion cubes store contextual informa-
tion about provenance and data quality of the external
sources. Other similar work [59] extracts traditional
OLAP cubes with numeric measures from RDF data
sources and ontologies, which analysts may then query
using a traditional OLAP language, namely MDX. The
Semantic Cockpit project [60] employed ontologies
for the definition of a shared understanding of business
terms and analysis situations among business analysts.
With respect to these approaches, KG-OLAP cubes
may have some similarities to a structured data lake
(see [69] for more information on data lakes), which
stores the data of interest in a semantically richer for-
mat than plain numeric measures, but unlike conven-
tional data lakes, which store raw data, provides a cer-
tain degree of integration and cleaning as well as ded-
icated query operations.

678 C.G. Schuetz et al. / Knowledge Graph OLAP

6.3. OLAP and information networks

KG-OLAP is related to applications of OLAP tech-
nology for analysis of information networks. Among
the first, and arguably the most prominent, of these
approaches was Graph OLAP (also known as Info-
NetOLAP) [18,19], which through its informational
and topological OLAP queries provides rich query fa-
cilities suitable for graph analysis. In Graph OLAP,
graphs are associated with dimensional attributes,
which yields a graph cube, i.e., the contents of the
cube cells are graphs. The edges of the graphs them-
selves are weighted; the weights represent the mea-
sures to be analyzed. Typical applications of Graph
OLAP are analysis of co-author and similar social
graphs from different time periods, geographic loca-
tions, and so on. Graph OLAP distinguishes between
informational roll-up and topological roll-up, which
corresponds to the distinction between contextual and
graph operations in KG-OLAP. The focus of Graph
OLAP are weighted directed graphs with highly struc-
tured and homogeneous data. Hence, Graph OLAP
does not consider heterogeneity (Requirement 1) and
ontological knowledge (Requirement 2). Schema in-
formation, e.g., about roll-up hierarchies, are external
to the data, i.e., graphs in Graph OLAP are not self-
describing (Requirement 3), resulting in rigid, inflexi-
ble graph schema and queries. Graph OLAP also does
not consider the systematic propagation of knowledge
from more general to more specific contexts (Require-
ment 5); graph data are only associated with the most
specific granularity in the cube.

Since the original proposal of Graph OLAP, other
approaches that apply OLAP to information networks
have been proposed, which can be compared along dif-
ferent criteria, most notably the type of network, i.e.,
homogeneous or heterogeneous [67]. KGs have been
likened to “schema-rich” heterogeneous information
networks [77] and, therefore, only approaches apply-
ing OLAP to heterogeneous networks can be accu-
rately compared to KG-OLAP. Yet, even approaches
applying OLAP technology to heterogeneous infor-
mation networks, e.g., [29,55,88,89,91], do not con-
sider schema variability, i.e., Requirement 1(c), or on-
tological knowledge (Requirement 2). Furthermore,
unlike KG-OLAP, approaches to OLAP on informa-
tion networks also lack a systematic way of structur-
ing large bodies of knowledge, which comes with the
decomposition of large knowledge graphs into hier-
archically structured modules, from more general to
more specific, in conjunction with knowledge prop-

agation (Requirement 5). Schema and instance data
are also firmly separated, i.e., the data are not self-
describing (Requirement 3), reducing flexibility of
the query operations. Another approach [56] aims to
reconcile statistical/multidimensional linked data in
QB and QB4OLAP with the informational/topological
view of OLAP on information networks. Regarding the
requirements, that approach does not consider schema
variability, i.e., Requirement 1(c), ontological knowl-
edge (Requirement 2), distinction between more gen-
eral and more specific knowledge in conjunction with
knowledge propagation (Requirement 5), and knowl-
edge abstraction (Requirement 7). Some approaches,
e.g., [88], offer abstraction operations that are similar
to the KG-OLAP operations, but less flexible due to
lack of self-describing data (Requirement 3), which al-
low for a more flexible formulation of roll-up paths
within the graph structure. Furthermore, KG-OLAP
allows for the use of complex concepts and roles in
abstraction (in line with Requirement 2, ontological
knowledge), allowing for flexible query formulation.
For example, individual-generating abstraction with
complex concepts such as Runway � Taxiway as se-
lection criteria and complex roles such as layer− ◦
contaminant− as the grouping properties would not be
possible in OLAP on information networks.

Techniques for optimization of OLAP on informa-
tion networks may inform the optimization of KG-
OLAP. Precomputation and materialization of aggre-
gate views [88,89] is the most prevalent optimization
technique for OLAP on information networks, which
may not be applicable directly to KG-OLAP due to the
heterogeneous data and highly flexible query formula-
tion in KG-OLAP. Adopting a MapReduce-based im-
plementation like Pagrol’s [89] or Process OLAP’s [6]
is an interesting perspective for KG-OLAP as well.

Work on the analysis (or mining) of heteroge-
neous information networks [76] and Semantic Web
databases [51] is orthogonal to KG-OLAP. Such ap-
proaches calculate, for example, degree distribution or
PageRank, but may also serve to predict links and as
the basis for recommender systems. Just like data min-
ing may use OLAP cubes, information network mining
may use KG-OLAP cubes.

6.4. (Knowledge) graph summarization

The KG-OLAP query operations also invite com-
parison with (knowledge) graph summarization tech-
niques [17,54], which aim at making KGs more ac-
cessible to end users and applications by providing a

C.G. Schuetz et al. / Knowledge Graph OLAP 679

condensed view on the represented knowledge. Use
cases for KG summarization include visualization and
exploration of KGs as well as facilitating query for-
mulation and processing. Broadly speaking, KG (or
RDF) summarization techniques may be divided into
structural summarization, mining-based, and statistical
summarization [17]. Statistical summarization com-
putes quantitative measures that characterize a graph
whereas mining-based (or pattern-based) summariza-
tion employs graph mining to extract frequent patterns
that act as a summary. Structural summarization aims
at finding a summary graph that preserves characteris-
tics of the original graph while considerably reducing
the size of the graph, making the graph easier to handle
and comprehend.

Among the structural summarization approaches for
RDF graphs, quotient RDF summaries represent a type
of summaries that produce an RDF graph where multi-
ple nodes from the source graph are replaced by a sin-
gle summary node in the RDF summary. Accordingly,
the results of abstraction operations in KG-OLAP
may be considered structural quotient RDF summaries
[17]. Unlike most structural approaches towards RDF
summarization, KG-OLAP allows for ad hoc summa-
rization based on user-specified, application-specific
summarization criteria.

Unlike KG-OLAP, existing work on graph and
KG summarization largely ignores modularization and
contextuality in KGs (Requirement 4). In fact, existing
work on KG summarization is orthogonal to the KG-
OLAP approach. Consequently, future work may adapt
summarization algorithms to serve as graph operators
in KG-OLAP.

7. Conclusion

In this paper, we presented KG-OLAP for the anal-
ysis of knowledge represented in KGs. We extended
the multidimensional modeling paradigm from OLAP
to the representation of contextualized KGs. Each cell
(or context) in a KG-OLAP cube contains knowledge
triples. We introduced specific query operations for
KG-OLAP cubes. On the one hand, contextual oper-
ations allow for selecting and merging contexts. On
the other hand, graph operations allow for summariz-
ing knowledge triples within individual contexts. We
illustrated KG-OLAP with use cases in air traffic man-
agement [72,73]. A proof-of-concept prototype using
off-the-shelf quad stores and SPARQL queries demon-
strates feasibility. Using the prototype, we conducted

experimental performance evaluation, which may in-
form future optimization efforts. Even though opti-
mization was not a goal, we conclude that there is a
class of use cases for which the proof-of-concept im-
plementation’s performance is more than satisfactory.

Different directions can be investigated for future
work. We aim at extending the formalism for a dis-
tributed approach with federated KG-OLAP cubes. We
sketch a first version of a distributed, parallelized KG-
OLAP framework in [11]. Regarding implementation,
we aim at realizing a distributed, parallelized imple-
mentation of a KG-OLAP system including the con-
cept of metacube and the drill-across operation [73], in
order to support big KGs. We are interested in extend-
ing the KG-OLAP model with defeasible axioms sim-
ilar to previous work on CKR [8,13]. Regarding the
KG-OLAP operations, different variants can be stud-
ied to meet the needs of the use cases at hand and the
extensions of the underlying model (e.g. by distribu-
tion). Moreover, we may extend the proposed defini-
tions of query operations with common RDF summa-
rization techniques.

References

[1] AIXM 5.1.1 – Data Model (UML), Accessed: 20 October
2020, http://aixm.aero/document/aixm-511-data-model-uml.

[2] A. Abelló, J. Darmont, L. Etcheverry, M. Golfarelli, J. Mazón,
F. Naumann, T.B. Pedersen, S. Rizzi, J. Trujillo, P. Vassiliadis
and G. Vossen, Fusion cubes: Towards self-service business
intelligence, International Journal of Data Warehousing and
Mining 9(2) (2013), 66–88. doi:10.4018/jdwm.2013040104.

[3] A. Abello, O. Romero, T.B. Pedersen, R. Berlanga, V. Nebot,
M.J. Aramburu and A. Simitsis, Using semantic web tech-
nologies for exploratory OLAP: A survey, IEEE Transactions
on Knowledge and Data Engineering 27(2) (2015), 571–588.
doi:10.1109/TKDE.2014.2330822.

[4] F. Baader, D. Calvanese, D. McGuinness, D. Nardi and P.
Patel-Schneider (eds), The Description Logic Handbook, Cam-
bridge University Press, 2003.

[5] L. Bellomarini, G. Gottlob, A. Pieris and E. Sallinger, Swift
logic for big data and knowledge graphs, in: Proceedings of
the Twenty-Sixth International Joint Conference on Artificial
Intelligence (IJCAI-17), C. Sierra, ed., 2017, pp. 2–10. doi:10.
24963/ijcai.2017/1.

[6] B. Benatallah, H.R. Motahari-Nezhad et al., Scalable graph-
based OLAP analytics over process execution data, Distributed
and Parallel Databases 34(3) (2016), 379–423. doi:10.1007/
s10619-014-7171-9.

[7] M. Benerecetti, P. Bouquet and C. Ghidini, On the dimensions
of context dependence: Partiality, approximation, and perspec-
tive, in: Modeling and Using Context. CONTEXT 2001, V. Ak-
man, P. Bouquet, R.H. Thomason and R.A. Young, eds, Lec-
ture Notes in Computer Science, Vol. 2116, Springer, Berlin,
Heidelberg, 2001, pp. 59–72. doi:10.1007/3-540-44607-9_5.

http://aixm.aero/document/aixm-511-data-model-uml
https://doi.org/10.4018/jdwm.2013040104
https://doi.org/10.1109/TKDE.2014.2330822
https://doi.org/10.24963/ijcai.2017/1
https://doi.org/10.24963/ijcai.2017/1
https://doi.org/10.1007/s10619-014-7171-9
https://doi.org/10.1007/s10619-014-7171-9
https://doi.org/10.1007/3-540-44607-9_5

680 C.G. Schuetz et al. / Knowledge Graph OLAP

[8] L. Bozzato, T. Eiter and L. Serafini, Enhancing context knowl-
edge repositories with justifiable exceptions, Artificial Intelli-
gence 257 (2018), 72–126. doi:10.1016/j.artint.2017.12.005.

[9] L. Bozzato, T. Eiter and L. Serafini, Reasoning with justifiable
exceptions in EL⊥ contextualized knowledge repositories, in:
Description Logic, Theory Combination, and All That – Es-
says Dedicated to Franz Baader on the Occasion of His 60th
Birthday, C. Lutz, U. Sattler, C. Tinelli, A. Turhan and F.
Wolter, eds, Lecture Notes in Computer Science, Vol. 11560,
Springer, Cham, 2019, pp. 110–134. doi:10.1007/978-3-030-
22102-7_5.

[10] L. Bozzato, T. Eiter and L. Serafini, Justifiable exceptions in
general contextual hierarchies, in: Modeling and Using Con-
text. CONTEXT 2019, G. Bella and P. Bouquet, eds, Lecture
Notes in Computer Science, Vol. 11939, Springer, Cham, 2019,
pp. 26–39. doi:10.1007/978-3-030-34974-5_3.

[11] L. Bozzato and C.G. Schuetz, Towards distributed contextual-
ized knowledge repositories for analysis of large-scale knowl-
edge graphs, in: Proceedings of the 35th Italian Conference on
Computational Logic (CILC 2020), F. Calimeri, S. Perri and
E. Zumpano, eds, CEUR Workshop Proceedings, Vol. 2710,
CEUR-WS.org, 2020. http://ceur-ws.org/Vol-2710/short1.pdf.

[12] L. Bozzato and L. Serafini, Materialization calculus for con-
texts in the Semantic Web, in: DL 2013, T. Eiter, B. Glimm, Y.
Kazakov and M. Krötzsch, eds, CEUR Workshop Proceedings,
Vol. 1014, CEUR-WS.org, 2013. http://ceur-ws.org/Vol-1014/
paper_51.pdf.

[13] L. Bozzato, L. Serafini and T. Eiter, Reasoning with justi-
fiable exceptions in contextual hierarchies, in: Principles of
Knowledge Representation and Reasoning: Proceedings of the
Sixteenth International Conference (KR 2018), M. Thielscher,
F. Toni and F. Wolter, eds, AAAI Press, 2018, pp. 329–338.
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18032.

[14] F. Burgstaller, D. Steiner, B. Neumayr, M. Schrefl and E.
Gringinger, Using a model-driven, knowledge-based approach
to cope with complexity in filtering of notices to airmen, in:
Proceedings of the Australasian Computer Science Week Mul-
ticonference, 2016, p. 46. doi:10.1145/2843043.2843044.

[15] F. Burgstaller, D. Steiner, M. Schrefl, E. Gringinger, S. Wilson
and S. van der Stricht, AIRM-based, fine-grained semantic fil-
tering of notices to airmen, in: Proccedings of the 15th Inte-
grated Communication, Navigation and Surveillance Confer-
ence (ICNS) Conference, 2015. doi:10.1109/ICNSURV.2015.
7121222.

[16] J.J. Carroll, C. Bizer, P.J. Hayes and P. Stickler, Named graphs,
provenance and trust, in: Proceedings of the 14th International
Conference on World Wide Web (WWW 2005), A. Ellis and T.
Hagino, eds, ACM, 2005, pp. 613–622. doi:10.1145/1060745.
1060835.

[17] Š. Čebirić, F. Goasdoué, H. Kondylakis, D. Kotzinos, I.
Manolescu, G. Troullinou and M. Zneika, Summarizing se-
mantic graphs: A survey, The VLDB Journal 28(3) (2019),
295–327. doi:10.1007/s00778-018-0528-3.

[18] C. Chen, X. Yan, F. Zhu, J. Han and P.S. Yu, Graph OLAP: a
multi-dimensional framework for graph data analysis, Knowl-
edge and Information Systems 21(1) (2009), 41–63. doi:10.
1007/s10115-009-0228-9.

[19] C. Chen, F. Zhu, X. Yan, J. Han, P. Yu and R. Ramakrishnan,
InfoNetOLAP: OLAP and mining of information networks, in:
Link Mining: Models, Algorithms, and Applications, P.S. Yu,

J. Han and C. Faloutsos, eds, Springer, New York, 2010, pp.
411–438. doi:10.1007/978-1-4419-6515-8_16.

[20] D. Colazzo, F. Goasdoué, I. Manolescu and A. Roatiş, RDF
analytics: Lenses over semantic graphs, in: Proceedings of the
23rd International Conference on World Wide Web, C. Chung,
A.Z. Broder, K. Shim and T. Suel, eds, 2014, pp. 467–478.
doi:10.1145/2566486.2567982.

[21] F. Corcoglioniti, M. Rospocher, M. Mostarda and M. Amadori,
Processing billions of RDF triples on a single machine using
streaming and sorting, in: Proceedings of the 30th Annual ACM
Symposium on Applied Computing (SAC 2015), R.L. Wain-
wright, J.M. Corchado, A. Bechini and J. Hong, eds, 2015, pp.
368–375. doi:10.1145/2695664.2695720.

[22] B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P.F. Patel-
Schneider and U. Sattler, OWL 2: The next step for OWL,
Journal of Web Semantics 6(4) (2008), 309–322. doi:10.1016/
j.websem.2008.05.001.

[23] R. Cyganiak, J.J. Carroll and B. McBride, RDF 1.1 Concepts
and Abstract Syntax – W3C Recommendation 25 February
2014, Technical Report, W3C, 2014. https://www.w3.org/TR/
2014/REC-rdf11-concepts-20140225/.

[24] R. Cyganiak and D. Reynolds, The RDF Data Cube
Vocabulary – W3C Recommendation 16 January 2014,
Technical Report, W3C, 2014, https://www.w3.org/TR/2014/
REC-vocab-data-cube-20140116/.

[25] M.M. Eshow, M. Lui and S. Ranjan, Architecture and capabil-
ities of a data warehouse for ATM research, in: 2014 IEEE/A-
IAA 33rd Digital Avionics Systems Conference (DASC), 2014.
doi:10.1109/DASC.2014.6979418.

[26] L. Etcheverry and A.A. Vaisman, QB4OLAP: A vocabulary
for OLAP cubes on the Semantic Web, in: COLD 2012, CEUR
Workshop Proceedings, Vol. 905, CEUR-WS.org, 2012. http://
ceur-ws.org/Vol-905/EtcheverryAndVaisman_COLD2012.
pdf.

[27] L. Etcheverry, A.A. Vaisman and E. Zimányi, Modeling
and querying data warehouses on the Semantic Web using
QB4OLAP, in: Data Warehousing and Knowledge Discovery.
DaWaK 2014, L. Bellatreche and M.K. Mohania, eds, Lecture
Notes in Computer Science, Vol. 8646, Springer, Cham, 2014,
pp. 45–56. doi:10.1007/978-3-319-10160-6_5.

[28] Federal Aviation Administration, Federal NOTAM system air-
port operations scenarios, 2010, Accessed: 20 October 2020.
https://notams.aim.faa.gov/FNSAirportOpsScenarios.pdf.

[29] A. Ghrab, O. Romero, S. Skhiri and E. Zimányi, TopoGraph:
An End-To-End Framework to Build and Analyze Graph
Cubes, Information Systems Frontiers (2020), 1–24. doi:10.
1007/s10796-020-10000-z.

[30] M. Golfarelli, D. Maio and S. Rizzi, The dimensional fact
model: A conceptual model for data warehouses, International
Journal of Cooperative Information Systems 7(2–3) (1998),
215–247. doi:10.1142/S0218843098000118.

[31] J.M. Gomez-Perez, J.Z. Pan, G. Vetere and H. Wu, Enterprise
knowledge graph: An introduction, in: Exploiting Linked Data
and Knowledge Graphs in Large Organisations, J.Z. Pan, G.
Vetere, J.M. Gomez-Perez and H. Wu, eds, Springer, Cham,
2017, pp. 1–14. doi:10.1007/978-3-319-45654-6.

[32] Google, Introducing the Knowledge Graph: Things, not
strings, 2012. https://search.googleblog.com/2012/05/
introducing-knowledge-graph-things-not.html (Accessed: 20
October 2020).

https://doi.org/10.1016/j.artint.2017.12.005
https://doi.org/10.1007/978-3-030-22102-7_5
https://doi.org/10.1007/978-3-030-22102-7_5
https://doi.org/10.1007/978-3-030-34974-5_3
http://ceur-ws.org/Vol-2710/short1.pdf
http://ceur-ws.org/Vol-1014/paper_51.pdf
http://ceur-ws.org/Vol-1014/paper_51.pdf
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18032
https://doi.org/10.1145/2843043.2843044
https://doi.org/10.1109/ICNSURV.2015.7121222
https://doi.org/10.1109/ICNSURV.2015.7121222
https://doi.org/10.1145/1060745.1060835
https://doi.org/10.1145/1060745.1060835
https://doi.org/10.1007/s00778-018-0528-3
https://doi.org/10.1007/s10115-009-0228-9
https://doi.org/10.1007/s10115-009-0228-9
https://doi.org/10.1007/978-1-4419-6515-8_16
https://doi.org/10.1145/2566486.2567982
https://doi.org/10.1145/2695664.2695720
https://doi.org/10.1016/j.websem.2008.05.001
https://doi.org/10.1016/j.websem.2008.05.001
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/
https://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/
https://doi.org/10.1109/DASC.2014.6979418
http://ceur-ws.org/Vol-905/EtcheverryAndVaisman_COLD2012.pdf
http://ceur-ws.org/Vol-905/EtcheverryAndVaisman_COLD2012.pdf
http://ceur-ws.org/Vol-905/EtcheverryAndVaisman_COLD2012.pdf
https://doi.org/10.1007/978-3-319-10160-6_5
https://notams.aim.faa.gov/FNSAirportOpsScenarios.pdf
https://doi.org/10.1007/s10796-020-10000-z
https://doi.org/10.1007/s10796-020-10000-z
https://doi.org/10.1142/S0218843098000118
https://doi.org/10.1007/978-3-319-45654-6
https://search.googleblog.com/2012/05/introducing-knowledge-graph-things-not.html
https://search.googleblog.com/2012/05/introducing-knowledge-graph-things-not.html

C.G. Schuetz et al. / Knowledge Graph OLAP 681

[33] E. Gringinger, R.M. Keller, A. Vennesland, C.G. Schuetz and
B. Neumayr, A comparative study of two complex ontolo-
gies in air traffic management, in: 2019 IEEE/AIAA 38th Dig-
ital Avionics Systems Conference (DASC), 2019. doi:10.1109/
DASC43569.2019.9081790.

[34] E. Gringinger, C. Schuetz, B. Neumayr, M. Schrefl and S.
Wilson, Towards a value-added information layer for SWIM:
The semantic container approach, in: Proceedings of the
18th Integrated Communications Navigation and Surveil-
lance (ICNS) Conference, 2018, pp. 3–113114. doi:10.1109/
ICNSURV.2018.8384870.

[35] A.Y. Halevy, F. Korn, N.F. Noy, C. Olston, N. Polyzotis, S. Roy
and S.E. Whang, Managing Google’s data lake: An overview
of the Goods system, IEEE Data Engineering Bulletin 39(3)
(2016), 5–14. http://sites.computer.org/debull/A16sept/p5.pdf.

[36] P.J. Hayes and P.F. Patel-Schneider, RDF 1.1 Seman-
tics – W3C Recommendation 25 February 2014, Tech-
nical Report, W3C, 2014. https://www.w3.org/TR/2014/
REC-rdf11-mt-20140225/.

[37] M. Hilal, C.G. Schuetz and M. Schrefl, Using superimposed
multidimensional schemas and OLAP patterns for RDF data
analysis, Open Computer Science 8(1) (2018), 18–37. doi:10.
1515/comp-2018-0003.

[38] J. Hoffart, F.M. Suchanek, K. Berberich and G. Weikum,
YAGO2: A spatially and temporally enhanced knowledge base
from Wikipedia, Artificial Intelligence 194 (2013), 28–61.
doi:10.1016/j.artint.2012.06.001.

[39] International Civil Aviation Organization, Annex 15 to the
Convention on International Civil Aviation: Aeronautical in-
formation services, 14 edn, 2013, Accessed: 29 October
2020, https://www.icao.int/NACC/Documents/Meetings/2014/
ECARAIM/REF05-Annex15.pdf.

[40] R.M. Keller, Ontologies for aviation data management, in: Pro-
ceedings of the IEEE/AIAA 35th Digital Avionics Systems Con-
ference (DASC), 2016. doi:10.1109/DASC.2016.7777971.

[41] R.M. Keller, Building a knowledge graph for the air traffic
management community, in: Companion Proceedings of the
2019 World Wide Web Conference, 2019, pp. 700–704. doi:10.
1145/3308560.3317706.

[42] R.M. Keller, The NASA Air Traffic Management Ontology
(atmonto) – Release dated March, 2018, Technical Report, Na-
tional Aeronautics and Space Administration, 2018, Accessed:
20 October 2020. https://data.nasa.gov/ontologies/atmonto/.

[43] R.M. Keller, The NASA Air Traffic Management Ontology
(atmontoPlus) – Release dated March, 2018, Technical Re-
port, National Aeronautics and Space Administration, 2018,
Accessed: 20 October 2020. https://data.nasa.gov/ontologies/
atmontoPlus/.

[44] R.M. Keller, S. Ranjan, M.Y. Wei and M.M. Eshow, Seman-
tic representation and scale-up of integrated air traffic manage-
ment data, in: Proceedings of the International Workshop on
Semantic Big Data, S. Groppe and L. Gruenwald, eds, 2016.
doi:10.1145/2928294.2928296.

[45] O. Khriyenko and V. Terziyan, A framework for context sensi-
tive metadata description, International Journal on Metadata,
Semantics and Ontologies 1(2) (2006), 154–164, ISSN 1744-
2621. doi:10.1504/IJMSO.2006.011011.

[46] S. Klarman, Reasoning with Contexts in Description Logics,
PhD thesis, Free University of Amsterdam, 2013.

[47] M. Krötzsch, Efficient inferencing for OWL EL, in: JELIA
2010, Lecture Notes in Computer Science, Vol. 6341, Springer,
2010, pp. 234–246. doi:10.1007/978-3-642-15675-5_21.

[48] M. Krötzsch, M. Marx, A. Ozaki and V. Thost, Attributed de-
scription logics: Reasoning on knowledge graphs, in: Proceed-
ings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence (IJCAI 2018), J. Lang, ed., 2018, pp.
5309–5313. doi:10.24963/ijcai.2018/743.

[49] M. Krötzsch and G. Weikum, Editorial for special section on
knowledge graphs, Journal of Web Semantics 37–38 (2016),
53–54. doi:10.1016/j.websem.2016.04.002.

[50] R. Lake, D.S. Burggraf, M. Trninić and L. Rae, Geogra-
phy Mark-up Language: Foundation for the Geo-Web, Wiley,
Hoboken, 2004.

[51] S. Lee, S.R. Sukumar, S. Hong and S.-H. Lim, Enabling graph
mining in RDF triplestores using SPARQL for holistic in-situ
graph analysis, Expert Systems with Applications 48 (2016),
9–25. doi:10.1016/j.eswa.2015.11.010.

[52] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas,
P.N. Mendes, S. Hellmann, M. Morsey, P. Van Kleef, S. Auer
and C. Bizer, DBpedia – a large-scale, multilingual knowledge
base extracted from Wikipedia, Semantic Web 6(2) (2015),
167–195. doi:10.3233/SW-140134.

[53] D. Lenat, The Dimensions of Context-Space, Techni-
cal Report, CYCorp, 1998, Accessed: 28 October 2020.
https://www.researchgate.net/publication/243530490_The_
dimensions_of_context-space.

[54] Y. Liu, T. Safavi, A. Dighe and D. Koutra, Graph summariza-
tion methods and applications: A survey, ACM Computing Sur-
veys 51(3) (2018), 62–63. doi:10.1145/3186727.

[55] S. Loudcher, W. Jakawat, E.P.S. Morales and C. Favre, Com-
bining OLAP and information networks for bibliographic data
analysis: A survey, Scientometrics 103(2) (2015), 471–487.
doi:10.1007/s11192-015-1539-0.

[56] A. Matei, K.-M. Chao and N. Godwin, OLAP for multidimen-
sional Semantic Web databases, in: Enabling Real-Time Busi-
ness Intelligence. BIRTE 2014, BIRTE 2013, M. Castellanos,
U. Dayal, T.B. Pedersen and N. Tatbul, eds, Lecture Notes in
Business Information Processing, Vol. 206, Springer, Berlin,
Heidelberg, 2015, pp. 81–96. doi:10.1007/978-3-662-46839-
5_6.

[57] M. Meimaris, G. Papastefanatos, P. Vassiliadis and I. Anag-
nostopoulos, Efficient computation of containment and com-
plementarity in RDF data cubes, in: Proceedings of the 19th
Conference on Extending Database Technology (EDBT 2016),
E. Pitoura, S. Maabout, G. Koutrika, A. Marian, L. Tanca, I.
Manolescu and K. Stefanidis, eds, 2016, pp. 281–292. doi:10.
5441/002/edbt.2016.27.

[58] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fok-
oue and C. Lutz, OWL 2 Web Ontology Language Pro-
files, 2nd edn, 2009, W3C Recommendation 11 December
2012, Technical Report, W3C, https://www.w3.org/TR/2012/
REC-owl2-profiles-20121211/.

[59] V. Nebot and R. Berlanga Llavori, Building data warehouses
with semantic web data, Decision Support Systems 52(4)
(2012), 853–868. doi:10.1016/j.dss.2011.11.009.

[60] T. Neuböck, B. Neumayr, M. Schrefl and C. Schütz, Ontology-
driven business intelligence for comparative data analysis, in:
Business Intelligence. EBISS 2013, E. Zimányi, ed., Lecture
Notes in Business Information Processing, Vol. 172, Springer,
Cham, 2014, pp. 77–120. doi:10.1007/978-3-319-05461-2_3.

https://doi.org/10.1109/DASC43569.2019.9081790
https://doi.org/10.1109/DASC43569.2019.9081790
https://doi.org/10.1109/ICNSURV.2018.8384870
https://doi.org/10.1109/ICNSURV.2018.8384870
http://sites.computer.org/debull/A16sept/p5.pdf
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
https://doi.org/10.1515/comp-2018-0003
https://doi.org/10.1515/comp-2018-0003
https://doi.org/10.1016/j.artint.2012.06.001
https://www.icao.int/NACC/Documents/Meetings/2014/ECARAIM/REF05-Annex15.pdf
https://www.icao.int/NACC/Documents/Meetings/2014/ECARAIM/REF05-Annex15.pdf
https://doi.org/10.1109/DASC.2016.7777971
https://doi.org/10.1145/3308560.3317706
https://doi.org/10.1145/3308560.3317706
https://data.nasa.gov/ontologies/atmonto/
https://data.nasa.gov/ontologies/atmontoPlus/
https://data.nasa.gov/ontologies/atmontoPlus/
https://doi.org/10.1145/2928294.2928296
https://doi.org/10.1504/IJMSO.2006.011011
https://doi.org/10.1007/978-3-642-15675-5_21
https://doi.org/10.24963/ijcai.2018/743
https://doi.org/10.1016/j.websem.2016.04.002
https://doi.org/10.1016/j.eswa.2015.11.010
https://doi.org/10.3233/SW-140134
https://www.researchgate.net/publication/243530490_The_dimensions_of_context-space
https://www.researchgate.net/publication/243530490_The_dimensions_of_context-space
https://doi.org/10.1145/3186727
https://doi.org/10.1007/s11192-015-1539-0
https://doi.org/10.1007/978-3-662-46839-5_6
https://doi.org/10.1007/978-3-662-46839-5_6
https://doi.org/10.5441/002/edbt.2016.27
https://doi.org/10.5441/002/edbt.2016.27
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
https://doi.org/10.1016/j.dss.2011.11.009
https://doi.org/10.1007/978-3-319-05461-2_3

682 C.G. Schuetz et al. / Knowledge Graph OLAP

[61] B. Neumayr, E. Gringinger, C.G. Schuetz, M. Schrefl, S. Wil-
son and A. Vennesland, Semantic data containers for realizing
the full potential of system wide information management, in:
Proceedings of the 36th IEEE/AIAA Digital Avionics Systems
Conference (DASC), 2017, pp. 1–10. doi:10.1109/DASC.2017.
8102002.

[62] S. Niarchakou and J.S. Selva, ATFCM operations manual –
network operations handbook, 21.0 edn, 2017, Accessed: 20
October 2020. http://www.eurocontrol.int/sites/default/files/
content/documents/nm/network-operations/HANDBOOK/
ATFCM-Operations-Manual-next.pdf.

[63] Ontotext, Configuring a repository, http://graphdb.ontotext.
com/documentation/8.9/free/configuring-a-repository.html
(Accessed: 20 October 2020).

[64] H. Paulheim, Knowledge graph refinement: A survey of ap-
proaches and evaluation methods, Semantic Web 8(3) (2017),
489–508. doi:10.3233/SW-160218.

[65] V. Penela, G. Álvaro, C. Ruiz, C. Córdoba, F. Carbone, M.
Castagnone, J.M. Gómez-Pérez and J. Contreras, miKrow: Se-
mantic intra-enterprise micro-knowledge management system,
in: The Semanic Web: Research and Applications. ESWC 2011,
G. Antoniou, M. Grobelnik, E. Simperl, B. Parsia, D. Plex-
ousakis, P. De Leenheer and J. Pan, eds, Lecture Notes in Com-
puter Science, Vol. 9981, Springer, Berlin, Heidelberg, 2011,
pp. 154–168. doi:10.1007/978-3-642-21064-8_11.

[66] R. Qian, Understand your world with Bing, 2013,
https://blogs.bing.com/search/2013/03/21/understand-your-
world-with-bing/ (Accessed: 20 October 2020).

[67] P.O. Queiroz-Sousa and A.C. Salgado, A review on OLAP
technologies applied to information networks, ACM Transac-
tions on Knowledge Discovery from Data 14(1) (2019), 8.
doi:10.1145/3370912.

[68] T. Ruan, L. Xue, H. Wang, F. Hu, L. Zhao and J. Ding, Building
and exploring an enterprise knowledge graph for investment
analysis, in: The Semantic Web – ISWC 2016. ISWC 2016, P.
Groth, E. Simperl, A. Gray, M. Sabou, M. Krötzsch, F. Lecue,
F. Flöck and Y. Gil, eds, Lecture Notes in Computer Science,
Vol. 9982, Springer, Cham, 2016, pp. 418–436. doi:10.1007/
978-3-319-46547-0_35.

[69] P. Russom, Data Lakes: Purposes, Practices, Patterns, and
Platforms, 2017, Accessed: 20 October 2020, https://tdwi.org/
research/2017/03/best-practices-report-data-lakes.

[70] C.G. Schuetz, L. Bozzato, B. Neumayr, M. Schrefl and L. Ser-
afini, Knowledge Graph OLAP: Appendix, Technical Report,
2020. http://kg-olap.dke.uni-linz.ac.at/appendix.

[71] C.G. Schuetz, B. Neumayr, M. Schrefl, E. Gringinger, A. Ven-
nesland and S. Wilson, The case for contextualized knowl-
edge graphs in air traffic management, in: Joint Proceed-
ings of the International Workshops on Contextualized Knowl-
edge Graphs, and Semantic Statistics, S. Capadisli, F. Cotton,
J.M. Giménez-García, A. Haller, E. Kalampokis, V. Nguyen,
A.P. Sheth and R. Troncy, eds, CEUR Workshop Proceedings,
Vol. 2317, CEUR-WS.org, 2018. http://ceur-ws.org/Vol-2317/
article-10.pdf.

[72] C.G. Schuetz, B. Neumayr, M. Schrefl, E. Gringinger and S.
Wilson, Semantics-based summarization of ATM data to man-
age information overload in pilot briefings, in: Proceedings of
the 31st Congress of the International Council of the Aeronau-
tical Sciences, 2018. http://www.icas.org/ICAS_ARCHIVE/
ICAS2018/data/papers/ICAS2018_0763_paper.pdf.

[73] C.G. Schuetz, B. Neumayr, M. Schrefl, E. Gringinger and S.
Wilson, Semantics-based summarisation of ATM information:
Managing information overload in pilot briefings using se-
mantic data containers, The Aeronautical Journal 123(1268)
(2019), 1639–1665. doi:10.1017/aer.2019.74.

[74] C.G. Schütz, B. Neumayr and M. Schrefl, Business model on-
tologies in OLAP cubes, in: CAiSE 2013, C. Salinesi, M.C.
Norrie and O. Pastor, eds, Lecture Notes in Computer Science,
Vol. 7908, Springer, 2013, pp. 514–529. doi:10.1007/978-3-
642-38709-8.

[75] L. Serafini and M. Homola, Contextualized knowledge repos-
itories for the Semantic Web, Journal of Web Semantics 12
(2012), 64–87. doi:10.1016/j.websem.2011.12.003.

[76] C. Shi, Y. Li, J. Zhang, Y. Sun and P.S. Yu, A survey of hetero-
geneous information network analysis, IEEE Transactions on
Knowledge and Data Engineering 29(1) (2017), 17–37. doi:10.
1109/TKDE.2016.2598561.

[77] C. Shi and P.S. Yu, Schema-rich heterogeneous network min-
ing, in: Heterogeneous Information Network Analysis and Ap-
plications, Springer, Cham, 2017, pp. 181–199. doi:10.1007/
978-3-319-56212-4_7.

[78] Skybrary, Situational Awareness, https://www.skybrary.aero/
index.php/Situational_Awareness (Accessed: 20 October
2020).

[79] D. Steiner, I. Kovacic, F. Burgstaller, M. Schrefl, T. Friesacher
and E. Gringinger, Semantic enrichment of DNOTAMs to re-
duce information overload in pilot briefings, in: Proceedings of
the 16th Integrated Communications Navigation and Surveil-
lance (ICNS) Conference, 2016. doi:10.1109/ICNSURV.2016.
7486359.

[80] U. Straccia, N. Lopes, G. Lukácsy and A. Polleres, A general
framework for representing and reasoning with annotated Se-
mantic Web data, in: Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI 2010), M. Fox and
D. Poole, eds, 2010, http://www.aaai.org/ocs/index.php/AAAI/
AAAI10/paper/view/1590.

[81] W. Tunstall-Pedoe, True Knowledge: Open-domain question
answering using structured knowledge and inference, AI Mag-
azine 31(3) (2010), 80–92. doi:10.1609/aimag.v31i3.2298.

[82] O. Udrea, D. Recupero and V.S. Subrahmanian, Annotated
RDF, ACM Transactions on Computational Logic 11(2)
(2010), 10–11041, ISSN 1529-3785. doi:10.1145/1656242.
1656245.

[83] A. Vaisman and E. Zimányi, Data Warehouse Systems – De-
sign and Implementation, Springer, Berlin Heidelberg, 2014.
doi:10.1007/978-3-642-54655-6.

[84] J. Varga, L. Etcheverry, A.A. Vaisman, O. Romero, T.B. Ped-
ersen and C. Thomsen, QB2OLAP: Enabling OLAP on statis-
tical linked open data, in: Proceedings of the 32nd IEEE Inter-
national Conference on Data Engineering (ICDE 2016), 2016,
pp. 1346–1349. doi:10.1109/ICDE.2016.7498341.

[85] A. Vennesland, R.M. Keller, C.G. Schuetz, E. Gringinger
and B. Neumayr, Matching ontologies for air traffic manage-
ment: A comparison and reference alignment of the AIRM
and NASA ATM ontologies, in: Proceedings of the 14th In-
ternational Workshop on Ontology Matching, P. Shvaiko, J.
Euzenat, E. Jiménez-Ruiz, O. Hassanzadeh and C. Trojahn,
eds, CEUR Workshop Proceedings, Vol. 2536, CEUR-WS.org,
2019. http://ceur-ws.org/Vol-2536/om2019_LTpaper1.pdf.

https://doi.org/10.1109/DASC.2017.8102002
https://doi.org/10.1109/DASC.2017.8102002
http://www.eurocontrol.int/sites/default/files/content/documents/nm/network-operations/HANDBOOK/ATFCM-Operations-Manual-next.pdf
http://www.eurocontrol.int/sites/default/files/content/documents/nm/network-operations/HANDBOOK/ATFCM-Operations-Manual-next.pdf
http://www.eurocontrol.int/sites/default/files/content/documents/nm/network-operations/HANDBOOK/ATFCM-Operations-Manual-next.pdf
http://graphdb.ontotext.com/documentation/8.9/free/configuring-a-repository.html
http://graphdb.ontotext.com/documentation/8.9/free/configuring-a-repository.html
https://doi.org/10.3233/SW-160218
https://doi.org/10.1007/978-3-642-21064-8_11
https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
https://doi.org/10.1145/3370912
https://doi.org/10.1007/978-3-319-46547-0_35
https://doi.org/10.1007/978-3-319-46547-0_35
https://tdwi.org/research/2017/03/best-practices-report-data-lakes
https://tdwi.org/research/2017/03/best-practices-report-data-lakes
http://kg-olap.dke.uni-linz.ac.at/appendix
http://ceur-ws.org/Vol-2317/article-10.pdf
http://ceur-ws.org/Vol-2317/article-10.pdf
http://www.icas.org/ICAS_ARCHIVE/ICAS2018/data/papers/ICAS2018_0763_paper.pdf
http://www.icas.org/ICAS_ARCHIVE/ICAS2018/data/papers/ICAS2018_0763_paper.pdf
https://doi.org/10.1017/aer.2019.74
https://doi.org/10.1007/978-3-642-38709-8
https://doi.org/10.1007/978-3-642-38709-8
https://doi.org/10.1016/j.websem.2011.12.003
https://doi.org/10.1109/TKDE.2016.2598561
https://doi.org/10.1109/TKDE.2016.2598561
https://doi.org/10.1007/978-3-319-56212-4_7
https://doi.org/10.1007/978-3-319-56212-4_7
https://www.skybrary.aero/index.php/Situational_Awareness
https://www.skybrary.aero/index.php/Situational_Awareness
https://doi.org/10.1109/ICNSURV.2016.7486359
https://doi.org/10.1109/ICNSURV.2016.7486359
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1590
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1590
https://doi.org/10.1609/aimag.v31i3.2298
https://doi.org/10.1145/1656242.1656245
https://doi.org/10.1145/1656242.1656245
https://doi.org/10.1007/978-3-642-54655-6
https://doi.org/10.1109/ICDE.2016.7498341
http://ceur-ws.org/Vol-2536/om2019_LTpaper1.pdf

C.G. Schuetz et al. / Knowledge Graph OLAP 683

[86] A. Vennesland, B. Neumayr, C. Schuetz, A. Savulov, S. Wil-
son, E. Gringinger and J. Gorman, AIRM-O – ATM Infor-
mation Reference Model Ontology, 2017, https://w3id.org/
airm-o/ontology.

[87] D. Vrandečić and M. Krötzsch, Wikidata: A free collaborative
knowledgebase, Communications of the ACM 57(10) (2014),
78–85. doi:10.1145/2629489.

[88] P. Wang, B. Wu, B. Wang and T.S.M.H. Graph, Cube: A novel
framework for large scale multi-dimensional network analy-
sis, in: Proceedings of the 2015 IEEE International Conference
on Data Science and Advanced Analytics (DSAA 2015), 2015.
doi:10.1109/DSAA.2015.7344826.

[89] Z. Wang, Q. Fan, H. Wang, K. Tan, D. Agrawal and A. El Ab-
badi, Pagrol: Parallel graph OLAP over large-scale attributed
graphs, in: Proceedings of the IEEE 30th International Con-
ference on Data Engineering, I.F. Cruz, E. Ferrari, Y. Tao, E.
Bertino and G. Trajcevski, eds, 2014, pp. 496–507. doi:10.
1109/ICDE.2014.6816676.

[90] H. Wu, R. Denaux, P. Alexopoulos, Y. Ren and J.Z. Pan, Un-
derstanding knowledge graphs, in: Exploiting Linked Data and

Knowledge Graphs in Large Organisations, J.Z. Pan, G. Vet-
ere, J.M. Gomez-Perez and H. Wu, eds, Springer, Cham, 2017,
pp. 147–180. doi:10.1007/978-3-319-45654-6_6.

[91] P. Zhao, X. Li, D. Xin and J. Han, Graph cube: On warehous-
ing and OLAP multidimensional networks, in: Proceedings of
the 2011 ACM SIGMOD International Conference on Manage-
ment of Data, T.K. Sellis, R.J. Miller, A. Kementsietsidis and
Y. Velegrakis, eds, 2011, pp. 853–864. doi:10.1145/1989323.
1989413.

[92] A. Zimmermann and J.M. Giménez-García, Contextualizing
DL axioms: Formalization, a new approach, and its properties,
in: Joint Proceedings of the Web Stream Processing Workshop
(WSP 2017) and the 2nd International Workshop on Ontology
Modularity, Contextuality, and Evolution (WOMoCoE 2017),
D. Dell’Aglio, D. Anicic, P.M. Barnaghi, E.D. Valle, D.L.
McGuinness, L. Bozzato, T. Eiter, M. Homola and D. Porello,
eds, CEUR Workshop Proceedings, Vol. 1936, CEUR-WS.org,
2017, pp. 74–85, http://ceur-ws.org/Vol-1936/paper-07.pdf.

https://w3id.org/airm-o/ontology
https://w3id.org/airm-o/ontology
https://doi.org/10.1145/2629489
https://doi.org/10.1109/DSAA.2015.7344826
https://doi.org/10.1109/ICDE.2014.6816676
https://doi.org/10.1109/ICDE.2014.6816676
https://doi.org/10.1007/978-3-319-45654-6_6
https://doi.org/10.1145/1989323.1989413
https://doi.org/10.1145/1989323.1989413
http://ceur-ws.org/Vol-1936/paper-07.pdf

	Introduction
	Use cases in air traffic management
	Background
	(Contextualized) ATM knowledge graphs
	Use case 1: Pilot briefings
	Use case 2: Post-operational analysis
	Functional requirements

	Multidimensional model
	KG-OLAP cube model
	Formalization
	Basic definitions
	Extending the CKR framework
	Reasoning in KG-OLAP cubes

	Extensions

	Query operations
	Contextual operations
	Slice and dice
	Merge

	Graph operations
	Abstraction
	Pivoting
	Reification

	Proof-of-concept prototype
	Design and implementation
	Performance evaluation
	Discussion

	Related work
	Contextualized knowledge graphs
	OLAP and semantic web technologies
	OLAP and information networks
	(Knowledge) graph summarization

	Conclusion
	References

