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Abstract. Both keys and their generalisation, link keys, may be used to perform data interlinking, i.e. finding identical resources
in different RDF datasets. However, the precise relationship between keys and link keys has not been fully determined yet.
A common formal framework encompassing both keys and link keys is necessary to ensure the correctness of data interlinking
tools based on them, and to determine their scope and possible overlapping. In this paper, we provide a semantics for keys
and link keys within description logics. We determine under which conditions they are legitimate to generate links. We provide
conditions under which link keys are logically equivalent to keys. In particular, we show that data interlinking with keys and
ontology alignments can be reduced to data interlinking with link keys, but not the other way around.
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1. Introduction

There are large amounts of RDF data available on
the Web, in the form of knowledge graphs or as part
of linked open data. Interoperability between RDF
datasets largely relies on links between resources from
different RDF datasets and especially links asserting
the identity of resources bearing different IRIs, spec-
ified using the owl:sameAs property [20]. Since RDF
datasets tend to be large, the automatic discovery of
owl:sameAs links between RDF datasets is an impor-
tant and challenging task. This task is usually referred
to as data interlinking and different algorithms and
tools for data interlinking have been proposed [18,25].

Among the state-of-the-art approaches to data in-
terlinking, some are based on finding keys [2,9,17,31]
or link keys [7,8] across RDF datasets. Both keys and
link keys are devices characterising what makes two
resources to be identical. Hence, it is natural to ex-
ploit them for discovering links across datasets. Even
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though both techniques have been proven to be effec-
tive in data interlinking scenarios, their relationship
has not been formally established yet.

The objective of this paper is to clarify the relation-
ship between keys and link keys. For this, we first pro-
vide the semantics of (RDF) keys and link keys. More
specifically, we formalise how a key, in its different
versions, can be combined with an alignment between
ontologies for data interlinking. Then, we define the
semantics of six kinds of link keys – weak, plain and
strong link keys, and their in- and eq-variants – and
we logically ground the usage of link keys for data in-
terlinking. Finally, we establish the conditions under
which link keys are equivalent to keys and show that
data interlinking with keys and ontology alignments
can be reduced to data interlinking with link keys, but
not the other way around.

The contribution of this paper focuses on the spe-
cific features of keys and link keys. It does it, to the
extent possible, independently from the underlying on-
tological schema and the logical constructors used for
describing or constraining class and property expres-
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sions. This is the reason why computational issues are
left for further interesting research.

In the remainder, Section 2 presents the context and
related work of the paper. Section 3 introduces the no-
tations used throughout the paper. Section 4 recalls two
different semantics of keys and Section 5 logically jus-
tifies their use for data interlinking. Section 6 defines
link keys. Section 7 logically grounds the use of link
keys for data interlinking. The relations between keys
and link keys are established in Section 8, both with
respect to their logical entailment and the links they
produce. Section 9 concludes the paper and discusses
future work.

All definitions are illustrated with concrete exam-
ples taken from real-world datasets.

2. Context and related work

Data interlinking refers to the process of finding
pairs of IRIs of different RDF datasets representing
the same entity [18,25]. The result of this process is a
set of same-as links to be specified by the owl:sameAs
property. To decide whether two IRIs represent the
same entity or not is mainly based on comparing their
values for selected properties. Data interlinking is rem-
iniscent of the task of record linkage in databases
[14], but it is applied to RDF data described with
RDFS/OWL ontologies.

Link discovery platforms such as SILK [22,33] and
LIMES [26] enable users to process link specifications
to generate links. Link specifications express the prop-
erties to be used for generating owl:sameAs links be-
tween two RDF datasets. They also specify the similar-
ity measures to be used for comparing datatype prop-
erty values, the aggregation functions for combining
similarity values, and the similarity thresholds beyond
which two values are considered equal. Link specifi-
cations may be directly set by users or they may be
built (semi-)automatically, for example, using machine
learning techniques [27,29].

A key is a set of (datatype or object) properties
that uniquely identify the instances of a class within a
dataset. For example,

{creator, title} key Book

states that, if two instances of the class Book match on
values for the properties creator and title then the two
instances are the same.

Key-based approaches to data interlinking first ex-
tract key candidates from RDF datasets and then se-
lect the most accurate candidates according to differ-
ent quality measures [2,9,17,31]. When the data of two
RDF datasets are described using the same ontology,
then keys, if available, can be directly used for inter-
linking the datasets, but if the data are described us-
ing different ontologies, then they need to be combined
with ontology alignments [16] relating the properties
and classes of the data. For example, the previous
key could be combined with the alignment correspon-
dences creator ≡ auteur, title ≡ titre and Book ≡ Livre
to interlink the books of English and French libraries.

Keys can be used to build link specifications or can
be translated into logical rules to perform data inter-
linking. The latter allows to take advantage of logical
reasoning [3,4,21]. Key extraction algorithms discover
either S-keys [2,17,31] or F-keys [9,30]. There are two
kinds of keys since RDF properties are multivalued,
contrary to relational attributes, which are monoval-
ued. If a set of properties form an S-key for a class,
it is enough that two instances of the class share one
value for each of the properties of the key to infer that
they are the same (e.g. email property for the Assistant-
Professor class). But if the properties form an F-key
then the instances must share all values (e.g. hasPoem
property for the PoemAnthology class because two dif-
ferent poem anthologies may have a poem in common
but will unlikely contain exactly the same poems).

When datasets are described with different ontolo-
gies, alignments must be used, either during the key
extraction process or later when performing data inter-
linking. For example, the approach proposed in [31]
searches in a source dataset for S-keys over classes
which are equivalent to classes in a target dataset and
then selects among the discovered S-keys those com-
posed of properties which are equivalent to properties
of the target dataset.

Link keys generalise the combination of keys and
ontology alignments for data interlinking [7,16]. A link
key is a set of pairs of properties that uniquely identify
the instances of two classes of two RDF datasets. For
example,

{〈creator, auteur〉, 〈title, titre〉} linkkey 〈Book, Livre〉

states that, if two instances of the classes Book and
Livre, respectively, match on values for the properties
creator and auteur, and for the properties title and titre,
then they are the same instance. Unlike the previous
key, this link key could be directly used to interlink the
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books of English and French libraries without the need
of any ontology alignment.

Unlike [31], the key-based approaches to data inter-
linking proposed in [2,17] aim to discover S-keys that
hold not only in the source dataset, but in both source
and target datasets. It is assumed that the datasets are
described using the same vocabulary, possibly result-
ing from merging different ontologies with an align-
ment, again composed of equivalence correspondences
only. Link keys do not require the properties that com-
pose them to be equal or semantically aligned. In ad-
dition, as we will show in this paper, the kind of keys
discovered in [2,17] correspond to strong link keys, al-
though data interlinking may be possible with weak
link keys (the kind of link keys considered in [7,16])
when strong link keys do not exist.

The formal semantics of S-keys and F-keys have
been given in [6] using rules, but the combination of S-
keys and F-keys with ontology alignments for data in-
terlinking is not formally addressed. In this paper, we
address it using description logics.

Different approaches to incorporate keys and func-
tional dependencies to description logics have been
proposed. Keys may be treated as a new concept con-
structor [11,32] or as global constraints in a separate
key box (KBox) [12,13,23,24], which is the option that
we follow in this paper. The goal of these approaches
is to study the decidability of reasoning with keys or
functional dependencies in specific description logics.
Here, we do not address automated reasoning with link
keys. Instead, we use the formalism of description log-
ics to provide the semantics of keys and link keys. This
allows us to ground their legitimacy in generating links
across RDF datasets. In addition, it gives us the means
to compare keys and link keys on the basis of their en-
tailments and the links they generate.

3. Preliminaries

This section introduces minimal notions and nota-
tions used throughout the entire paper. We assume that
the reader is familiar with the basics of description log-
ics (DLs) [28].

In this paper, ontologies will be the combination of
a schema and a dataset, and they will be modelled as
DL knowledge bases.

Definition 1 (Ontology). An ontology is a knowledge
base O = 〈S,D〉 made up of a terminological box
(TBox) S and an assertional box (ABox) D. S and D
will be referred to as the schema and dataset of O.

Thus, a schema is modelled as a set of termino-
logical axioms, i.e. a set of subsumption, equivalence
and disjointness axioms between classes and proper-
ties: C1 RC2 and p1 Rp2 with R ∈ {�,�,≡,⊥}.
A dataset is a set of assertions about individuals, i.e. a
set of class and property assertions and equality state-
ments: C(a), p(a1, a2) and a1 ≈ a2.1 Classes, proper-
ties and individuals (C1, p1, a1, . . .) define the vocab-
ulary of an ontology. Notice that we make no restric-
tion on the language, i.e. the classes and properties of
ontologies may be built with any DL constructor. The
semantics of ontologies is inherited from the model-
theoretic semantics of knowledge bases using DL in-
terpretations I = (�I , ·I).

Alignments relate entities – classes, properties, in-
dividuals – that belong to different ontologies [16].
Alignment relations between classes and properties are
subsumption, equivalence and disjointness. In the case
of individuals, they are related by equality. Alignment
statements between classes and properties are referred
to as correspondences, whereas equality statements in
alignments will be called links.

We will also model alignments as knowledge bases.
The difference with ontologies is that, in the case of
an alignment, the TBox and ABox use two ontologies’
vocabularies. In addition, the ABox contains equality
statements (links) only.

Definition 2 (Alignment). Let O = 〈S,D〉 and O′ =
〈S ′,D′〉 be two ontologies. An alignment between O
and O′ is a knowledge base AO,O′ = 〈CO,O′ ,LO,O′ 〉
where CO,O′ is composed of class and property axioms
C RD and pR q with R ∈ {�,�,≡,⊥}, C and p

are class and property expressions in O’s vocabulary
and D and q are class and property expressions in O′’s
vocabulary, and LO,O′ is composed of equality state-
ments a ≈ b where a is an individual name in O’s vo-
cabulary and b an individual name in O′’s vocabulary.
The axioms in CO,O′ will be referred to as correspon-
dences and the axioms in LO,O′ as links. If no confu-
sion arises, AO,O′ , CO,O′ and LO,O′ will be replaced
by A, C and L.

Different semantics for alignments may be found in
the literature [10,34]. Here, though, we will consider
the axioms of two ontologies and the correspondences
and links of an alignment between them to be part of
one single global ontology. Without loss of generality,

1Notice that “≈” is a symbol of the language, which is interpreted
as equality. More specifically, for any DL interpretation I, I |= a ≈
b iff aI = bI .
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we can assume that the vocabularies of O and O′ are
disjoint.

In what follows, given an ontology O, we will use
the letters C and p (possibly with subscripts or su-
perscripts) to denote class and property expressions
of O, respectively, and, in case another ontology O′
is considered, we will use D and q for O′. In this
way, C1 RC2 and p1 Rp2 will be used as general ax-
ioms in O, while C RD and pR q as general cor-
respondences in an alignment A between O and O′
(R ∈ {�,�,≡,⊥}).

4. Two kinds of keys in description logics

In order to compare keys and link keys, we start by
reformulating the semantics of keys [6] as description
logic axioms. We distinguish between several types of
keys which apply in this context. Instead of S-keys and
F-keys, we will speak of in-keys and eq-keys, respec-
tively. The prefixes in- and eq- are shortened forms of
intersection and equality. These notations are related
to the conditions (1) and (2) in Definitions 3 and 4.

4.1. Semantics of keys

In what follows, given a DL interpretation I =
(�I , ·I), a property p, and a domain individual δ ∈
�I , pI(δ) will denote the set of individuals related to
δ through p, i.e. pI(δ) = {η ∈ �I : (δ, η) ∈ pI}.
Definition 3 (in-key). An in-key assertion, or simply
an in-key, has the form

({p1, . . . , pk} keyin C
)

where p1, . . . , pk are properties and C is a class.
An interpretation I satisfies ({p1, . . . , pk} keyin C)

if, for any δ, δ′ ∈ CI ,

pI
1 (δ) ∩ pI

1

(
δ′) �= ∅, . . . , pI

k (δ) ∩ pI
k

(
δ′) �= ∅

implies δ = δ′. (1)

Definition 4 (eq-key). An eq-key assertion, or simply
an eq-key, has the form

({p1, . . . , pk} keyeq C
)

where p1, . . . , pk are properties and C is a class.

An interpretation I satisfies ({p1, . . . , pk} keyeq C)

if, for any δ, δ′ ∈ CI ,2

pI
1 (δ) = pI

1

(
δ′) �= ∅, . . . , pI

k (δ) = pI
k

(
δ′) �= ∅

implies δ = δ′. (2)

According to Definition 3, if two instances of a class
share at least one value for each of the properties of an
in-key for the class, then we can infer that they are the
same instance. This is formalised in Proposition 1.

Proposition 1. The following holds:

C(a),
{
pi(a, ci)

}k

i=1,

C(b),
{
pi(b, di)

}k

i=1,
({p1, . . . , pk} keyin C

)
,

{ci ≈ di}ki=1

|= a ≈ b (3)

Proof. This is a direct consequence of Definition 3: for
any interpretation I satisfying all the antecedent ax-
ioms of the entailment, aI and bI will belong to CI

and will share one value for each of the properties of
the in-key, hence aI will be equal to bI .

Similarly, according to Definition 4, given an eq-key
for a class and two instances of the class, we can infer
that they are the same instance if they share all values
(and at least one) for each of the properties of the key.
However, we need to be sure that all known values in-
deed are all values that the instances may have. This is
stated in Proposition 2.

Proposition 2. The following holds:

C(a),
{
pi

(
a, c1

i

)
, . . . , pi

(
a, c

ri
i

)}k

i=1,
{{a} � ∀pi.

{
c1
i , . . . , c

ri
i

}}k

i=1,

C(b),
{
pi

(
b, d1

i

)
, . . . , pi

(
b, d

ri
i

)}k

i=1,
{{b} � ∀pi.

{
d1
i , . . . , d

ri
i

}}k

i=1,
({p1, . . . , pk} keyeq C

)
,

{
c1
i ≈ d1

i , . . . , c
ri
i ≈ d

ri
i

}k

i=1

|= a ≈ b (4)

Proof. Let I be an interpretation that satisfies all the
antecedent axioms of the above entailment. Let us

2By pI
i

(δ) = pI
i

(δ′) �= ∅ we mean pI
i

(δ) = pI
i

(δ′) and

pI
i

(δ′) �= ∅, which implies pI
i

(δ) �= ∅ (i = 1, . . . , k).
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prove that I satisfies a ≈ b too. Since I |= pi(a, cl
i)

then (cl
i)
I ∈ pI

i (aI) for i = 1, . . . , k and l =
1, . . . , ri . Also, since I |= {a} � ∀pi.{c1

i , . . . , c
ri
i }

then pI
i (aI) ⊆ {(cl

i)
I}ril=1. Therefore, pI

i (aI) =
{(cl

i)
I}ril=1. Similarly, qIi (bI) = {(dl

i )
I}ril=1. Now,

since I |= cl
i ≈ dl

i then (cl
i)
I = (dl

i )
I , which im-

plies that pI
i (aI) = qIi (bI). Furthermore, pI

i (aI) =
qIi (bI) �= ∅ since ri � 1. Additionally, since I |=
C(a) and I |= C(b) then aI , bI ∈ CI . Finally, since
I |= ({p1, . . . , pk} keyeq C), and we have aI , bI ∈
CI and pI

i (aI) = qIi (bI) �= ∅ for i = 1 . . . , k, then
we can infer that aI = bI , i.e. I |= a ≈ b.

Thus, unlike in-keys, eq-keys require a local closed
world assumption – represented in Proposition 2
by the axioms {a} � ∀pi.{c1

i , . . . , c
ri
i } and {b} �

∀qi.{d1
i , . . . , d

ri
i } (i = 1, . . . , k) – which, even though

it is generally advised to avoid in the context of the
semantic web and linked open data, it is also expected
to be made in certain controlled scenarios.

Notice that Proposition 2 requires the logic to be
able to express nominals and value restrictions. All our
results are agnostic of the used logical language but
those referring to the use of eq-keys and eq-link keys
for data interlinking.

The semantics of owl:hasKey in OWL2 corresponds
to the semantics of in-keys but restricted to being ap-
plied to named instances only (thus excluding blank
nodes).

Although in-keys and eq-keys have been introduced
separately, it is also possible to consider a hybrid no-
tion of key.

Definition 5 (Hybrid key). A key assertion, or simply
a key, has the form

({p1, . . . , pk}{q1, . . . , ql} key C
)

where p1, . . . , pk and q1, . . . , ql are properties and C

is a class.
An interpretation I satisfies the key ({p1, . . . , pk}

{q1, . . . , ql} key C) if, for any δ, δ′ ∈ CI ,

pI
1 (δ) ∩ pI

1

(
δ′) �= ∅, . . . , pI

k (δ) ∩ pI
k

(
δ′) �= ∅,

qI1 (δ) = qI1
(
δ′) �= ∅, . . . , qIl (δ) = qIl

(
δ′) �= ∅

implies δ = δ′.

From here on, an ontology O will be a triple O =
〈S,D,K〉 which, besides the schema S (TBox) and

dataset D (ABox), has as a third component a set of
keys K (KBox).

Example 1 below provides examples of in-keys and
eq-keys in real RDF datasets.

Example 1 (Insee). Insee is the French institution in
charge of collecting and publishing information about
French economy and society. Part of the Insee data is
available in the form of RDF triples and can be down-
loaded as an RDF dump or queried through a SPARQL
endpoint.3 Insee ontologies are available too. We only
consider the Insee data related to administrative dis-
tricts (COG dataset).

The Insee vocabulary comprises four class names
for describing the main administrative divisions in
France: Commune, Arrondissement, Département and
Région. Among the properties of these classes, we find
the datatype property nom (used to specify the name
of an administrative division), the object property sub-
divisionDe (to specify that an administrative division is
subdivision of another one, e.g. that the commune of
Grenoble is a subdivision of the Isère department) and
the datatype property codeINSEE (which is an identi-
fier for territories, including administrative divisions,
and can be thought of as the key in the Insee database).
The property subdivisionDe is declared to be transitive
in the Insee ontology. This fragment of the Insee on-
tology is depicted in Fig. 2.

No owl:hasKey axiom is declared in the Insee on-
tology. Nevertheless, we have checked the in-key and
eq-key conditions for the properties and classes men-
tioned before. We have done so in the RDF graph of
Insee extended with the transitivity of subdivisionDe.
This generalises to the fully inferred graph as no other
axiom of the Insee ontology may have an impact on
the satisfiability of the examined key axioms.

As expected, the codeINSEE property is an in-key
for Commune, Arrondissement, Département and Ré-
gion. Formally:

I∗
Insee |= ({codeINSEE} keyin Commune

)

I∗
Insee |= ({codeINSEE} keyin Arrondissement

)

I∗
Insee |= ({codeINSEE} keyin Département

)

I∗
Insee |= ({codeINSEE} keyin Région

)

3http://rdf.insee.fr

http://rdf.insee.fr
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where I∗
Insee is the natural DL interpretation of the in-

ferred Insee graph.4

Concerning the property nom, it turns out to be an
in-key for Département and Région, but neither for
Commune nor Arrondissement. Indeed, there exist dif-
ferent communes (and arrondissements) sharing the
same name. For instance, Bully may refer to three dif-
ferent communes: Bully in the department of Loire,
Bully in Rhône and Bully in Seine-Maritime. How-
ever, there is no pair of communes of the same de-
partment sharing the same name. In fact, nom and
subdivisionDe, when put together, form a key for the
class Commune. The property subdivisionDe, though,
must be treated in the sense of eq-keys. This is be-
cause, since subdivisionDe is a transitive property, all
French communes share (at least) a value for subdivi-
sionDe, namely, the Insee entity representing the coun-
try France. The same holds for the class Arrondisse-
ment. Formally (note that we use hybrid keys):

I∗
Insee |= ({nom} keyin Département

)

I∗
Insee |= ({nom} keyin Région

)

I∗
Insee |= ({nom}{subdivisionDe} key Arrondissement

)

I∗
Insee |= ({nom}{subdivisionDe} key Commune

)

From here on, we will use the shortcuts Reg, Dep,
Arr and Com for the corresponding Insee classes.

4.2. Relations between the different types of keys

Compared to the semantics of S-keys and F-keys de-
fined in [6], the semantics of in-keys corresponds di-
rectly to the semantics of S-keys. This is not the case
for eq-keys and F-keys. Every eq-key is an F-key but
not the other way around. The equivalence would hold
if condition (2) in Definition 4 were replaced by

pI
1 (δ) = pI

1

(
δ′), . . . , pI

k (δ) = pI
k

(
δ′)

implies δ = δ′.

The prerequisite that the sets of property values
must be non-empty enables to consider in-keys as a
subset of eq-keys (which does not hold between S-keys
and F-keys). This result is stated in Proposition 3.

4More specifically, this is the interpretation whose domain is
made up of all IRIs and literals of the Insee graph (there are no blank
nodes), it interprets domain individuals as themselves, and classes
and properties as their extensions in the graph.

Proposition 3. The following holds:

({p1, . . . , pk} keyin C
) |= ({p1, . . . , pk} keyeq C

)

Proof. Let I be an interpretation such that I |=
({p1, . . . , pk} keyin C). We have to prove that I |=
({p1, . . . , pk} keyeq C). Let δ, δ′ ∈ CI such that

pI
i (δ) = pI

i (δ′) �= ∅ (i = 1, . . . , k). We have to prove
that δ = δ′. Since pI

i (δ) and pI
i (δ′) are equal and

non-empty, then pI
i (δ) ∩ pI

i (δ′) �= ∅ (i = 1, . . . , k).
So we have δ, δ′ ∈ CI and pI

i (δ) ∩ pI
i (δ′) �= ∅

(i = 1, . . . , k). Since I |= ({p1, . . . , pk} keyin C),
then δ = δ′.

The converse of Proposition 3 is not true, i.e.
there are eq-keys that are not in-keys. Indeed, con-
sider the interpretation defined by (aI , cI), (aI , dI),

(bI , cI) ∈ pI and aI �= bI , cI �= dI . Then
I |= (p keyeq �) whereas I �|= (p keyin �). The con-
verse is true if the key is made up of functional proper-
ties, as stated in Proposition 4. Notice that it is possi-
ble to define a functional property as a property p such
that for any interpretation I = (�I , ·I) and for any
δ ∈ �I then |pI(δ)| � 1. Indeed, p is functional if
and only for any interpretation I = (�I , ·I) and for
any δ ∈ �I , there exists one or no element related to
δ via pI , which is equivalent to say that |pI(δ)| � 1.

Proposition 4. If p1, . . . , pk are functional, then

({p1, . . . , pk} keyeq C
) |= ({p1, . . . , pk} keyin C

)

Proof. Let I be an interpretation such that I |=
({p1, . . . , pk} keyeq C). Let δ, δ′ ∈ CI such that

pI
i (δ) ∩ pI

i (δ′) �= ∅ (i = 1, . . . , k). Since pi is func-
tional, then |pI

i (δ)| � 1 and |pI
i (δ′)| � 1, but, given

that their intersection is not empty, then |pI
i (δ)| = 1

and |pI
i (δ′)| = 1. Thus, they are equal and not empty,

i.e. pI
i (δ) = pI

i (δ′) �= ∅ (i = 1, . . . , k). Since I |=
({p1, . . . , pk} keyeq C) then we can infer that δ = δ′.
This proves that I |= ({p1, . . . , pk} keyin C).

Proposition 5 shows basic properties of in-keys
and eq-keys that will be later used in the proofs of
other theorems. In certain occasions, we will write
({pi}ki=1 keyx C) instead of ({p1, . . . , pk} keyx C)

(x ∈ {in, eq}) to shorten too long expressions. Prop-
erty (5) may be thought of as a version of Armstrong’s
reflexivity axiom for functional dependencies in rela-
tional databases [5]. It is not surprising that it corre-
sponds to one of these axioms as it deals with sets of
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properties. This is not the case of the other properties,
as they deal with constructors not found in the rela-
tional model. Properties (6), (7) and (8) specify how
keys behave with subsumption, intersection and union
of classes, respectively. Properties (9) and (10) specify
how keys behave with subsumption and equivalence of
properties. Interestingly, (9) does not hold for eq-keys.

Proposition 5. The following holds:

({pi}ki=1 keyx C
) |= ({pi}k+1

i=1 keyx C
)

(5)
({pi}ki=1 keyx C

)
, C � D |= ({pi}ki=1 keyx D

)
(6)

({pi}ki=1 keyx C
) |= ({pi}ki=1 keyx C � D

)
(7)

({pi}ki=1 keyx C � D
) |= ({pi}ki=1 keyx C

)
(8)

({pi}ki=1 keyin C
)
, {pi � qi}ki=1 |= ({qi}ki=1 keyin C

)

(9)
({pi}ki=1 keyx C

)
, {pi ≡ qi}ki=1 |= ({qi}ki=1 keyx C

)

(10)

with x ∈ {in, eq}.
Proof. Properties (5) and (6) follow directly from Def-
initions 3 and 4, and Properties (7) and (8) are direct
consequences of property (6).

Let us prove (9). Let I be an arbitrary DL inter-
pretation such that I |= ({p1, . . . , pk} keyin C) and
I |= pi � qi (i = 1, . . . , k). We have to prove
that I |= ({q1, . . . , qk} keyin C). Let δ, δ′ ∈ CI

such that qIi (δ) ∩ qIi (δ′) �= ∅ (i = 1, . . . , k). Since
I |= pi � qi then qIi (δ) ⊆ pI

i (δ) and qIi (δ′) ⊆
pI

i (δ′), and, since qIi (δ) ∩ qIi (δ′) �= ∅, then pI
i (δ) ∩

pI
i (δ′) �= ∅ (i = 1, . . . , k). This together with I |=

({p1, . . . , pk} keyin C) implies δ = δ′. Therefore, I |=
({q1, . . . , qk} keyin C).

Property (10) can be proven analogously.

In the following section, we establish when it is le-
gitimate to combine in-keys and eq-keys with align-
ments for data interlinking.

5. Data interlinking with keys and alignments

So far, we have considered keys independently from
their use for data interlinking. Keys are able to iden-
tify duplicate resources within the same dataset and
links between resources from different datasets de-
scribed using the same ontologies. But as soon as the

datasets do not share the same schema, keys alone are
not enough for performing data interlinking, and align-
ments are required.

In this section, we uncover the implicit role of align-
ments in the process of data interlinking with keys. We
show that data interlinking can be expressed as a di-
rect logical consequence of the semantics of keys and
alignments. We also highlight the need for completion
when interlinking data with eq-keys.

Data interlinking can be formulated as an inference
problem: for two given ontologies O = 〈S,D,K〉 and
O′ = 〈S ′,D′,K′〉 equipped with keys and an align-
ment A = 〈C,L〉 between O and O′, the problem is to
check, for any pair of individual names a and b of O
and O′, respectively, if the following entailment holds:

O,O′,A |= a ≈ b

This formulation also includes the particular case
when O and O′ share the same schema, as in this case
the set of correspondences is empty, i.e. A = 〈∅,L〉.

In the following, we give conditions on the schemas
S and S ′, the datasets D and D′, the set of class and
property correspondences C, and the set of (known)
links L, that, in the presence of a key κ ∈ K, are suf-
ficient for inferring a (new) link a ≈ b. These condi-
tions change depending on whether κ is an in-key or an
eq-key, as specified in Theorem 1 and Theorem 2 be-
low. These two theorems provide the logical grounds
of data interlinking with keys and alignments.

Theorem 1. Let O = 〈S,D,K〉 and O′ =
〈S ′,D′,K′〉 be two ontologies and A = 〈C,L〉 and
alignment between O and O′ such that

– ({p1, . . . , pk} keyin C) ∈ K, and
– {C � D} ∪ {pi � qi}ki=1 ⊆ C.

Then, for any pair of individual names a and b of O
and O′, respectively, if

– {C(a)} ∪ {pi(a, ci)}ki=1 ⊆ D,
– {D(b)} ∪ {qi(b, di)}ki=1 ⊆ D′, and
– {ci ≈ di}ki=1 ⊆ L,

then O, O′, A |= a ≈ b.

Proof. Notice that C � D and D(b) entail C(b), and
that pi � qi and qi(b, di) entail pi(b, di). Then, the
statement follows from Proposition 1.

Theorem 1 logically grounds data interlinking with
in-keys and ontology alignments: if we know that the
properties p1, . . . , pk are an in-key for a class C in O,
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and that, according to an alignment A, C subsumes a
class D of O′ and p1, . . . , pk pairwise subsume prop-
erties q1, . . . , qk of O′, then, for every pair of instances
a of C and b of D, the key will generate a same-as link
between a and b if, for all i ∈ {1, . . . , k}, a has for pi

a value ci which is equal to a value di that b has for qi .
Theorem 2 provides the logical basis of data inter-

linking with eq-keys and alignments. Note that un-
like Theorem 1, p1, . . . , pk are required to be pairwise
equivalent to q1, . . . , qk . Moreover, in order to gener-
ate a same-as link between a and b, we need to know
all the values that a and b may have for pi and qi , re-
spectively, and that these values are the same. This lo-
cal completeness is expressed as axioms in the ontol-
ogy schemas S and S ′.

Theorem 2. Let O = 〈S,D,K〉 and O′ =
〈S ′,D′,K′〉 be two ontologies and A = 〈C,L〉 an
alignment between O and O′ such that

– ({p1, . . . , pk} keyeq C) ∈ K, and

– {C � D} ∪ {pi ≡ qi}ki=1 ⊆ C.

Then, for any pair of individual names a and b of O
and O′, respectively, if

– {C(a)} ∪ ⋃k
i=1{pi(a, c

j
i )}rij=1 ⊆ D,

– {{a} � ∀pi.{c1
i , . . . , c

ri
i }}ki=1 ⊆ S ,

– {D(b)} ∪ ⋃k
i=1{qi(b, d

j
i )}rij=1 ⊆ D′,

– {{b} � ∀qi.{d1
i , . . . , d

ri
i }}ki=1 ⊆ S ′, and

–
⋃k

i=1{cj
i ≈ d

j
i }rij=1 ⊆ L,

then O, O′, A |= a ≈ b.

Proof. Notice that C � D and D(b) entail C(b),
and that pi ≡ qi entails pi � qi which, together
with qi(b, d

j
i ), entails pi(b, d

j
i ). Also, pi ≡ qi entails

pi � qi which, along with {b} � ∀qi.{d1
i , . . . , d

ri
i },

entails {b} � ∀pi.{d1
i , . . . , d

ri
i }. Then, the statement

follows from Proposition 2.

Notice that in both theorems we only address the
case when property values are individuals, i.e. when
keys are composed of object properties only. The
case when property values are literals, i.e. keys with
datatype properties, does not make a difference for
our purpose (although, in this case, the comparison of
property values is based on equality and not on an ini-
tial set of known same-as links L). Also, the case when
instances are related to the same individual name – e.g.
p(a, c), q(b, c) – is covered by the theorem too, as it
is enough to add links of type c ≈ c to L.

Another remark on Theorems 1 and 2 is that only
one key of O and no key of O′ is needed to infer links.
Actually, under the assumptions of the theorems, by
Proposition 5, {q}ki=1 is guaranteed to be an in-key (in
Theorem 1) or an eq-key (Theorem 2) for the class D.

Even though Theorems 1 and 2 are not difficult to
prove, they highlight some peculiarities of data inter-
linking with keys and alignments that have not re-
ceived attention in the literature: the fact that equiva-
lence of properties is not required for interlinking with
in-keys, and that local completeness is necessary for
interlinking with eq-keys.

It is possible to provide semantic versions of Theo-
rems 1 and 2 in which the antecedent axioms are not
asserted in the ontologies and alignments but inferred
from them (e.g. O,O′,A |= ({p1, . . . , pk} keyin C)

instead of ({p1, . . . , pk} keyin C) ∈ K). We have de-
cided to present the asserted versions to stress the na-
ture of every axiom (mapping, data, schema knowl-
edge or links).

We finish this section with the definition of the link
set generated by a key.

Definition 6 (Link set generated by a key). Let O and
O′ be two ontologies. Let A be an alignment between
O and O′. Let κ be a key. The set of links between O
and O′ generated by κ under A is defined as

LO,O′,A
κ = {

a ≈ b : a is an individual in O
∧ b is an individual in O′
∧ O,O′,A, κ |= a ≈ b

∧ O,O′,A �|= a ≈ b
}

In the following sections, we will introduce link
keys and formalise data interlinking with link keys in
the same manner. We will then show that data inter-
linking with link keys is more general than data inter-
linking with keys and alignments.

6. Link keys

We define three different types of link keys: weak,
plain and strong link keys. They all allow to find
links between two datasets, but they differ on whether
they allow the existence of different resources (dupli-
cates) satisfying the key conditions within each of the
datasets: weak link keys allow them; plain link keys al-
low them only among the non-linked resources; strong
link keys disallow them all.
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This distinction provides us with the right frame-
work in which to compare link keys and keys and
alignments: keys and alignments correspond to strong
link keys (Theorem 5), though data interlinking may
be possible with weak link keys when strong link keys
do not exist (Theorem 6). Plain link keys fill the gap
between weak and strong link keys.

The distinction between weak, plain and strong link
keys is important in practice too: weak link keys can
be used for data interlinking; strong link keys can be
used for both data interlinking and duplicate detec-
tion, i.e. for discovering same-as statements between
individuals of the same dataset; plain link keys lie be-
tween weak and plain link keys, as they can be used
for data interlinking and for finding duplicates among
the linked individuals.

6.1. Semantics of link keys

The semantics of link keys considered in [19] is re-
produced in Definition 7. It is natural to extend this se-
mantics to eq-keys too, and we do so in Definition 8.
These kinds of link keys will be referred to as weak
link keys.

Definition 7 (Weak in-link key). A weak in-link key
assertion, or simply a weak in-link key, has the form

({〈p1, q1〉, . . . , 〈pk, qk〉
}

linkkeyw
in 〈C,D〉)

where p1, . . . , pk and q1, . . . , qk are properties and C

and D are classes.
An interpretation I satisfies ({〈p1, q1〉, . . . ,〈pk, qk〉}

linkkeyw
in 〈C,D〉) if, for any δ ∈ CI and η ∈ DI ,

pI
1 (δ) ∩ qI1 (η) �= ∅, . . . , pI

k (δ) ∩ qIk (η) �= ∅
implies δ = η.

Note that the above definition does not specify to
which ontology vocabulary the classes and properties
of a link key belong. In practice, though, the classes C

and D, and the properties {pi}ki=1 and {qi}ki=1 belong
to different ontology schemas, and the instances of C

and D to different datasets. This will become explicit
in Section 7 when we formalise data interlinking with
link keys. In addition, note that the definition does not
say that the properties and classes of a link key are se-
mantically aligned, neither via an equivalence relation
nor via a subsumption relation.

Weak eq-link keys are defined below.

Definition 8 (Weak eq-link key). A weak eq-link key
assertion, or simply a weak eq-link key, has the form

({〈p1, q1〉, . . . , 〈pk, qk〉
}

linkkeyw
eq 〈C,D〉)

where p1, . . . , pk and q1, . . . , qk are properties and C

and D are classes.
An interpretation I satisfies ({〈p1, q1〉, . . . ,〈pk, qk〉}

linkkeyw
in 〈C,D〉) if, for any δ ∈ CI and η ∈ DI ,

pI
1 (δ) = qI1 (η) �= ∅, . . . , pI

k (δ) = qIk (η) �= ∅
implies δ = η.

It is worth noting that every key can be expressed
as a link key. Indeed, ({p1, . . . , pk} keyx C) is equiv-
alent to ({〈p1, p1〉, . . . , 〈pk, pk〉} linkkeyw

x 〈C,C〉),
with x ∈ {in, eq}.

Weak link keys are called weak because they are
not necessarily composed of keys. Instead, strong link
keys, introduced below, always embed two keys. For
this reason, they are closely related to keys and align-
ments, as we formally state in Theorem 5. We only
give the definition of strong in-link keys, as strong eq-
link keys can be defined analogously.

Definition 9 (Strong in-link key). A strong in-link key
assertion, or simply a strong in-link key, has the form

({〈p1, q1〉, . . . , 〈pk, qk〉
}

linkkeys
in 〈C,D〉)

where p1, . . . , pk and q1, . . . , qk are properties and C

and D are classes.
An interpretation I satisfies ({〈p1, q1〉, . . . ,〈pk, qk〉}

linkkeys
in 〈C,D〉) if

1. I |= ({〈p1, q1〉, . . . ,〈pk, qk〉} linkkeyw
in 〈C,D〉)

2. I |= ({p1, . . . , pk} keyin C)

3. I |= ({q1, . . . , qk} keyin D)

Both strong and weak link keys enable to find links
between two different datasets, but strong link keys do
more. Indeed, since the properties of a strong link key
are keys for the classes separately then they can be
used for finding same-as statements between individu-
als of the same dataset, i.e. for identifying duplicates.

Finally, we introduce plain link keys, which are in-
termediate between weak and strong link keys. Plain
link keys allow to find links and to identify duplicates
of the instances that are linked. As before, we only give
the definition of a plain in-link key, since plain eq-link
keys are defined analogously.
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Fig. 1. Two datasets and links generated depending on the type of link keys (double = weak, dashed = plain, waved = strong).

Definition 10 (Plain in-link key). A plain in-link key
assertion, or simply a plain in-link key, has the form

({〈p1, q1〉, . . . , 〈pk, qk〉
}

linkkeyp
in 〈C,D〉)

where p1, . . . , pk and q1, . . . , qk are properties and C

and D are classes.
An interpretation I satisfies ({〈p1, q1〉, . . . ,〈pk, qk〉}

linkkeyp
in 〈C,D〉) if, for any δ ∈ CI and η ∈ DI ,

pI
1 (δ) ∩ qI1 (η) �= ∅, . . . , pI

k (δ) ∩ qIk (η) �= ∅

implies:

1. δ = η,
2. for any δ′ ∈ CI , pI

1 (δ)∩pI
1 (δ′) �= ∅, . . . , pI

k (δ)∩
pI

k (δ′) �= ∅ implies δ = δ′,
3. for any η′ ∈ DI ,

qI1 (η) ∩ qI1 (η′) �= ∅, . . . , qIk (η) ∩ qIk (η′) �= ∅
implies η = η′.

Figure 1 shows the differences between weak, plain
and strong link keys on two datasets D and D′:

D = {
p(a1, c1),p(a1, c2),C(a1),p(a2, c2),C(a2),

C(a3),p(a3, c3),C(a4), p(a4, c3)
}

D′ = {
q(b1, d1),q(b1, d2),D(b1),q(b2, d2),D(b2),

D(b3),q(b3, d3),D(b4),q(b4, d3)
}

with the initial set of links L = {c1 ≈ d1}. Consider
the in-link key ({〈p, q〉} linkkeyy

in 〈C,D〉). Depending
on the value of y, it will generate:

weak: a1 ≈ b1 (double-line arrow),
plain: plus a1 ≈ a2 and b1 ≈ b2 (dashed arrows),
strong: plus a3 ≈ a4 and b3 ≈ b4 (wave arrows).

The question may be raised whether it is justified to
link resources by key-like conditions when these con-
ditions are not considered as keys (as in weak and plain
link keys). This is for the same reason that in some
context it may be enough to call people by their first
name (e.g. in a nuclear family), in some another to call
them by their last name (e.g. in a student class), and yet
in other contexts, first name and last name may not be
sufficient and birth date and birth place have to be used
too (e.g. in a country). Here, the context is provided by
what belongs to both datasets. It is not necessary that
such a link key exists (there may be two students with
the same last name in a class), but sometimes it does.
In such cases, there would be no reason to prevent us-
ing it.

As it was done for keys in Definition 5, it is possible
to define hybrid weak, plain and strong link keys by
bringing together the in- and eq-conditions:

({〈pi, qi〉
}k

i=1

{〈rj , sj 〉
}l

j=1 linkkeyy 〈C,D〉)

with y ∈ {w, p, s}.
Alignments may be naturally extended to include a

set of link keys. From here on, given two ontologies O
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Fig. 2. Fragments of the Insee and IGN ontologies and their alignment.

and O′ equipped with keys, an alignment A between
O and O′ will be a triple A = 〈C,L,LK〉 which, in
addition to a set of class and property correspondences
C and a link set L, has a set LK of link keys between
the vocabularies of O and O′ as a third component.

Below we give examples of link keys in real datasets.

Example 2 (Insee-IGN). The Insee dataset includes
links to the IGN dataset (French National Geographic
Institute).5 There exist owl:sameAs links between
the resources representing the French communes, ar-
rondissements, departments and regions, gathered to-
gether in the two datasets using the same class names.
These links can be found by comparing the Insee
codes, which are declared in both datasets – using
the ins:codeINSEE property in the Insee dataset and
ign:numInsee in the IGN dataset.6 The considered
fragment of the IGN ontology is depicted in Fig. 2.

We have checked the different link key conditions
for the property pair 〈ins:codeINSEE, ign:numInsee〉
on the union of the Insee and IGN datasets taking into
account the existing owl:sameAs links. They are strong
in-link keys for 〈ins:Com, ign:Com〉, 〈ins:Arr, ign:Arr〉,
〈ins:Dép, ign:Dép〉 and 〈ins:Rég, ign:Rég〉. Formally:

I∗ |= ({〈ins:codeINSEE, ign:numInsee〉} linkkeys
in

〈ins:Com, ign:Com〉)

I∗ |= ({〈ins:codeINSEE, ign:numInsee〉} linkkeys
in

〈ins:Arr, ign:Arr〉)

5http://data.ign.fr
6 ign is bound to the namespace http://data.ign.fr/def/geofla#.

I∗ |= ({〈ins:codeINSEE, ign:numInsee〉} linkkeys
in

〈
ins:Dép, ign:Dép

〉)

I∗ |= ({〈ins:codeINSEE, ign:numInsee〉} linkkeys
in

〈
ins:Rég, ign:Rég

〉)

where I∗ is a canonical interpretation of the RDF
graph resulting from the union of the Insee and IGN
datasets whose linked individuals are merged.

Let us consider the other properties of Exam-
ple 1. The property rdfs:label is used in the IGN
dataset in the same way as ins:nom is used in the
Insee dataset. Instead of ins:subdivisionDe, however,
IGN uses the three properties ign:arr, ign:dpt and
ign:region to declare the arrondissement, department
and region an administrative unit belongs to. We
have checked the different link key conditions for
the combinations of these properties in the scope of
the class pairs 〈ins:Com, ign:Com〉, 〈ins:Arr, ign:Arr〉,
〈ins:Dép, ign:Dép〉 and 〈ins:Rég, ign:Rég〉. This has
been performed in the graph resulting from the union
of the Insee graph, extended by transitivity of sub-
divisionDe, and the IGN graph, and again consid-
ering the owl:sameAs links. This generalises to the
fully inferred RDF graph, as no other axiom of nei-
ther the Insee ontology nor the IGN ontology may
have an impact on the satisfiability of the exam-
ined link key axioms. As one would expect, the
property pair 〈ins:nom, rdfs:label〉 is a strong in-link
key for 〈ins:Dép, ign:Dép〉 and 〈ins:Rég, ign:Rég〉.
The property pairs 〈ins:subdivisionDe, ign:arr〉 and
〈ins:subdivisionDe, ign:dpt〉 with 〈ins:nom, rdfs:label〉
constitute weak (and plain) in-link keys for the class
pairs 〈ins:Com, ign:Com〉 and 〈ins:Arr, ign:Arr〉, re-
spectively. They are not strong link keys because, as

http://data.ign.fr
http://data.ign.fr/def/geofla#
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explained in Example 1, subdivisionDe must be used
as an eq-key. They are not eq-link keys either because
ign:arr (as well as ign:dpt) refers to a single adminis-
trative unit, though subdivisionDe refers to several ad-
ministrative units due to transitivity. Formally:

I∗ |= ({〈ins:nom, rdfs:label〉, 〈ins:subdivisionDe,

ign:arr〉} linkkeyw
in 〈ins:Com, ign:Com〉)

I∗ |= ({〈ins:nom, rdfs:label〉, 〈ins:subdivisionDe,

ign:dpt〉} linkkeyw
in 〈ins:Arr, ign:Arr〉)

I∗ |= ({〈ins:nom, rdfs:label〉} linkkeys
in

〈
ins:Dép, ign:Dép

〉)

I∗ |= ({〈ins:nom, rdfs:label〉} linkkeys
in

〈
ins:Rég, ign:Rég

〉)

where I∗ is a canonical interpretation of the aforesaid
RDF graph whose linked individuals are merged.

Obviously, the above link keys could be used for re-
discovering the links.

At present, there exist tools for discovering weak in-
link keys [7] and hybrid weak link keys [8].

6.2. Relations between different link keys

Below, we provide theoretical results stating the
relations between the different kinds of link keys.
Propositions 6 and 7 are the counterparts of Proposi-
tions 3 and 4 for link keys and can be proven similarly.

Proposition 6. The following holds:

({〈pi, qi〉
}k

i=1 linkkeyy

in 〈C,D〉)

|= ({〈pi, qi〉
}k

i=1 linkkeyy
eq 〈C,D〉)

with y ∈ {w, p, s}.
Proposition 7. If p1, . . . , pk and q1, . . . , qk are func-
tional then

({〈pi, qi〉
}k

i=1 linkkeyy
eq 〈C,D〉)

|= ({〈pi, qi〉
}k

i=1 linkkeyy

in 〈C,D〉)

with y ∈ {w, p, s}.
Proposition 8 shows the relations between weak link

keys, plain link keys and strong link keys: a strong link

key is always a plain link key, which is always a weak
link key. Interestingly, there is no distinction between
weak eq-link keys and plain eq-link keys. This is due
to the transitivity of equality.

Proposition 8. The following holds:

({〈pi, qi〉
}k

i=1 linkkeys
x 〈C,D〉)

|= ({〈pi, qi〉
}k

i=1 linkkeyp
x 〈C,D〉)

({〈pi, qi〉
}k

i=1 linkkeyp
x 〈C,D〉)

|= ({〈pi, qi〉
}k

i=1 linkkeyw
x 〈C,D〉)

({〈pi, qi〉
}k

i=1 linkkeyw
eq 〈C,D〉)

|= ({〈pi, qi〉
}k

i=1 linkkeyp
eq 〈C,D〉)

with x ∈ {in, eq}.

Proof. The first two propositions follow directly from
the definitions of link keys. We prove the validity of
the third one. Let I be a DL interpretation such that
I |= ({〈pi, qi〉}ki=1 linkkeyw

eq 〈C,D〉), and let us prove

that I |= ({〈pi, qi〉}ki=1 linkkeyp
eq 〈C,D〉). Let δ ∈ CI

and η ∈ DI be such that pI
i (δ) = qIi (η) �= ∅ (i =

1, . . . , k). Since I |= ({〈pi, qi〉}ki=1 linkkeyw
eq 〈C,D〉),

then δ = η. Now, let δ′ ∈ CI with pI
i (δ) = pI

i (δ′) �=
∅ (i = 1, . . . , k). From pI

i (δ) = qIi (η) �= ∅ and
pI

i (δ) = pI
i (δ′) �= ∅, we can infer that pI

i (δ′) =
qIi (η) �= ∅ (i = 1, . . . , k). This together with δ′ ∈ CI ,
η ∈ DI and I |= ({〈pi, qi〉}ki=1 linkkeyw

eq 〈C,D〉) im-
plies δ′ = η, and, since δ = η, then δ = δ′. The last
condition of plain eq-link keys can be proven analo-
gously.

In the following section, we establish when it is le-
gitimate to use link keys for data interlinking.

7. Data interlinking with link keys

Theorems 3 and 4 give the logical foundations of
data interlinking with weak in-link keys and eq-link
keys, respectively. Their proofs follow the same ideas
as the proofs of Theorems 1 and 2 and are omitted.

Theorem 3. Let O = 〈S,D,K〉 and O′ = 〈S ′,D′,
K′〉 be two ontologies. Let A = 〈C,L,LK〉 be an
alignment between O and O′ such that
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– ({〈p1, q1〉, . . . , 〈pk, qk〉} linkkeyw
in 〈C,D〉) ∈

LK.

Then, for any pair of individual names a and b of O
and O′, respectively, if

– {C(a)} ∪ {pi(a, ci)}ki=1 ⊆ D,
– {D(b)} ∪ {qi(b, di)}ki=1 ⊆ D′, and
– {ci ≈ di}ki=1 ⊆ L

then O, O′, A |= a ≈ b.

Theorem 3 provides the logical basis of data inter-
linking with weak in-link keys: if we know that the
property pairs 〈p1, q1〉, . . ., 〈pk, qk〉 are a weak in-link
key for the class pair 〈C,D〉, then, for every pair of
instances a of C and b of D, the link key will gen-
erate a same-as link between a and b if, for every
i ∈ {1, . . . , k}, a has for pi a value ci which is equal
to a value di that b has for qi .

The counterpart of Theorem 3 for weak eq-link keys
is Theorem 4. In this case, to generate a same-as link
between a and b, we need to know all the values that
a and b have for pi and qi , respectively, and that these
values are the same. This local completeness is ex-
pressed as axioms in the ontology schemas S and S ′.

Theorem 4. Let O = 〈S,D,K〉 and O′ = 〈S ′,D′,
K′〉 be two ontologies. Let A = 〈C,L,LK〉 be an
alignment between O and O′ such that

– ({〈p1, q1〉, . . . , 〈pk, qk〉} linkkeyw
eq 〈C,D〉) ∈

LK.

Then, for any pair of individual names a and b of O
and O′, respectively, if

– {C(a)} ∪ ⋃k
i=1{pi(a, c

j
i )}rij=1 ⊆ D,

– {{a} � ∀pi.{c1
i , . . . , c

ri
i }}ki=1 ⊆ S ,

– {D(b)} ∪ ⋃k
i=1{qi(b, d

j
i )}rij=1 ⊆ D′,

– {{b} � ∀qi.{d1
i , . . . , d

ri
i }}ki=1 ⊆ S ′, and

–
⋃k

i=1{cj
i ≈ d

j
i }rij=1 ⊆ L

then O, O′, A |= a ≈ b.

Theorems 3 and 4 show that, unlike keys, weak link
keys do not need mappings between classes and prop-
erties to perform data interlinking. In addition, since,
by Proposition 8, any plain or strong link key is a weak
link key, Theorems 3 and 4 hold for strong and plain
link keys too.

Below we give the definition of the link set gener-
ated by a link key. It applies to all types of link keys.

Definition 11 (Link set generated by a link key). Let
O and O′ be two ontologies. Let A be an alignment
between O and O′. Let λ be a link key. The set of links
between O and O′ generated by λ under A is

LO,O′,A
λ = {

a ≈ b : a is an individual in O
∧ b is an individual in O′
∧ O,O′,A, λ |= a ≈ b

∧ O,O′,A �|= a ≈ b
}

Strong link keys generate more equality statements
than plain link keys, which generate more than weak
link keys. Logically speaking, it is justified by the fact
that the more constraining a link key is, the less models
it has, and, thus, the more logical consequences follow
from it. Dually, when searching for link keys, it will
be easier to search for weak link keys than plain link
keys, which will be easier than searching for strong
link keys. This is because, in each case, more con-
straints need to be satisfied.

Therefore, the manipulation of link keys is delicate:
the stronger a link key is, the more difficult to extract
it, but the more equality statements it will generate.
Furthermore, weak link keys may exist when plain and
strong link keys do not. In such cases, data interlink-
ing will only be possible with weak link keys. In con-
trast, duplicate detection inside datasets is only possi-
ble with plain or strong link keys.

The generation of links from a link key based
on Theorems 3 and 4 is reasonably easy. It may be
achieved by using specific tools such as Linkex [1], by
transforming link keys into SPARQL queries (avail-
able from the Alignment API [15]) or by expressing
them as (boolean) linkage rules to be executed in spe-
cific platforms such as SILK [22,33] or LIMES [26].

However, these latter platforms do not seem to sup-
port the comparison of sets of property values, thus
the direct translation of eq-link keys is not possible.
The natural extension of this approach, taking into ac-
count full reasoning, will require developing specific
provers.

Now that we have formally defined how to interlink
data with keys and link keys independently of each
other, we are in position to compare them.

8. Relation between keys and link keys

Keys and link keys are data interlinking devices that
we have developed so far in a parallel manner. One
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then may expect that their application always results in
the generation of the same links. We are now able to
formally establish the relation between keys and link
keys, and to show that, although there may be data in-
terlinking scenarios in which they will return the same
links, this will not always be the case.

This section starts by studying the relation between
keys and link keys as description logic axioms (Sec-
tion 8.1). Theorem 5 states the correspondence be-
tween strong link keys and keys and alignments. This
correspondence no longer holds for weak link keys
(Theorem 6). We also study the impact of these re-
sults on the generation of links (Section 8.2): Theo-
rems 7 and 8 show that the links generated by a strong
link key are the same as the links generated by its
corresponding keys and proper alignments. There are
cases, though, in which it is possible to generate links
with weak link keys while it is not possible with keys
and alignments.

8.1. Logical relations between keys and link keys

The theorems presented here are consequences of
stronger results included in the Appendix. We have de-
cided to not include the latter in this section because
the former are more directly related to data interlinking
with keys and link keys.

Theorem 5 states the correspondence between strong
link keys and keys and alignments: (11) says that
strong link keys entail keys; (12) and (13) express con-
ditions under which the converse of (11) holds.

Theorem 5. The following holds:

({〈pi, qi〉
}k

i=1 linkkeys
x 〈C,D〉)

|= ({pi}ki=1 keyx C
)

(11)
({pi}ki=1 keyin C

)
, C � D, {pi � qi}ki=1

|= ({〈pi, qi〉
}k

i=1 linkkeys
in 〈C,D〉) (12)

({pi}ki=1 keyeq C
)
, C � D, {pi ≡ qi}ki=1

|= ({〈pi, qi〉
}k

i=1 linkkeys
eq 〈C,D〉) (13)

with x ∈ {in, eq}.

Proof. (11) is a direct consequence of the definition
of strong link keys (Definition 9). (12) and (13) are
consequences of Proposition 12 in the Appendix.

Given the symmetry of the link key definitions, (11),
(12) and (13) hold for the right-hand side of the link
key too (with reversed subsumption relations).

Theorem 5 states that it is possible to infer keys from
strong link keys. This is not surprising because strong
link keys are composed of keys by definition. We call
these keys the side keys associated with a strong link
key. More interestingly, Theorem 5 also states that
strong link keys can be inferred from keys and proper
alignments. Note that one key is enough to entail the
strong link key as long as the alignment holds (these
alignments are different depending on whether in-link
keys or eq-link keys are considered).

The converses of (12) and (13) are only partly true:
strong link keys entail keys, but strong link keys (nor
plain or weak link keys) do not necessarily entail an
alignment between their properties and classes. This
rejects the idea that link keys embed alignments. Link
keys do not assert alignments, but express conditions
for identifying individuals. A link key between two
classes C and D does not assert that C and D are
equivalent, nor that one of the classes subsumes the
other, it just specifies how to link individuals that are
described as instances of C and D, but there may be
individuals in both classes that do not belong to the
other class. For example, there may exist a link key
between the classes AdministrativeCentre and Town,
although no equivalence, nor subsumption holds be-
tween them (some administrative centres are towns,
others are cities; some towns are administrative cen-
tres, others not).

Is Theorem 5 still valid for weak and plain link
keys? (12) and (13) do hold, but (11) does not. In other
words: keys and proper alignments entail weak and
plain link keys (Corollary 5.1); however, none of the
side components of weak or plain link keys are neces-
sarily keys (Theorem 6).

Corollary 5.1. The following holds:

({pi}ki=1 keyin C
)
, C � D, {pi � qi}ki=1

|= ({〈pi, qi〉
}k

i=1 linkkeyy

in 〈C,D〉) (14)
({pi}ki=1 keyeq C

)
, C � D, {pi ≡ qi}ki=1

|= ({〈pi, qi〉
}k

i=1 linkkeyy
eq 〈C,D〉) (15)

with y ∈ {w, p}.
Proof. This is a direct consequence of Theorem 5
since, by Proposition 8, any strong link key is also a
plain and a weak link key.
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O1 : O2 :
C(a1), C(a2), C(a3), C(a4), D(b1), D(b2), D(b3), D(b4),
p(a1, v1), p(a2, v2), p(a3, v1), p(a4, v2), q(b1, v1), q(b2, v

′
2), q(b3, v1), q(b4, v1),

p′(a1, w1), p′(a2, w1), p′(a3, w2), p′(a4, w1), q ′(b1, w1), q ′(b2, w1), q ′(b3, w
′
2), q ′(b4, w

′
2),

a1 �≈ a2 �≈ a3 �≈ a4 b1 �≈ b2 �≈ b3 �≈ b4

Fig. 3. Two ontologies O1 and O2 such that O1 ∪ O2 ∪ {({〈p, q〉, 〈p′, q ′〉} linkkeyw
in 〈C,D〉)} is consistent, whereas O1 ∪ {({p, p′} keyin C)}

and O2 ∪ {({q, q ′} keyin D)} are inconsistent.

Unlike strong link keys, none of the side compo-
nents of weak or plain link keys are necessarily keys.
The proof of Theorem 6 provides two ontologies that
are consistent with a weak link key but are inconsistent
with any of its side components.

Theorem 6. There exist ontologies that are consistent
with a weak link key but inconsistent with each of its
side components.

Proof. Consider the two ontologies O1 and O2 de-
picted in Fig. 3. It can be checked that

λ = ({〈p, q〉, 〈p′, q ′〉} linkkeyw
in 〈C,D〉)

is consistent with O1 ∪O2. Notice that λ together with
O1 and O2 entails the link a1 ≈ b1.

On the contrary, the side components of λ, i.e.

κ1 = ({
p, p′} keyin C

)
κ2 = ({

q, q ′} keyin D
)

are inconsistent with O1 and O2, respectively. Indeed,
O1∪{κ1} |= a2 ≈ a4 because a2 and a4 share the value
v2 for p and the value w1 for p′. However, O1∪{κ1} |=
a2 �≈ a4 because a2 �≈ a4 belongs to O1. This means
that O1∪{κ1} is inconsistent. Similarly, it can be shown
that O2 ∪ {κ2} is inconsistent.

It is noteworthy that not a single useful key (i.e. a
key that can be used to generate links) can be found in
the ontologies of the proof of Theorem 6: ({p} keyin C)

and ({p′} keyin C) are both inconsistent with O1, and
({q} keyin D) and ({q ′} keyin D) with O2. As a con-
sequence, in this example, data interlinking is possi-
ble with link keys (λ allows to find a1 ≈ b1) but not
with keys. Moreover, data interlinking is possible with
weak link keys but not with strong link keys.

Example 3 makes it clear in the context of a real data
interlinking scenario that (11) in Theorem 5 does not
hold for weak link keys.

Example 3 (Insee-IGN (cont.)). The following state-
ment of Example 2:

I∗ |= ({〈ins:nom, rdfs:label〉, 〈ins:subdivisionDe,

ign:arr〉} linkkeyw
in 〈ins:Com, ign:Com〉)

expresses a weak in-link key satisfied by I∗, the
canonical interpretation of the RDF graphs of Exam-
ple 2 whose linked individuals are merged.

Let us consider the side components of the above
weak link key: If (11) of Theorem 5 were true for weak
link keys, then the following two keys would be satis-
fied by I∗:

({ins:nom, ins:subdivisionDe} keyin ins:Com
)

({rdfs:label, ign:arr} keyin ign:Com
)

However, as explained in Example 2, the key ax-
iom ({ins:nom, ins:subdivisionDe} keyin ins:Com) is
not satisfied by I∗ due to the transitivity of the prop-
erty ins:subdivisionDe.

One may think that data interlinking is still possible
with ({rdfs:label, ign:arr} keyin ign:Com), which is in-
deed satisfied by I∗. This would require the following
property correspondences to hold

ins:nom � rdfs:label

ins:subdivisionDe � ign:arr

However, I∗ does not satisfy ins:nom � rdfs:label but
the reversed subsumption ins:nom � rdfs:label (see
Fig. 2).

Even though the side components of a weak link key
are not necessarily keys for the ontologies separately,
every weak link key entails one key in the vocabulary
of the ontologies together, as stated by Proposition 9
below. Unfortunately, this link key is of very limited
use in practice because the inferred key holds for the
intersection of the classes that we actually want to in-
terlink (it is not known before linking which individu-
als belong to both classes).
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Proposition 9. The following holds:

({〈pi, qi〉
}k

i=1 linkkeyw
x 〈C,D〉)

|= ({pi � qi}ki=1 keyw
x C � D

)

with x ∈ {in, eq}.
Proof. This is a consequence of Proposition 10 in the
Appendix.

8.2. Relations between generated link sets

The difference between using link keys for data in-
terlinking instead of keys and ontology alignments be-
comes evident when comparing Theorem 1 with The-
orem 3 and Theorem 2 with Theorem 4. In both cases,
knowledge about keys and alignments is replaced by
knowledge about link keys. Theorem 7 shows that the
generated link sets are exactly the same.

Theorem 7. Let O and O′ be ontologies. Let A =
〈C,L,LK〉 be an alignment between O and O′ with
{C � D}, {pi � qi}ki=1 ⊆ C. Let κ = ({pi}ki=1 keyin C)

and λ = ({〈pi, qi〉}ki=1 linkkeys
in 〈C,D〉). Then, it

holds that LO,O′,A
κ = LO,O′,A

λ .

Proof. The result follows from Definitions 6 and 11
and the fact that, since {C � D} ∪ {pi � qi}ki=1 ⊆ C,
by clause (12) of Theorem 5, we have O, O′, A, κ |= λ

and also O, O′, A, λ |= κ .

The same holds for eq-keys and eq-link keys.

Theorem 8. Let O and O′ be ontologies. Let A =
〈C,L,LK〉 be an alignment between O and O′ with
{C � D}, {pi ≡ qi}ki=1 ⊆ C. Let κ = ({pi}ki=1 keyeq C)

and λ = ({〈pi, qi〉}ki=1 linkkeys
eq 〈C,D〉). Then, it

holds that LO,O′,A
κ = LO,O′,A

λ .

Proof. The result follows from Definitions 6 and 11
and the fact that, since {C � D} ∪ {pi ≡ qi}ki=1 ⊆ C,
by clause (13) of Theorem 5, we have O, O′, A, κ |= λ

and also O, O′, A, λ |= κ .

The lesson from Theorems 7 and 8 is that, for inter-
linking two datasets, if there is a key for one dataset
and a proper alignment from the key to the vocab-
ulary of the other dataset, then using the key or the
strong link key entailed by the key and the alignment
is strictly equivalent.

However, as explained in the previous section, weak
link keys may exist even when keys and proper align-

ments do not. As a conclusion, in general, link keys
are more suitable than keys for data interlinking. Thus,
data interlinking algorithms are justified in discovering
link keys rather than keys and alignments. Below we
provide a real data-interlinking scenario in which keys
and alignments are not useful, but link keys are.

Example 4 (Insee-GeoNames). GeoNames is a world-
wide geographical database publicly available in
RDF.7 Imagine that we are given the task of finding
links between the URIs of Insee and GeoNames that
represent French communes. Below we show that, for
this particular task, keys and alignments are useless as
they will generate no link, while link keys will gener-
ate almost all of them.

Insee’s ontology is very different from GeoNames’
ontology.8 It is not surprising as Insee’s scope is
France and GeoNames’ is world-wide. GeoNames’
ontology basically contains only one class, gn:Feature,
of which all geographical features (countries, cities,
mountains, lakes, etc.) are direct instances. There is no
named class equivalent to ins:Com, ins:Arr, ins:Dép or
ins:Rég, but the following complex alignment holds:

ins:Com ≡ gn:Feature

� ∃ gn:countryCode.{FR}
� ∃ gn:featureCode.{A.ADM4}

ins:Arr ≡ gn:Feature

� ∃ gn:countryCode.{FR}
� ∃ gn:featureCode.{A.ADM3}

ins:Dép ≡ gn:Feature

� ∃ gn:countryCode.{FR}
� ∃ gn:featureCode.{A.ADM2}

ins:Rég ≡ gn:Feature

� ∃ gn:countryCode.{FR}
� ∃ gn:featureCode.{A.ADM1}

From here on, the complex classes of the right-hand
sides of the above equivalences will be denoted by
gn:Com, gn:Arr, gn:Dep and gn:Reg.

In Insee, apart from rdf:type and owl:sameAs, com-
munes only have the following properties: ins:nom,

7https://download.geonames.org/export/dump/allCountries.zip
8http://www.geonames.org/ontology/ontology_v3.2.rdf

https://download.geonames.org/export/dump/allCountries.zip
http://www.geonames.org/ontology/ontology_v3.2.rdf
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ins:subdivisionDe, ins:codeCommune and ins:
codeInsee. Neither ins:codeCommune nor ins:
codeInsee has any counterpart in GeoNames’ ontol-
ogy, but ins:nom and ins:subdivisionDe are aligned in
the following way:

ins:nom ≡ gn:name (16)

ins:subdivisionDe � gn:parentFeature (17)

Certainly, gn:parentFeature is a multivalued prop-
erty that relates features with their parents, in ei-
ther administrative or physical subdivision. Therefore,
ins:subdivisionDe, which only relates administrative
divisions, is subsumed by gn:parentFeature but not
equivalent to it.

Besides ins:subdivisionDe, one could also con-
sider the GeoNames properties gn:parentCountry and
gn:parentADMN – where gn:parentADMN refers to a
level N administrative parent, N = 1, 2, 3, 4 – and the
alignment

ins:subdivisionDe � gn:parentCountry (18)

ins:subdivisionDe � gn:parentADMN (19)

However, (18) and (19) are not true because the proper-
ties gn:parentCountry and gn:parentADMN may be ap-
plied to non-administrative features (e.g. a lake), which
is not the case of ins:subdivisionDe. The considered
fragments of the Insee and GeoNames ontologies and
their alignment are depicted in Fig. 4.

The following are the minimal keys that can be
formed with the properties of the alignment made up
of (16) and (17):

({ins:nom}{ins:subdivisionDe} key ins:Com
)

(20)
({gn:name}{gn:parentFeature} key gn:Com

)
(21)

(20) cannot be used for interlinking because this re-
quires ins:subdivisionDe and ins:parentFeature to be
equivalent (Theorem 2), which is not true. This be-
comes apparent when we compare the values of French
communes for both properties, as there are values that
the communes have for ins:parentFeature but not for
ins:subdivisionDe (e.g. the URI representing the Euro-
pean Union). Likewise, (21) is not useful.

From the above paragraph, we can conclude that
keys and alignments are not useful for interlinking
communes of Insee and GeoNames. Nevertheless, link
keys are. More specifically, the following link keys can
be used:

({〈ins:nom, gn:name〉}{〈ins:subdivisionDe,

gn:parentADM3〉} linkkeys 〈ins:Com, gn:Com〉)
(22)

({〈ins:nom, gn:name〉}{〈ins:subdivisionDe,

gn:parentADM2〉} linkkeys 〈ins:Arr, gn:Arr〉) (23)
({〈ins:nom, gn:name〉}

linkkeys
in

〈
ins:Dép, gn:Dep

〉)
(24)

Indeed, the links between departments can be found
using (24) by comparing their names, and, once these
links are found, they can be used to find links be-
tween arrondissements using (23) by comparing their
names and the departments they belong to. Finally, the
found links between arrondissements can be used to
find links between communes using (22) by compar-
ing their names and the arrondissements they belong
to. We did so and compared the results with a reference
link set. We obtained 100% precision and 97% recall.
The latter was due to the similarity function used to
compare name strings.

Fig. 4. Fragments of the Insee and GeoNames ontologies and their alignment.
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To conclude, let us stress that, even though (19) is
not true, (22) and (23) hold and are useful for inter-
linking. This confirms once again that the properties of
a link key are not necessarily semantically related via
subsumption or equivalence.

9. Conclusions and further work

The relation between keys and link keys is much
more subtle than may be thought of at first sight, and
one may not be replaced by the other without care. In
particular, we have shown that data interlinking with
keys requires (a) a proper alignment (Theorems 1 and
2), and (b) completion in the case of eq-keys (Theo-
rem 2). Data interlinking with link keys, in turn, does
not need alignments (Theorems 3 and 4) but still needs
completion in the case of eq-link keys (Theorem 4).

Strong link keys entail keys by definition, and keys
with proper alignments entail strong link keys (Theo-
rem 5). In this case, the links generated by a strong link
key are the same as those generated by their associated
side keys and alignments (Theorems 7 and 8).

Nonetheless, in addition to not needing an align-
ment, weak link keys may exist independently from the
existence of any key of the individual ontologies (The-
orem 6; if they are, then they are strong link keys), and
yet they may be useful for interlinking datasets.

These results provide a clear picture of the relation-
ships between key-inspired devices available for data
interlinking. They can be easily transferred to the hy-
brid keys and link keys.

The work presented in this paper contributes ground-
ing data interlinking methods based on keys and link
keys. In particular, it justifies the work for directly ex-
tracting weak link keys [7] instead of searching for
keys with matching alignments. Link key extraction
directly focuses on what may be used for data inter-
linking instead of generating keys and alignments that
may not be possible to exploit. Also, when no strong
link key exists, link key extraction may find a suitable
weak link key, though key extraction will not return
any useful key.

The clarification of the semantics of link keys tack-
led in this paper should lead to complement data in-
terlinking methods with inference methods. One ap-
proach consists in designing rules, inspired by the
statements found in propositions of this paper, to in-
fer (link) keys from (link) keys in the same way as
Armstrong’s axioms [5] allow to derive functional de-
pendencies. However, this approach is highly depen-

dent on the actual schema language used. Another ap-
proach extends description logic reasoners to include
keys [23] and link keys as axioms. In both cases, en-
tailed link keys could be exploited by extended ver-
sions of reasoning-based data interlinking tools. This
should also enable breaking the extraction + interlink-
ing process by reasoning on link keys before interlink-
ing in order to provide more accurate links, eventually
more efficiently.
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Appendix. Proofs of Section 8.1

This appendix describes the relations between keys
and link keys in a more precise way than it was done
in Section 8.1. Some of the results of Section 8.1 are
synthetic consequences of the ones presented here.

Proposition 10. The following holds:

({〈pi, qi〉
}k

i=1 linkkeyw
in 〈C,D〉), {pi � qi}ki=1

|= ({pi}ki=1 keyin C � D
)

({〈pi, qi〉
}k

i=1 linkkeyw
in 〈C,D〉), {pi � qi}ki=1

|= ({qi}ki=1 keyin C � D
)

({〈pi, qi〉
}k

i=1 linkkeyw
eq 〈C,D〉), {pi ≡ qi}ki=1

|= ({pi}ki=1 keyeq C � D
)

Proof. Let us prove the first entailment. Let I be
such that I |= ({〈pi, qi〉}ki=1 linkkeyw

in 〈C,D〉) and
I |= pi � qi (i = 1, . . . , k), and let us prove that
I |= ({pi}ki=1 keyin C � D). Let δ, δ′ ∈ (C�D)I such
that pI

i (δ) ∩ pI
i (δ′) �= ∅ (i = 1, . . . , k). Since δ, δ′ ∈

(C �D)I = CI ∩DI then δ, δ′ ∈ CI and δ, δ′ ∈ DI .
In particular, δ ∈ CI and δ′ ∈ DI . Now, since
I |= pi � qi , then, pI

i (δ′) ⊆ qIi (δ′) (i = 1, . . . , k).
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From this and the fact that pI
i (δ)∩pI

i (δ′) �= ∅, we can
infer that pI

i (δ) ∩ qIi (δ′) �= ∅ (i = 1, . . . , k). Since
I |= ({〈pi, qi〉}ki=1 linkkeyw

in 〈C,D〉) and δ ∈ CI and
δ′ ∈ DI , then δ = δ′. The second entailment can be
proven analogously.

Let us prove the third entailment. Let I be such that
I |= ({〈pi, qi〉}ki=1 linkkeyw

eq 〈C,D〉) and I |= pi ≡ qi

(i = 1, . . . , k), and let us prove that I satisfies the
eq-key ({pi}ki=1 keyeq C � D). Let δ, δ′ ∈ (C � D)I

such that pI
i (δ) = pI

i (δ′) �= ∅ (i = 1, . . . , k). Since
δ, δ′ ∈ (C � D)I then δ ∈ CI and δ′ ∈ DI . Now,
since I |= pi ≡ qi , then, we have pI

i (δ′) = qIi (δ′)
(i = 1, . . . , k). From this and the fact that pI

i (δ) =
pI

i (δ′) �= ∅, we can infer that pI
i (δ) = qIi (δ′) �= ∅

(i = 1, . . . , k). Finally, since δ ∈ CI and δ′ ∈ DI and
I |= ({〈pi, qi〉}ki=1 linkkeyw

eq 〈C,D〉) then δ = δ′.

Proposition 11 is the counterpart of Proposition 10
for strong link keys. Notice that this time the conse-
quent is a key in the union of classes, and not only in
the intersection.

Proposition 11. The following holds:

({〈pi, qi〉
}k

i=1 linkkeys
in 〈C,D〉), {pi � qi}ki=1

|= ({pi}ki=1 keyin C � D
)

({〈pi, qi〉
}k

i=1 linkkeys
in 〈C,D〉), {pi � qi}ki=1

|= ({qi}ki=1 keyin C � D
)

({〈pi, qi〉
}k

i=1 linkkeys
eq 〈C,D〉), {pi ≡ qi}ki=1

|= ({pi}ki=1 keyeq C � D
)

Proof. We only prove the first entailment. Let I such
that I |= ({〈pi, qi〉}ki=1 linkkeys

in 〈C,D〉) and I |=
pi � qi (i = 1, . . . , k), and let us prove that I |=
({pi}ki=1 keyin C � D). Let δ, δ′ ∈ (C � D)I such that
pI

i (δ) ∩ pI
i (δ′) �= ∅ (i = 1, . . . , k). We have δ, δ′ ∈

(C �D)I = CI ∪DI . Let us consider three cases: (1)
δ, δ′ ∈ CI , (2) δ, δ′ ∈ DI and (3) δ ∈ CI and δ′ ∈ DI

(the case δ′ ∈ CI and δ ∈ DI is equivalent to this last
one).

(1) Assume that δ, δ′ ∈ CI . Since I satisfies the
strong in-link key ({〈pi, qi〉}ki=1 linkkeys

in 〈C,D〉) then
I |= ({pi}ki=1 keyin C). From this and the fact that
δ, δ′ ∈ CI and pI

i (δ)∩pI
i (δ′) �= ∅ (i = 1, . . . , k), we

can conclude that δ = δ′.
(2) Assume that δ, δ′ ∈ DI . Since I satisfies the

strong in-link key ({〈pi, qi〉}ki=1 linkkeys
in 〈C,D〉) then

I |= ({qi}ki=1 keyin D). Now, we also have that
I |= pi � qi . Thus, pI

i (δ) ⊆ qIi (δ) and pI
i (δ′) ⊆

qIi (δ′) (i = 1, . . . , k). From this, and pI
i (δ)∩pI

i (δ′) �=
∅, we can infer that qIi (δ)∩qIi (δ′) �= ∅ (i = 1, . . . , k).
This along with the fact that δ, δ′ ∈ DI and I |=
({qi}ki=1 keyin D) implies δ = δ′.

(3) Finally, assume that δ ∈ CI , δ′ ∈ DI . Since
I |= ({〈pi, qi〉}ki=1 linkkeys

in 〈C,D〉) then I |=
({〈pi, qi〉}ki=1 linkkeyw

in 〈C,D〉). It is possible to pro-
ceed like in the proof of the first statement of Proposi-
tion 10 to conclude that δ = δ′.

The other two statements can be proven similarly.

Proposition 12 is the converse of Proposition 11.
Notice, however, that, in the case of in-link keys, the
subsumptions are inverted, i.e. they are the subsum-
ing and not the subsumed properties the ones that must
form an in-key in the union of classes.

Proposition 12. The following holds:

({pi}ki=1 keyin C � D
)
, {pi � qi}ki=1

|= ({〈pi, qi〉
}k

i=1 linkkeys
in 〈C,D〉)

({qi}ki=1 keyin C � D
)
, {pi � qi}ki=1

|= ({〈pi, qi〉
}k

i=1 linkkeys
in 〈C,D〉)

({pi}ki=1 keyeq C � D
)
, {pi ≡ qi}ki=1

|= ({〈pi, qi〉
}k

i=1 linkkeys
eq 〈C,D〉)

Proof. We only prove the first entailment. Let I be
an interpretation such that I |= ({pi}ki=1 keyin C � D)

and I |= pi � qi (i = 1, . . . k).
Since I |= ({pi}ki=1 keyin C � D), by (8) of Propo-

sition 5, we have that I |= ({pi}ki=1 keyin C). Let
us prove that I satisfies the key ({qi}ki=1 keyin D).
Since I |= ({pi}ki=1 keyin C � D), by (8) of Propo-
sition 5, we have I |= ({pi}ki=1 keyin D), and, since
I |= pi � qi , by (9) of Proposition 5, we also have
that I |= ({qi}ki=1 keyin D).

Now, we prove I |= ({〈pi, qi〉}ki=1linkkeyw
in〈C,D〉).

Let δ ∈ CI and δ′ ∈ DI with pI
i (δ) ∩ qIi (δ′) �= ∅

(i = 1, . . . , k). From δ ∈ CI and δ′ ∈ DI we have
δ, δ′ ∈ CI ∪ DI = (C � D)I . Since I |= pi � qi ,
we have qIi (δ′) ⊆ pI

i (δ′) (i = 1, . . . , k). From this
and pI

i (δ) ∩ qIi (δ′) �= ∅ we infer pI
i (δ) ∩ pI

i (δ′) �= ∅
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(i = 1, . . . , k). This together with δ, δ′ ∈ (C � D)I

and I |= ({pi}ki=1 keyin C � D) implies δ = δ′.
The second entailment can be proven analogously.

The third entailment can be proven analogously too,
but will use (10) of Proposition 5.
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